首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The aberrant hedgehog (Hh)/GLI signaling pathway causes the formation and progression of a variety of tumors. By screening tropical plant extracts by using our screening system, Zizyphus cambodiana was found to include Hh/GLI signaling inhibitors. Bioassay-guided fractionation of this plant extract led to the isolation of three active pentacyclic triterpenes, colubrinic acid (1), betulinic acid (2) and alphitolic acid (3), as potent inhibitors. The inhibition of GLI-related protein expression with 1 or 2 was observed in HaCaT cells with exogenous GLI1, or human pancreatic cancer cells (PANC1), which express Hh/GLI components aberrantly. The expressions of GLI-related proteins PTCH and BCL2 were clearly inhibited by 1 or 2. We also examined the cytotoxicity of these active compounds against PANC1, human prostate cancer cells (DU145) and mouse embryo fibroblast cells (C3H10T1/2). The cytotoxicity against cancer cells (PANC1 and DU145) by 1 or 2 would be caused by inhibition of the expression of the anti-apoptosis protein BCL2. These pentacyclic triterpene inhibitors showed an important relationship between Hh/GLI signaling inhibition, the decrease of BCL2, and cytotoxicity against cancer cells.  相似文献   

8.
Hedgehog (Hh) signaling pathway includes canonical and non-canonical activation manners. In colorectal cancer, we have previously shown that PGE2-JNK could initiate non-canonical activation of the Hh signaling pathway. In this study, we showed that c-Jun, a classic substrate of JNK, increased Gli2 protein stability after phosphorylated by PGE2. Suppressing the function of c-Jun or JNK indicated that c-Jun prevents Gli2 from protease degradation caused by PGE2-JNK. Moreoer, we revealed that less ubiquitination of Gli2 was detected in colorectal cancer cells treated with PGE2 while suppression of c-Jun restored the ubiquitination of Gli2. In addition, we observed that suppression of c-Jun significantly decreased Gli2 expression no matter when Gli2 remained in phosphorylation or non-phosphorylation state. These phenomena were recapitulated, when the endpoint of Gli2 expression was replaced by Gli2 ubiquitination. Furthermore, we demonstrated that restricting c-Jun function ablated the PGE2-provoked Hh activity and proliferation of colorectal cancer cells. These results elucidated that the evasion of Gli2 with phosphorylation from proteasomal-ubiquitin degradation needed the cooperation of phosphorylated c-Jun by kinase JNK, which contributed to promoting Hh activation and the proliferation of colorectal cancer cells. This study provides a theoretical foundation to target PGE2 downstream for the prevention and treatment of colorectal cancer.  相似文献   

9.
10.
11.
12.
13.
14.
15.
Chronic inflammation in the stomach can lead to gastric cancer. We previously reported that gastrin-deficient (Gast−/−) mice develop bacterial overgrowth, inflammatory infiltrate, increased Il-1β expression, antral hyperplasia and eventually antral tumors. Since Hedgehog (Hh) signaling is active in gastric cancers but its role in precursor lesions is poorly understood, we examined the role of inflammation and Hh signaling in antral hyperplasia. LacZ reporter mice for Sonic hedgehog (Shh), Gli1, and Gli2 expression bred onto the Gast−/− background revealed reduced Shh and Gli1 expression in the antra compared to wild type controls (WT). Gli2 expression in the Gast−/− corpus was unchanged. However in the hyperplastic Gast−/− antra, Gli2 expression increased in both the mesenchyme and epithelium, whereas expression in WT mice remained exclusively mesenchymal. These observations suggested that Gli2 is differentially regulated in the hyperplastic Gast−/− antrum versus the corpus and by a Shh ligand-independent mechanism. Moreover, the proinflammatory cytokines Il-1β and Il-11, which promote gastric epithelial proliferation, were increased in the Gast−/− stomach along with Infγ. To test if inflammation could account for elevated epithelial Gli2 expression in the Gast−/− antra, the human gastric cell line AGS was treated with IL-1β and was found to increase GLI2 but decrease GLI1 levels. IL-1β also repressed human GAST gene expression. Indeed, GLI2 but not GLI1 or GLI3 expression repressed gastrin luciferase reporter activity by ∼50 percent. Moreover, chromatin immunoprecipitation of GLI2 in AGS cells confirmed that GLI2 directly binds to the GAST promoter. Using a mouse model of constitutively active epithelial GLI2 expression, we found that activated GLI2 repressed Gast expression but induced Il-1β gene expression and proliferation in the gastric antrum, along with a reduction of the number of G-cells. In summary, epithelial Gli2 expression was sufficient to stimulate Il-1β expression, repress Gast gene expression and increase proliferation, leading to antral hyperplasia.  相似文献   

16.
17.
18.
Hedgehog (Hh) signaling plays essential roles in various developmental processes, and its aberrant regulation results in genetic disorders or malignancies in various tissues. Hyperactivation of Hh signaling is associated with lung cancer development, and there have been extensive efforts to investigate how to control Hh signaling pathway and regulate cancer cell proliferation. In this study we investigated a role of CDO, an Hh co-receptor, in non-small cell lung cancer (NSCLC). Inhibition of Hh signaling by SANT-1 or siCDO in lung cancer cells reduced proliferation and tumorigenicity, along with the decrease in the expression of the Hh components. Histological analysis with NSCLC mouse tissue demonstrated that CDO was expressed in advanced grade of the cancer, and precisely co-localized with GLI1. These data suggest that CDO is required for proliferation and survival of lung cancer cells via Hh signaling.  相似文献   

19.
20.
Aberrant activation of the Hedgehog (Hh) pathway can drive tumorigenesis. To investigate the mechanism by which glioma-associated oncogene family zinc finger-1 (GLI1), a crucial effector of Hh signaling, regulates Hh pathway activation, we searched for GLI1-interacting proteins. We report that the chromatin remodeling protein SNF5 (encoded by SMARCB1, hereafter called SNF5), which is inactivated in human malignant rhabdoid tumors (MRTs), interacts with GLI1. We show that Snf5 localizes to Gli1-regulated promoters and that loss of Snf5 leads to activation of the Hh-Gli pathway. Conversely, re-expression of SNF5 in MRT cells represses GLI1. Consistent with this, we show the presence of a Hh-Gli-activated gene expression profile in primary MRTs and show that GLI1 drives the growth of SNF5-deficient MRT cells in vitro and in vivo. Therefore, our studies reveal that SNF5 is a key mediator of Hh signaling and that aberrant activation of GLI1 is a previously undescribed targetable mechanism contributing to the growth of MRT cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号