首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel method for preparation of S-(+)-ketoprofen is presented involving coupling enantioselective hydrolysis of ketoprofen methyl ester catalyzed by a surfactant-coated-lipase with the photo-oxidation of methanol in a water-saturated organic solvent. The effect of photocatalytic conversion of methanol into water and carbon dioxide on the hydrolysis of ketoprofen methyl ester and the stability of the enzyme was investigated. The photo-oxidation of methanol shifted the equilibrium of the hydrolysis toward the formation of ketoprofen, increasing the equilibrium conversion ratio and improving the enantioselectivity. Because the surfactant-coated lipase and ketoprofen methyl ester dissolved in the organic solvent and ketoprofen was absorbed on the TiO2 photocatalyst particles, the separation procedures could be simplified and the stability of the enzyme was increased.  相似文献   

2.
A method is presented to improve the enantioselectivity of lipase-catalyzed hydrolysis of naproxen methyl ester in water-saturated isooctane. It is shown that coupling of the enantioselective hydrolysis of Naproxen methyl ester with the photo-dissociation methanol leads to the photocatalytic conversion of methanol into water, by which the equilibrium constant (K) of the lipase-catalyzed hydrolysis was changed. The equilibrium yield and enantiomeric excess are increased. Because the lipase would not dissolve in the organic solvent, it was adsorbed on photocatalyst particles, which may facilitate the isolation of enzyme from reaction system.  相似文献   

3.
《Chirality》2017,29(6):304-314
S‐naproxen by enantioselective hydrolysis of racemic naproxen methyl ester was produced using immobilized lipase. The lipase enzyme was immobilized on chitosan beads, activated chitosan beads by glutaraldehyde, and Amberlite XAD7. In order to find an appropriate support for the hydrolysis reaction of racemic naproxen methyl ester, the conversion and enantioselectivity for all carriers were compared. In addition, effects of the volumetric ratio of two phases in different organic solvents, addition of cosolvent and surfactant, optimum pH and temperature, reusability, and inhibitory effect of methanol were investigated. The optimum volumetric ratio of two phases was defined as 3:2 of aqueous phase to organic phase. Various water miscible and water immiscible solvents were examined. Finally, isooctane was chosen as an organic solvent, while 2‐ethoxyethanol was added as a cosolvent in the organic phase of the reaction mixture. The optimum reaction conditions were determined to be 35 °C, pH 7, and 24 h. Addition of Tween‐80 in the organic phase increased the accessibility of immobilized enzyme to the reactant. The optimum organic phase compositions using a volumetric ratio of 2‐ethoxyethanol, isooctane and Tween‐80 were 3:7 and 0.1% (v /v/v), respectively. The best conversion and enantioselectivity of immobilized enzyme using chitosan beads activated by glutaraldehyde were 0.45 and 185, respectively.  相似文献   

4.
The lipase selective hydrolysis of Naproxen methyl ester was explored in both water-saturated isooctane and water-saturated ionic liquid 1-butyl-3-methylimidazolium hexafluoro-phoshate ([bmim]PF6) to see any significant differences in terms of enantioselectivity and stability between two different classes of reaction media. It is shown that polar and hydrophobic of [bmim]PF6 made it an unearthly reaction medium for hydrolysis of Naproxen methyl ester. It not only decreases the equilibrium constant (K) and enhances the enantiomeric ratio (E), consequently improves the equilibrium conversion (CEq) of the hydrolysis reaction and enantiomeric excess of product (eep), but also maintains the lipase activity. Because the lipase would not dissolve in the 1-butyl-3-methylimidazolium hexafluoro-phoshate, it can be filtrated up from 1-butyl-3-methylimidazolium hexafluoro-phoshate and recycled for several runs. The stability of lipase was improved due to the higher solubility of methanol in 1-butyl-3-methylimidazolium hexafluoro-phoshate than in isooctane.  相似文献   

5.
Enzymatic hydrolysis conducted in a medium composed of solely substrate is considered to resolve racemic ketoprofen esters. In a system composed of two components, the pure liquid substrate (organic phase) and water (aqueous phase), hydrolysis products can be efficiently removed from the reaction mixtures. Accordingly, in this study we designed a solvent-free two-phase system for the enantioselective enzymatic hydrolysis of ketoprofen esters. In order to further optimize this system, the influences of various factors, such as the pH of the aqueous phase, temperature, enzyme content, and the alcohol chain length of esters, were examined on conversion and enantiomeric excess. 1N NaHCO3 was identified as the most efficient aqueous phase for the extraction of ketoprofen. Changes in the amount of enzyme did not significantly affect the maximum conversion or the enantiomeric excess. On the other hand, ketoprofen esters with shorter alcohol chains displayed higher initial reaction rates and conversions in solventless media. In the case of ketoprofen propyl ester, for example, the productivity of the solvent-free two-phase system was about 10–100 times higher than that obtained to date for ketoprofen esterification with alcohols in organic solvents. The enantioselectivities obtained in solvent-free media were similar to those obtained for the enantioselective esterification of ketoprofen in organic solvents.  相似文献   

6.
Production of methyl gallate (MG), which is an important phenolic acid ester for pharmaceutical industry, was carried out by Novozym 435-catalysed transesterification of propyl gallate (PG) with methanol in a deep eutectic solvent. Reaction parameters governing substrate molar ratio, enzyme concentration, temperature and agitation rate were investigated batch-wise in choline chloride:glycerol-water binary mixture. The results were evaluated in terms of conversion of PG, yield of MG and hydrolysis of PG to gallic acid. 10% (w/w) of water was found to be favourable in the reaction medium for low hydrolysis percent. The highest conversion (17.4%) and yield (60.4%) but the lowest hydrolysis (2%) after 120?h of transesterification were found at PG/methanol molar ratio of 1:6, enzyme concentration of 40?g/L, 50?°C and 200?rpm. A kinetic model based on the Ping-Pong Bi–Bi mechanism for transesterification of PG was proposed with the assumption that there were no internal and external mass transfer resistances.  相似文献   

7.
In the present downstream processing of penicillin G, penicillin G is extracted from the fermentation broth with an organic solvent and purified as a potassium salt via a number of back-extraction and crystallization steps. After purification, penicillin G is hydrolyzed to 6-aminopenicillanic acid, a precursor for many semisynthetic beta-lactam antibiotics. We are studying a reduction in the number of pH shifts involved and hence a large reduction in the waste salt production. To this end, the organic penicillin G extract is directly to be added to an aqueous immobilized enzyme suspension reactor and hydrolyzed by extractive catalysis. We found that this conversion can exceed 90% because crystallization of 6-aminopenicillanic acid shifts the equilibrium to the product side. A model was developed for predicting the equilibrium conversion in batch systems containing both a water and a butyl acetate phase, with either potassium or D-p-hydroxyphenylglycine methyl ester as counter-ion of penicillin G. The model incorporates the partitioning equilibrium of the reactants, the enzymatic reaction equilibrium, and the crystallization equilibrium of 6-aminopenicillanic acid. The model predicted the equilibrium conversion of Pen G quite reasonably for different values of pH, initial penicillin G concentration and phase volume ratio. The model can be used as a tool for optimizing the enzymatic hydrolysis.  相似文献   

8.
Summary An irreversible resolution of ketoprofen prodrug was developed by lipase-catalysed hydrolysis using corresponding vinyl ester as activated substrate in organic medium. The product obtained, (S)-ketoprofen vinyl ester would be used as a potential prodrug and a significant monomer for polymeric drug. Lipozyme? immobilized from Mucor miehei showed the highest selectivity and activity after enzyme screening. The effect of solvent, water amount in the reaction medium and reaction temperature on the activity and enantioselectivity of Lipozyme? was studied. Polymerizable, optically active ketoprofen prodrug could be obtained with excellent enantioselectivity (ee >99%, E ~ 400) in a mixture of dioxane/water (97.5/2.5, v/v) at 25 °C.  相似文献   

9.
Summary The influence of pH, temperature, substrate concentration and organic solvents (dimethylformamide, dimethylsulfoxide) on the -chymotrypsin stability in a water/organic solvent system was studied. The enzyme activity was measured as the dipeptide, AcPheLeuNH2 synthesis and the ester substrate hydrolysis. Enzyme stability was enhanced by lower pH and temperature values and higher substrate concentrations. Dimethylsulfoxide allowed an higher enzyme stability than dimethylformamide. -Chymotrypsin displayed an higher stability in the water medium when it was compared to the organic system.  相似文献   

10.
A method to improve the enantioselectivity of lipase-catalyzed kinetic resolution (KR) of trans-2-phenyl-cyclopropane-1-carboxylic acid derivatives in water–acetone solution is presented. Two different approaches were compared: enzyme-catalyzed esterification and enzymatic hydrolysis of the target ester. A substantial influence of enzyme type, ethoxy group donor, and solvent on conversion and enantioselectivity of the enzymatic esterification was noted. While enzymatic esterification proceeds with poor enantioselectivity, the hydrolysis of target ester proceeds efficiently. Studies on the influence of cosolvent used for the enzymatic hydrolysis reaction showed that kinetic resolution can be performed in acetone and water buffer mixture predominantly containing organic solvent. Any change in organic solvent content resulted in a substantial decrease in enantioselectivity from almost E = 150 to less than 5.  相似文献   

11.
An inexpensive self-made immobilized lipase from Penicillium expansum was shown to be an efficient biocatalyst for biodiesel production from waste oil with high acid value in organic solvent. It was revealed that water from the esterification of free fatty acids and methanol prohibited a high methyl ester yield. Adsorbents could effectively control the concentration of water in the reaction system, resulting in an improved methyl ester yield. Silica gel was proved to be the optimal adsorbent, affording a ME yield of 92.8% after 7 h. Moreover, the enzyme preparation displayed a higher stability in waste oil than in corn oil, with 68.4% of the original enzymatic activity retained after being reused for 10 batches.  相似文献   

12.
Ester synthesis in aqueous media in the presence of various lipases   总被引:1,自引:0,他引:1  
Summary The ability of seven lipase preparations to catalyse methyl ester synthesis in aqueous media was compared and the synthesis reaction (esterification or alcoholysis) determined. Three behaviours were observed: three enzymes catalysed ester synthesis by esterification of free fatty acids and one enzyme catalysed alcoholysis but the other three lipases did not catalyse a net ester synthesis under the conditions tested. The three groups also differed by the influence of methanol on the hydrolysis reaction. The first group was not significantly inhibited up to the highest methanol concentration tested (5 M). Hydrolysis in the presence of the enzyme of the second group was increasingly inhibited with increasing methanol concentrations. In the presence of the third group, hydrolysis was 40 to 50% inhibited for all the concentrations tested (0.2–5 M).  相似文献   

13.
The methanolysis of soybean oil to produce a fatty acid methyl ester (ME, i.e., biodiesel fuel) was catalyzed by lipase-producing filamentous fungi immobilized on biomass support particles (BSPs) as a whole-cell biocatalyst in the presence of ionic liquids. We used four types of whole-cell biocatalysts: wild-type Rhizopus oryzae producing triacylglycerol lipase (w-ROL), recombinant Aspergillus oryzae expressing Fusarium heterosporum lipase (r-FHL), Candida antarctica lipase B (r-CALB), and mono- and diacylglycerol lipase from A. oryzae (r-mdlB). w-ROL gave the high yield of fatty acid methyl ester (ME) in ionic liquid [Emim][BF4] or [Bmim][BF4] biphasic systems following a 24 h reaction. While lipases are known to be severely deactivated by an excess amount of methanol (e.g. 1.5 Mequiv. of methanol against oil) in a conventional system, methanolysis successfully proceeded even with a methanol/oil ratio of 4 in the ionic liquid biphasic system, where the ionic liquids would work as a reservoir of methanol to suppress the enzyme deactivation. When only w-ROL was used as a biocatalyst for methanolysis, unreacted mono-glyceride remained due to the 1,3-positional specificity of R. oryzae lipase. High ME conversion was attained by the combined use of two types of whole-cell biocatalysts, w-ROL and r-mdlB. In a stability test, the activity of w-ROL was reduced to one-third of its original value after incubation in [Bmim][BF4] for 72 h. The stability of w-ROL in [Bmim][BF4] was greatly enhanced by cross-linking the biocatalyst with glutaraldehyde. The present study demonstrated that ionic liquids are promising candidates for use as the second solvent in biodiesel fuel production by whole-cell biocatalysts.  相似文献   

14.
To eliminate methanol inhibition of the activity of a lipase, methanotrophic bacteria, which can convert methanol into water and CO2, were introduced to the reaction of enantioselective hydrolysis of Naproxen methyl ester catalysed by lipase from Candida rugosa. Both the activity and stability of lipase were improved by the removal of methanol by the bacteria.  相似文献   

15.
A yeast strain CGMCC 0574, identified as Trichosporon brassicae, was selected from 92 strains for its high (S) selectivity in the hydrolysis of ketoprofen ethyl ester. The effective strains of the microorganisms were isolated from soil samples with the ester as the sole carbon source. The ethyl ester proved to be the best substrate for resolution of ketoprofen among several ketoprofen esters examined. The resting cells of CGMCC 0574 could catalyze the hydrolysis of ketoprofen ethyl ester with an enantiomeric ratio of 44.9, giving (S)-ketoprofen an enantiomeric excess of 91.5% at 42% conversion.  相似文献   

16.
Transesterification of canola oil was carried out with methanol, ethanol, and various mixtures of methanol/ethanol, keeping the molar ratio of oil to alcohol 1:6 and using KOH as a catalyst. Mixtures of alcohol increased the rate of transesterification reaction and produced methyl as well as ethyl esters. The increased rate was result of better solubility of oil in reaction mixture due to better solvent properties of ethanol than methanol and equilibrium due to methanol. With 3:3 molar ratio of methanol to ethanol {MEE (3:3)} the amount of ethyl ester formed was 50% that of methyl ester. Properties (acid value, viscosity, density) of all esters including mixed esters were within the limits of ASTM standards. Lubricities of these esters are in the order: ethyl ester>methyl ethyl ester>methyl ester.  相似文献   

17.
ImmobilizedCandida antarctica lipase was used to catalyze the separation of ketoprofen into its components by means of esterification followed by the enzymatic hydrolysis of the ester product. In this study, ketoprofen underwent esterification to ethanol in the presence of isooctane. When the reaction was complete, 58.3% of the ketoprofen had been transformed into an ester. The ketoprofen remaining in solution after the reation was complete consisted primarily of itsS-enantiomer (83.0%), while the 59.4% of the ketoprofen component of the ester consisted of itsR-enantiomer. We then subjected the ester product to enzymatic hydrolysis in the presence of the same enzyme and produced a ketoprofen product rich in theR-enantiomer; 77% of this product consisted of theR-enantiomer when 50% of the ester had been hydrolyzed, and 90% of it consisted of theR-enantiomer when 30% of the ester had been hydrolyzed. By contrast, theR-enantiomer levels only reached approximately 42 and 65%, respectively, when 50 and 30% of the racemic ester was hydrolyzed under the same conditions.  相似文献   

18.
Over 7000 microorganisms were screened to find an enzyme source for the hydrolysis of a C4 methyl ester blocking group on 7-aminodesacetoxycephalosporanic acid (7-ADCA). Only one culture, Streptomyces capillispira Mertz and Higgens nov. sp., produced an enzyme that catalysed the reaction. Enzyme synthesis in a defined mineral salts medium was repressed by NH3 and amino acids. Under optimum fermentation conditions, the maximum rate of substrate hydrolysis was 6 × 10?10 mol min?1 mg?1 cell. The enzyme was recovered from the mycelia and partially purified by gel filtration. Kinetic studies by pH-stat titration indicated that the pH optimum was 7.5–8.5, the temperature optimum was 25–30°C, and the substrate Km value was 2.3 mg ml?1. The reaction products, 7-ADCA and methanol, were weak competitive inhibitors of the enzyme with K1 values of 6.63 and 0.188 mg ml?1, respectively. The enzyme also hydrolysed cefaclor and cephalexin methyl esters but did not hydrolyse cephalosporin ethyl esters. With further improvements in enzyme yields and stability, enzymatic deblocking of cephalosporins could provide an alternative to chemical deblocking processes.  相似文献   

19.
The main strategy developed to shift the equilibrium state of a hydrolase-catalyzed hydrolysis/synthesis reaction consists in reducing water activity by addition of organic solvents in the reaction medium. We have used several mixtures of water and 1,4-butanediol, ranging from pure water to pure 1,4-butanediol, to study the hydrolysis/synthesis reaction of the N-Cbz-L-tryptophanyl-glycineamide dipeptide, catalyzed by alpha-chymotrypsin. In the presence of 1,4-butanediol, alpha-chymotrypsin also catalyzed the esterification reaction between this diol and N-Cbz-L-tryptophan; this ester hydrolysis/synthesis reaction has thus also been examined. The dipeptide and ester equilibrium concentrations increase when the water content of the reaction medium is decreased. Using our experimental data, we have determined the equilibrium constants of the hydrolysis/synthesis equilibria involving the nonionized forms of the protected amino acids, the estimated values of which are Ksp = 8 10(5) for the dipeptide and Kse = 78 for the ester respectively. They are true thermodynamic equilibrium constants, each related to a single, well-defined reaction equilibrium and with water activity being taken into account. If an organic solvent is added to the reaction medium these equilibria can be shifted towards synthesis by decreasing the water activity but also by modifying the ionization/neutralization equilibrium constant of the ionizable groups. These two effects depend both on the water content and on the nature of the organic solvent used, and, in particular, on its dielectric constant. Because of the importance of this parameter in our study, we discuss using it as an indicator to select an appropriate organic solvent to perform an enzyme-catalyzed synthesis.  相似文献   

20.
An enzymatic reaction using a liquid emulsion membrane technique was studied to investigate the effects of some experimental variables on the stability of liquid membrane, enzyme deactivation, and transport of substrates and products. The hydrolysis of L-phenylalanine methyl ester by alpha-chymotrypsin was selected as a model reaction system. First, a transport mechanism for the substrates and products across the membrane was qualitatively identified. Second, it was found that the pH of the internal phase was one of the most important variables to determine the enzyme activity in a liquid membrane. Third, the effect of membrane phase which consists of surfactant, carrier, and organic solvent on the emulsion stability was investigated. It was found that the properties of the organic solvents greatly affect the emulsion stability. For an optimum condition, it was possible to reuse the emulsion which consists of membrane phase and internal phase without further separation. It was finally concluded that the enzyme in a liquid membrane retained 60% of its native activity in spite of vigorous mixing during the emulsification step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号