首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chlorophyll-nutrient relationships in North Island lakes (New Zealand)   总被引:3,自引:2,他引:1  
A model for the prediction of chlorophyll a in the near surface waters (1 m) of North Island lakes was developed using data from the literature and our own study of 12 North Island lakes. Annual geometric mean concentrations of chlorophyll a, total nitrogen and total phosphorus were used since no distinct growing season was discernable. Annual mean ratios of total nitrogen to total phosphorus in the near surface waters ranged between 10 and 59 (by weight). Strong correlations were obtained between log-transformed values of chlorophyll a and total nitrogen (r2 = 0.53, n = 16), chlorophyll a and total phosphorus (r2 = 0.71, n = 21), and between total nitrogen and total phosphorus (r2 = 0.69, n = 16). However, after correcting for the high interdependency between total nitrogen and total phosphorus, only total phosphorus was found to be important in predicting chlorophyll concentrations. Much of the variance in the chlorophyll-phosphorus relation was attributable to differences in mean lake depth. Lakes with mean depths less than 11 m had significantly more chlorophyll a per unit of total phosphorus ( = 0.54 µg · µg–1, SE = 0.05, n = 6) than lakes of greater mean depth ( = 0.17 µg · µg–1, SE = 0.02, n = 14). When the effect of mean depth was taken into account, 89% of the variance in chlorophyll a was explained compared with 71% for the simple linear regression on total phosphorus alone.  相似文献   

2.
The mid-summer phytoplankton communities of more than 100 Adirondack lakes ranging in pH from 4.0 to 7.2 were characterized in relation to 25 physical-chemical parameters. Phytoplankton species richness declined significantly with increasing acidity. Acidic lakes (pH < 5.0) averaged fewer than 20 species while more circumneutral waters (pH > 6.5) averaged more than 33 species. Phytoplankton abundance was not significantly correlated with any of the measured physical-chemical parameters, but standing crop parameters, i.e., chlorophyll a and phytoplankton biovolume, did correlate significantly with several parameters. Midsummer standing crop correlated best with total phosphorus concentration but acidity status affected the standing crop-phosphorus relationship. Circumneutral waters of low phosphorus content, i.e. < 10 µg·1–1 TP, averaged 3.62 µg·1–1 chlorophyll a whereas acidic lakes of the same phosphorus content averaged only 1.96 µg·1–1 chlorophyll a. The midsummer chlorophyll content of lakes of high phosphorus content, i.e. > 10 µg·1–1 TP, was not significantly affected by acidity status.Adirondack phytoplankton community composition changes with increasing acidity. The numbers of species in midsummer collections within all major taxonomic groups of algae are reduced with increasing acidity. The midsummer phytoplankton communities of acidic Adirondack lakes can generally be characterized into four broad types; 1) the depauperate clear water acid lake assemblage dominated by dinoflagellates, 2) the more diverse oligotrophic acid lake community dominated by cryptomonads, green algae, and chrysophytes, 3) the productive acid lake assemblage dominated by green algae, and 4) the chrysophyte dominated community. The major phytoplankton community types of acid lakes are associated with different levels of nutrients, aluminum concentrations, and humic influences.  相似文献   

3.
The littoral macrozoobenthos (MZB) of two low acid neutralizing capacity (ANC = 50.0 µeq l–1) northeastern Pennsylvania lakes (treatment and reference) were sampled each ice free season, 1984 through 1988, to evaluate response to limestone addition. Following addition of 100 tons agricultural limestone (CaCO3) to the treatment lake in February 1985, mean annual ANC rose from 20 µeq l–1 to 668 µeq l–1 then decreased. In October 1987, ANC in the treatment lake was decreasing, so 15 additional tons of limestone were added. Pre- limestoning there were few significant (p<0.05) differences between MZB assemblages in the two lakes, but 4 years post treatment the following differences (p<0.05) were detected in the treatment lake: more Chironomidae, Ephemeroptera, Odonata, Hyalella azteca, total MZB numbers and higher Mollusca wet weight than in the reference lake. From 1984 to 1988 in the treatment lake the annual means of the following community characteristics increased (p<0.05): totals of Chironomidae, Ephemeroptera (including Caenis spp.), Odonata, Trichoptera, Sphaeriidae, collectors and MZB numbers; Chironomidae and Ephemeroptera taxa richness and total taxa richness; total and Mollusca wet weight. However, the treatment lake ecosystem is neither self-sustaining nor stable because limestone must be added every 2 to 3 years to maintain ANC above 50 µeq l–1 In the reference lake annual means of ANC, specific conductance, calcium and magnesium decreased (p<0.05) while Secchi depth increased (p<0.05), suggesting continuing acidification.  相似文献   

4.
Nutrient-phytoplankton relationships in a tropical meromictic soda lake   总被引:1,自引:1,他引:0  
Seasonal variation through one year in total nitrogen (TN), total phosphorus (TP), phytoplankton biomass, phytoplankton species composition and other environmental factors were examined in Lake Sonachi, a tropical meromictic soda lake. Mean concentrations of TN and TP were 11 000 µg N l-1 and 100 µg P l-1, respectively. Maximum concentrations of TN and TP occurred in the monimolimnion. Phytoplankton biomass ranged from 350 to 1260 mg m-3. Synechococcus bacillaris, a small coccoid cyanophyte, dominated the phytoplankton. The mean chlorophyll a concentration of 37 mg · m-3 was a modest value when compared with those of other tropical soda lakes. High TN:TP ratios indicated phosphorus limitation in the lake.  相似文献   

5.
Karl E. Havens 《Hydrobiologia》2003,493(1-3):173-186
A 3-year study was done to quantify the biomass of submerged aquatic vegetation (SAV) and its relationship with environmental attributes in Lake Okeechobee, the largest lake in the southeastern United States. Plants were sampled on 21 occasions at sites located along 15 fixed transects around the shoreline, giving rise to 721 observations of SAV species (Chara spp., Vallisneria americana, Hydrilla verticillata, Potamogeton illinoinensis) dry weight biomass. Environmental sampling focused on factors that attenuate light, including phytoplankton chlorophyll a (chl a), total suspended solids (TSS), non-volatile suspended solids (NVSS) and color. Depth and Secchi transparency also were measured. Based on regression analysis, NVSS was considerably more important in attenuating light than chl a or color. Total biomass of SAV varied from 0 to 271 g dw m–2, with a mean of 4.7 g dw m–2, and strong dominance by Chara. The SAV biomass was lower than average for Florida lakes, and may reflect the influence of suspended solids on underwater irradiance, as well as high water level in the late 1990s. Dense SAV was found only where depth was < 2 m and TSS < 20–30 mg l–1. At locations where high biomass of SAV occurred, the plants may have influenced water quality, because concentrations of TSS, NVSS, and chl a were 2–3 fold lower than at sites with no plants. The potential effects of SAV also were apparent at a regional scale. The shoreline region of the lake displayed a pattern of rising and falling chl a and NVSS with water depth. This occurred both at sites with and without plants, suggesting that it may be driven by physical processes, such as water circulation patterns, which are influenced by depth. However, the pattern was dampened at sites with SAV, indicating a potential to influence these attributes of water quality.  相似文献   

6.
Hoyer  Mark V.  Canfield  Daniel E. 《Hydrobiologia》1994,279(1):107-119
Data from 46 Florida lakes were used to examine relationships between bird abundance (numbers and biomass) and species richness, and lake trophic status, lake morphology and aquatic macrophyte abundance. Average annual bird numbers ranged from 7 to 800 birds km–2 and bird biomass ranged from 1 to 465 kg km–2. Total species richness ranged from 1 to 30 species per lake. Annual average bird numbers and biomass were positively correlated to lake trophic status as assessed by total phosphorus (r = 0.61), total nitrogen (r = 0.60) and chlorophyll a (r = 0.56) concentrations. Species richness was positively correlated to lake area (r = 0.86) and trophic status (r = 0.64 for total phosphorus concentrations). The percentage of the total annual phosphorus load contributed to 14 Florida lakes by bird populations was low averaging 2.4%. Bird populations using Florida lakes, therefore, do not significantly impact the trophic status of the lakes under natural situations, but lake trophic status is a major factor influencing bird abundance and species richness on lakes. Bird abundance and species richness were not significantly correlated to other lake morphology or aquatic macrophyte parameters after the effects of lake area and trophic status were accounted for using stepwise multiple regression. The lack of significant relations between annual average bird abundance and species richness and macrophyte abundance seems to be related to changes in bird species composition. Bird abundance and species richness remain relatively stable as macrophyte abundance increases, but birds that use open-water habitats (e.g., double-crested cormorant, Phalacrocorax auritus) are replaced by species that use macrophyte communities (e.g., ring-necked duck, Aythya collaris).  相似文献   

7.
The relationship between total phosphorus and chlorophyll a concentration was determined for Skinner Lake, Indiana over an annual cycle in 1978–79. Total nitrogen:total phosphorus ratios in the epilimnion ranged from 19 to 220 suggesting a phosphorus-dependent algal yield in the epilimnion. Approximately 90% of annual TP loading reached the lake via streamflow, and 93% of this entered during snowmelt and spring-overturn periods. At that time incoming water flushed the lake 2.4 times. Atmospheric loading accounted for 1.4% of annual TP load. Internal hypolimnetic TP loading occurred during summer stratification. Mean [chl a] for the ice-free period was 15.15 mg m–3, within the range expected for eutrophic lakes.The 1978–79 data were used in conjuction with the Vollenweider & Kerekes (1980) model to produce a model specific for the Skinner Lake system. The model predicted mean epilimnetic total phosphorus and chlorophyll a concentrations from mean total phosphorus concentration in inlet streams and from lake water residence time during the period of spring overturn and summer stratification. The Skinner-specific model was tested in 1982 and it closely predicted observed mean epilimnetic [TP] and [chl a] during the ice-free period. This study shows that variability in lake models which average data over an annual period can be reduced by considering lake-specific seasonal variation in hydrology and external TP loading.  相似文献   

8.
In Mono Lake (California), a large saline lake, chlorophyll concentrations in the euphotic zone increased from 4 to 45 µg l–1 between July and October 1979. These seasonal changes in chlorophyll are detectable on imagery obtained with the multispectral scanner on Landsat. Computer-compatible tapes of Landsat images were normalized for solar zenith and corrected for atmospheric scatter and absorption to obtain Landsat band 4 emittances (W m–2 str–1) of 13.4 ± 0.5 when chlorophyll was 4 µg l–1 and 4.6 ± 0.3 when chlorophyll was 45 µg l–1. Lake wide, spatial heterogeneity of chlorophyll of 2 µg l–1 in July and 8 µg l–1 in October was not detectable on the Landsat imagery.  相似文献   

9.
Both in situ primary production and biomass (chlorophyll ) of fractionated phytoplankton (<64,µ, <25 µm and < 10 µm) were studied in 10 Canadian Shield lakes to elucidate the spatial and temporal variability of the contribution of size fractions to the biomass and primary production of the phytoplankton community. Mean summer biomass and production of each size fraction varied significantly between lakes. Within lakes, temporal variation was low for biomass but great for production. However, temporal variation can be considered of minor importance during the sampling period, as compared to the spatial variation between lakes. Algae from the < 10 µm size fraction were the most important in biomass (41–65 %) and production (23–69%). The temporal trends for both phytoplankton variables thus generally followed closely that of the < 10 µm size fraction. Among the physical, chemical and morphometric variables of the studied lakes, water transparency (Secchi disk), total phosphorus, lake volume, lake area, and mean depth gave the best correlations with phytoplankton variables.Contribution number 354 from the Groupe de recherches en Ecologie des Eaux douces, Limnological Research Group, Université de Montréal.  相似文献   

10.
The phosphorus cycle in the ecosystem of the shallow, hypertrophic Loosdrecht lakes (The Netherlands) was simulated by means of the dynamic eutrophication model PCLOOS. The model comprises three algal groups, zooplankton, fish, detritus, zoobenthos, sediment detritus and some inorganic phosphorus fractions. All organic compartments are modelled in two elements, carbon and phosphorus. Within the model system, the phosphorus cycle is considered as completely closed. Carbon and phosphorus are described independently, so that the dynamics of the P/C ratios can be modelled. The model has been partly calibrated by a method based on Bayesian statistics combined with a Range Check procedure.Simulations were carried out for Lake Loosdrecht for the periods before and after the restoration measures in 1984, which reduced the external phosphorus loading to the lake from ca. 2 mgP m–2 d–1 to 1 mgP m–2 d–1. The model outcome was largely comparable withthe measured data. Total phosphorus has slowly decreased from an average 130 µgP l–1 to ca. 80 µgP l–1, but chlorophyll-a (ca. 150 µg 1–1, summer-averaged) and seston concentrations (8–15 mgC 1–1) hardly changed since the restoration measures. About two-thirds of the seston consisted of detritus, while the phytoplankton remained dominated by filamentous cyanobacteria. The P/C ratio of the seston decreased from ca. 1.0% to 0.7%, while the P/C ratios of zooplankton, zoobenthos and fish have remained constant and are much higher. The system showed a delayed response to the decreased phosphorus loading until a new equilibrium was reached in ca. five years. Major reasons for the observed resilience of the lake in responding to the load reduction are the high phosphorus assimilation efficiency of the cyanobacteria and the high internal recycling of phosphorus. A further reduction of nutrient loading, perhaps in combination with additional measures like biomanipulation, will be the most fruitful additional restoration measure.  相似文献   

11.
Spirulina platensis (= Arthrospira fusiformis) was isolated from Lake Chitu, a saline, alkaline lake in Ethiopia, where it forms an almost unialgal population. Optimum growth conditions were studied in a turbidostat. Cultures grown in modified Zarrouk's medium and exposed to a range of light intensities (20–500 µmol photons m–2s–1) showed a maximum specific growth rate (µmax) of 1.78 d–1. Quantum yield for growth (µ) was 3.8% at the optimum light for growth of 330 µmol photons m–2s–1, and ranged from 2.8 to 9.4%. With increase in irradiance, the chlorophyll a concentration decreased, and the carotenoids/chlorophyll a ratio increased by a factor of 2.4. The phosphorus to carbon ratio (P/C) showed some variation, while the nitrogen to carbon ratio (N/C) remained relatively constant, thus causing fluctuations in the N:P ratio (7–11) of cells. An optimum N:P ratio of about 7 was attained in cells growing at the optimum light for growth. Results from the continuous culture experiments agreed well with maximum values of photosynthetic efficiency given in the literature for natural populations of S. platensis in the soda lakes of East Africa, Lake Arenguade (Ethiopia), and Lake Simbi (Kenya).  相似文献   

12.
We evaluated a biomanipulation program to test for short-term changes in water quality (chlorophyll a, Secchi depth, total phosphorus) and macrozooplankton biomass following partial removal of omnivorous gizzard shad Dorosoma cepedianum. The removal occurred at a eutrophic subtropical lake, and responses were compared to an unmanipulated control lake using a before-after-control-impact paired series analysis. The removal reduced the biomass of large (>300 mm) gizzard shad by 75% over 2 years via a subsidized commercial gill net fishery. However, the total population biomass of gizzard shad was reduced by approximately 32% from an average pre-manipulation biomass of 224 kg ha−1 due to the size selectivity of the gear, which did not effectively capture small fish (<300 mm). No significant short-term changes in chlorophyll a concentration, Secchi depth, total phosphorus concentration or macrozooplankton biomass were detected following biomanipulation. The partial removal may have fallen short of the biomass reduction required to cause ecosystem responses. Our results suggest that moderate omnivore removals (i.e., <40% biomass reduction) will have little short-term benefits to these lakes, and future manipulations should use a less size-selective gear to achieve a larger total biomass reduction.  相似文献   

13.
Castillo  María M. 《Hydrobiologia》2000,437(1-3):57-69
Seasonal fluctuation in river stage strongly affects the ecological functioning of tropical floodplain lakes. This study was conducted to assess the influence of hydrological seasonality on bacterial production and abundance in two floodplain lakes of the Autana River, a blackwater river in the Middle Orinoco basin, Venezuela. Water samples for nutrient chemistry, chlorophyll a, and microbiological determinations were collected in two floodplain lakes and in the mainstem of the river during 1997–98. DOC and chlorophyll a concentrations were similar between mainstem and lake sites during high water when river and lakes were well connected but became different during the period of low water when the interaction was minimal. Higher values of bacterial production were observed in the floodplain lakes (0.62–1.03 g C l–1 h–1) compared to the mainstem sites (0.17–0.19 g C l–1 h–1) during the period of low water, while during the period of high water river and lake sites showed similar levels (0.04 g C l–1 h–1). Bacterial numbers followed bacterial production in the floodplain lakes, reaching higher numbers during the period of low water (1.41–2.40 × 106 cells ml–1). Availability of substrate and inorganic nutrients, pH, and inputs and losses of bacterial cells could be determining the observed seasonal patterns in bacterial production and abundance. The Autana lakes exhibited a strong seasonal pattern in the chemical and biological conditions, showing higher productivity during the lentic phase that lasted between 5 and 6 months.  相似文献   

14.
Three shallow, lowland lochs (lakes) in the Tayside region of Scotland, experiencing the same climatic regime, were found to be dimictic lakes showing similar clinograde oxygen distributions in summer. Land use differences in their catchments were shown to result in estimated total nutrient surface loadings from 0.3 to 32 g m–2 a–1 phosphorus and from 4 to 240 g m–2 a–1 nitrogen. The major ions in the lochs were calcium and carbonate, but with elevated sulphate levels in all three lochs and an increase in sodium, chloride and sulphate in Forfar loch, which was affected by sewage effluent. Conductivity and total alkalinity showed marked increases with greater intensity of land use, from 64 to 439 µS cm–1 and 0.5–3 meq l–1 Maximum winter loch concentrations of soluble reactive phosphorus ranged from 60 to just under 5 000 mg m–3 and of inorganic nitrogen from 500 to 10500 mg m–3. Maximum chlorophyll a ranged from 20 to 250 mg m–3 and comparisons indicated that above winter levels of 5000 mg m–3 N and 500 mg m–3 P, the nutrient-chlorophyll relationships did not hold. Predictions of nutrient input, from land use categories and soil losses of N and P derived from other north temperate areas, were shown to be comparable with inputs calculated from loch measurements. Models predicting loch concentrations of phosphorus from inputs were comparable with measured concentrations, but predictions of chlorophyll and transparency became less accurate with higher nutrient levels. The lochs were mesotrophic (the Lowes), eutrophic (Balgavies) and hypertrophic (Forfar) under the several classification systems used. The implications of their nutrient status for lake management are discussed and the value of studying this unique lake series in a similar physical environment but with considerable chemical differences is considered.  相似文献   

15.
The summer stratification phosphorus budget for eutrophic Edinboro Lake in northwestern Pennsylvania was determined. Phosphorus loading from internal sources contributed 141 kg, (79%) and 55 kg, (68%) of the mass phosphorus increase in the lake in 1981 and 1982, respectively. Calculated anaerobic sediment release rates of total phosphorus were 9.9 and 3.7 mg m–2 day–1 for these two years. The observed summer maximum chlorophyll a concentration was 1.5–3 times greater than that predicted by existing models. Year-to-year variability in the internal phosphorus load for this lake and others is discussed. Without a data base that will permit the comparison of lakes and with and without a significant supply of internal phosphorus, prediction of the relative importance of internal loading in a particular lake will be difficult.  相似文献   

16.
Since 1983 severe phytoplankton collapses have occurred 1–4 times every summer in the shallow and hypertrophic Lake Søbygård, which is recovering after a ten-fold decrease of the external phosphorus loading in 1982. In July 1985, for example, chlorophyll a changed from 650 µg l–1 to about 12 µg 1–1 within 3–5 days. Simultaneously, oxygen concentration dropped from 20–25 mg O2l–1 to less than 1 mg O2l–1, and pH decreased from 10.7 to 8.9. Less than 10 days later the phytoplankton biomass had fully recovered. During all phytoplankton collapses the density of filter-feeding zooplankton increased markedly, and a clear-water period followed. Due to marked changes in age structure of the fish stock, different zooplankton species were responsible for the density increase in different years, and consequently different collapse patterns and frequencies were observed.The sudden increase in density of filter-feeding zooplankton from a generally low summer level to extremely high levels during algae collapses, which occurred three times from July 1984 to June 1986, could neither be explained by changes in regulation from below (food) nor from above (predation). The density increase was found after a period with high N/P ratios in phytoplankton or nitrate depletion in the lake. During that period phytoplankton biomass, primary production and thus pH decreased, the latter from 10.8–11.0 to 10.5. We hypothesize that direct or indirect effects of high pH are important in controlling the filter-feeding zooplankton in this hypertrophic lake. Secondarily, this situation affects the trophic interactions in the lake water and the net internal loading of nutrients. Consequently, not only a high content of planktivorous fish but also a high pH may promote uncoupling of the grazing food-web in highly eutrophic shallow lakes, and thereby enhance eutrophication.A tentative model is presented for the occurrence of collapses, and their pattern in hypertrophic lakes with various fish densities.  相似文献   

17.
General relationships between phytoplankton production, chlorophyll, total, dissolved and particulate phosphorus, Secchi depth, humic level, trophic level, fish production and latitude are described by regression equations using an extensive “Soviet” data base covering a wide domain of lake characteristics and a European data base. New systems for defining lake trophic and humic status are presented. The results may be used for more precise estimates of fundamental lake properties and for many practical issues of lake management, e.g., predictions of fish catch. We have used strict chlorophyll‐a concentrations for every trophic class and we have omitted Secchi depth from the trophic classes, since Secchi depth and other variables strongly related to water clarity (like suspended particulate matter and particulate organic carbon) depend on autochthonous production, allochthonous influences and resuspension. We have used the Secchi depth as a simple operational measure of the effective depth of the photic zone. It has also been shown that among these lakes there exist a very strong relationship between primary production and latitude. In fact, 74% of the variability among the lakes in mean summer primary production can be statistically related to variations in latitude. These data also show a strong relationship between primary production and fish yield, which can be used to address many fundamental issues in lake management, like “normal and abnormal fish production”.  相似文献   

18.
Romo  Susana  Miracle  Rosa 《Hydrobiologia》1994,275(1):153-164
A long-term phytoplankton study was carried out in the Albufera of Valencia, a shallow hypertrophic lake (surface area 21 km2, mean depth 1 m, total inorganic nitrogen load 155 g m-2 y-1, total inorganic phosphate load 15 g m-2 y-1) from 1980 to 1988. The lake functions as a reservoir for the surrounding rice cultivation. From 1940's to 1988, its phytoplankton assemblage has been altered from a mesotrophic to a hypertrophic character, as consequence of the increasing pollution. For 1980–88, annual variations in the phytoplankton were less pronounced than seasonal changes. The hypertrophic and morphometric features of the lake favoured the stability of the phytoplankton assemblage and chlorophyll a levels during the study period. Seasonal and horizontal distribution of the total phytoplankton abundance and biomass were highly influenced by the hydrological cycle of the lagoon. Compared with other shallow nutrient rich lakes, the Albufera of Valencia is similar to the shallow hypertrophic lakes of the Netherlands.  相似文献   

19.
Primary Production of Phytoplankton in a Strongly Stratified Temperate Lake   总被引:7,自引:7,他引:0  
Lake Verevi (12.6 ha, maximum depth 11.0 m, mean depth 3.6 m) is a strongly eutrophic and stratified lake. Planktothrix agardhii is the most characteristic phytoplankton species in summer and autumn, while photosynthesizing sulphur bacteria can occur massively in the metalimnion. Primary production (PP) and chlorophyll a concentration (Chl a) were seasonally studied in 1991, 1993, 2000, and 2001. Vertical distribution of PP was rather complex, having usually two peaks, one at or near the surface (0–1 m), and another deeper (at 3–7 m) in the metalimnion. The values of dark fixation of CO2 in the metalimnion were in most cases higher than those in the upper water layer. Considering the average daily PP 896 mg C m−2 and yearly PP 162 mg C m−2, Secchi depth 2.34 m, and epilimnetic concentrations of chlorophyll a (19.6 mg m−3), total nitrogen and total phosphorus (TP, 52 mg m−3) in 2000, L. Verevi is a eutrophic lake of a ‘good’ status. Considering the total amounts of nutrients stored in the hypolimnion, the average potential concentrations in the whole water column could achieve 1885 mg m−3 of TN and 170 mg m−3 of TP reflecting hypertrophic conditions and a ‚bad’ status. Improvement of the epilimnetic water quality from the 1990s to the 2000s may have resulted from incomplete spring mixing and might not reflect the real improvement. A decreased nutrient concentration in the epilimnion has supported the establishment of a ‘clear epilimnion state’ allowing light to penetrate into the nutrient-rich metalimnion and sustaining a high production of cyanobacteria and phototrophic sulphur bacteria.  相似文献   

20.
Effects of planktivore abundance on chlorophyll-a and Secchi depth   总被引:1,自引:1,他引:0  
We used two analyses to test the hypothesis that planktivore abundances contribute to the residual variations of Secchi depth or chlorophyll-a plotted with respect to mean summer epilimnetic total phosphorus. The first analysis involved 15 lake years of data from six lakes. The data set comprised mark-recapture assessments of piscivore and planktivore numbers and estimates of mean summer chlorophyll-a, total phosphorus and Secchi depth. We found that residual chlorophyll-a variation was not significantly (p>0.05) correlated with planktivore densities, but that planktivore densities did contribute (p<0.02) to the residual variation of Secchi depth on mean total phosphorus. The second analysis included all of the data used in the first plus an additional 13 lake years of data from the literature. These data showed that the percentage of the total fish community comprising planktivores did not significantly (p>0.05) contribute to the residual variation in chlorophyll-a with respect to mean summer total phosphorus. Together, our results suggest that planktivore abundance has a significant cascading impact on water clarity, but no long term statistically significant impact on mean summer chlorophyll-a concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号