首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Mutations in the presenilin-1 (PS-1) and presenilin-2 (PS-2) genes account for the majority of cases of early-onset familial Alzheimer's disease (AD). Alternative splicing forms of the PS-1 and PS-2 gene products have previously been reported in fibroblast and brain tissue from both familial and sporadic AD patients, as well as from normal tissues and cell lines. We demonstrate here unusual alternative splicing of the PS-2 gene that leads to the generation of mRNA lacking exon 5 in human brain tissue. This product was more frequently detected in brain tissue from sporadic AD patients (70.0%; 21 of 30) than from normal age-matched controls (17.6%; three of 17). In cultured neuroblastoma cells, this splice variant was generated in hypoxia but not under other forms of cellular stress. Hypoxia-mediated induction of this splice variant was blocked by pretreatment of neuroblastoma cells with the protein synthesis inhibitor cycloheximide or antioxidants such as N-acetylcysteine and diphenyl iodonium, suggesting that hypoxia-mediated oxidant stress might, at least in part, underlie the alternative splicing of PS-2 mRNA through de novo protein synthesis. Furthermore, the stable transfectants of this splice variant produced the N-terminal part of PS-2 protein (15 kDa) and were more susceptible to cellular stresses than control transfectants. These results suggest the possibility that altered presenilin gene products in stress conditions may also participate in the pathogenesis of AD.  相似文献   

2.
We sequenced the entire coding region of the amyloid precursor protein (APP) genes of 11 unrelated patients with Japanese familial Alzheimer's disease (FAD) in order to determine the exact frequency of known APP gene mutations and to search for novel mutations responsible for FAD. Three out of 11 (27.3%) FAD patients showed the known Val to Ile mis-sense mutation at codon 717, but no other mutations were detected in the entire coding region. Analysis of exons 16 and 17 in 30 Japanese with sporadic AD revealed no mutations. Moreover, there were no significant differences in the allele frequencies of the DNA polymorphism in intron 9 among the 11 FAD, 39 sporadic AD, and 110 control subjects.  相似文献   

3.
Presenilin-1 (PS-1) is a transmembrane protein that may be involved in the processing of amyloid precursor protein (APP). Mutations in PS-1 are the major cause of familial Alzheimer's disease (AD). AD brain is under significant oxidative stress, including protein oxidation. In the present study, protein oxidation was compared in synaptosomes from knock-in mice expressing mutant human PS-1 (M146V mutation) and from wild-type mice expressing non-mutant human PS-1. Synaptosomal membrane protein conformational alterations associated with oxidative stress were measured using electron paramagnetic resonance (EPR) in conjunction with a protein-specific spin-label. Direct synaptosomal protein oxidation was assessed by a carbonyl detection assay. Synaptosomal proteins from PS-1 mutant mice displayed increased oxidative stress as measured by both techniques, compared with synaptosomal proteins from wild type mice. These data suggest that PS-1 mutations cause oxidative alterations in synaptosomal membrane protein structure and oxidative modification of synaptosomal proteins. Our findings suggest that familial AD may be associated with oxidative stress that may play a pivotal role in neuronal dysfunction and death.  相似文献   

4.
We have measured the levels of typical end products of the processes of lipid peroxidation, protein oxidation, and total antioxidant capacity (TAC) in skin fibroblasts and lymphoblasts taken from patients with familial Alzheimer's disease (FAD), sporadic Alzheimer's disease (AD), and age-matched healthy controls. Compared to controls, the fibroblasts and lymphoblasts carrying amyloid precursor protein (APP) and presenilin-1 (PS-1) gene mutations showed a clear increase in lipoperoxidation products, malondialdehyde (MDA), and 4-hydroxynonenal (4-HNE). In contrast, the antioxidant defenses of cells from FAD patients were lower than those from normal subjects. Lipoperoxidation and antioxidant capacity in lymphoblasts from patients affected by sporadic AD were virtually indistinguishable from the basal values of normal controls. An oxidative attack on protein gave rise to greater protein carbonyl content in FAD patients than in age-matched controls. Furthermore, ADP ribosylation levels of poly(ADP-ribose) polymerase (PARP) nuclear substrates were significantly raised, whereas the PARP content did not differ significantly between fibroblasts carrying gene mutations and control cells. These results indicate that peripheral cells carrying APP and PS-1 gene mutations show altered levels of oxidative markers even though they are not directly involved in the neurodegenerative process of AD. These results support the hypothesis that oxidative damage to lipid, protein, and DNA is an important early event in the pathogenesis of AD.  相似文献   

5.
Genetic study of familial cases of Alzheimer's disease   总被引:2,自引:0,他引:2  
A small number (1-5%) of Alzheimer's disease (AD) cases associated with the early-onset form of the disease (EOAD) appears to be transmitted as a pure genetic, autosomal dominant trait. To date, three genes responsible for familial EOAD have been identified in the human genome: amyloid precursor protein (APP), presenilin 1 (PS1), and presenilin 2 (PS2). Mutations in these genes account for a significant fraction (18 to 50%) of familial cases of early onset AD. The mutations affect APP processing causing increased production of the toxic Abeta42 peptide. According to the "amyloid cascade hypothesis", aggregation of the Abeta42 peptide in brain is a primary event in AD pathogenesis. In our study of twenty AD patients with a positive family history of dementia, 15% (3 of 20) of the cases could be explained by coding sequence mutations in the PS1 gene. Although a frequency of PS1 mutations is less than 2% in the whole population of AD patients, their detection has a significant diagnostic value for both genetic counseling and treatment in families with AD.  相似文献   

6.
7.
Oxidative stress is observed in Alzheimer's disease (AD) brain, including protein oxidation and lipid peroxidation. One of the major pathological hallmarks of AD is the brain deposition of amyloid beta-peptide (Abeta). This 42-mer peptide is derived from the beta-amyloid precursor protein (APP) and is associated with oxidative stress in vitro and in vivo. Mutations in the PS-1 and APP genes, which increase production of the highly amyloidogenic amyloid beta-peptide (Abeta42), are the major causes of early onset familial AD. Several lines of evidence suggest that enhanced oxidative stress, inflammation, and apoptosis play important roles in the pathogenesis of AD. In the present study, primary neuronal cultures from knock-in mice expressing mutant human PS-1 and APP were compared with those from wild-type mice, in the presence or absence of various oxidizing agents, viz, Abeta(1-42), H2O2 and kainic acid (KA). APP/PS-1 double mutant neurons displayed a significant basal increase in oxidative stress as measured by protein oxidation, lipid peroxidation, and 3-nitrotyrosine when compared with the wild-type neurons (p < 0.0005). Elevated levels of human APP, PS-1 and Abeta(1-42) were found in APP/PS-1 cultures compared with wild-type neurons. APP/PS-1 double mutant neuron cultures exhibited increased vulnerability to oxidative stress, mitochondrial dysfunction and apoptosis induced by Abeta(1-42), H2O2 and KA compared with wild-type neuronal cultures. The results are consonant with the hypothesis that Abeta(1-42)-associated oxidative stress and increased vulnerability to oxidative stress may contribute significantly to neuronal apoptosis and death in familial early onset AD.  相似文献   

8.
9.
An alternative spliced form of the presinilin 2 (PS2) gene (PS2V) lacking exon 5 has previously been reported to be expressed in human brains in sporadic Alzheimer's disease (AD). PS2V encodes the amino-terminal portion of PS2, which contains residues Met1-Leu119 and 5 additional amino acid residues (SSMAG) at its carboxyl terminus. Here we report that PS2V protein impaired the signaling pathway of the unfolded protein response, similarly to familial AD-linked PS1 mutants and caused significant increases in the production of both amyloid beta40 and beta42. Interestingly, PS2V-encoding protein was expressed in neuropathologically affected neurons of the hippocampal CA1 region and temporal cortex in AD patients. These findings suggest that the aberrant splicing of the PS2 gene may be implicated in the neuropathology of sporadic AD.  相似文献   

10.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory loss and personality changes. Pathological hallmarks of AD are: deposition of amyloid plaques and neurofibrillary tangles in the brain, accompanied by neuronal and synaptic loss. The genetic background of AD is heterogeneous and strongly depends on the form of the disease. In most of the families with early-onset AD (EOAD) (10% of the total population of patients), the disease segregates as an autosomal dominant fully penetrant trait. To date, some missense mutations in three genes encoding the amyloid precursor protein, presenilin 1 (PS1) and 2 (PS2) have been found to cause familial EOAD. We screened for mutations in the presenilin genes in a sample of 55 patients with familial or sporadic form of EOAD from the Poznan region. We found 4 missense mutations in the PS1 gene: A246E in exon 7, P267L in exon 8, E318G in exon 9, and L424R in exon 12 among 5 unrelated patients. The frequency of PS1 mutations was 11% (5 of 55) in the whole sample of the patients with EOAD or 50% (3 of 6) if the analysis was restricted to familial cases with a positive history of dementia in the patient's family.  相似文献   

11.
Oxidative stress is strongly implicated in the progressive decline of cognition associated with aging and neurodegenerative disorders. In the brain, free radical-mediated oxidative stress plays a critical role in the age-related decline of cellular function as a result of the oxidation of proteins, lipids, and nucleic acids. A number of studies indicate that an increase in protein oxidation and lipid peroxidation is associated with age-related neurodegenerative diseases and cellular dysfunction observed in aging brains. Oxidative stress is one of the important factors contributing to Alzheimer's disease (AD), one of whose major hallmarks includes brain depositions of amyloid beta-peptide (Abeta) derived from amyloid precursor protein (APP). Mutation in APP and PS-1 genes, which increases production of the highly amyloidogenic amyloid beta-peptide (Abeta42), is the major cause of familial AD. In the present study, protein oxidation and lipid peroxidation in the brain from knock-in mice expressing human mutant APP and PS-1 were compared with brain from wild type, as a function of age. The results suggest that there is an increased oxidative stress in the brain of wild-type mice as a function of age. In APP/PS-1 mouse brain, there is a basal increase (at 1 month) in oxidative stress compared to the wild type (1 month), as measured by protein oxidation and lipid peroxidation. In addition, age-related elevation of oxidative damage was observed in APP/PS-1 mice brain compared to that of wild-type mice brain. These results are discussed with reference to the importance of Abeta42-associated oxidative stress in the pathogenesis of AD.  相似文献   

12.
There is much evidence suggesting that there is a strong relationship between the deterioration of brain lipid homeostasis, vascular changes and the pathogenesis of Alzheimer's disease (AD). These associations include: (1). recognition that a key cholesterol transporter, apolipoprotein E type 4, acts a major genetic risk factor for both familial and sporadic AD; (2). epidemiological studies linking cardiovascular risk factors, such as hypertension and high plasma cholesterol, to dementia; (3). the discovery that small strokes can precipitate clinical dementia in cognitively normal elderly subjects; (4). the modulation of degradation of the amyloid precursor protein by cholesterol administration in cell culture and in animal models of beta-amyloid overproduction; and (5). the beneficial effect of cholesterol-lowering drugs, such as Probucol and statins, in combating common AD. The recent finding that there is a genetic association between the HMGR gene locus and sporadic AD further suggests that brain cholesterol metabolism is central to AD pathophysiology, and a potential therapeutic target for disease stabilization and primary disease prevention.  相似文献   

13.
14.
The discovery of mutations of the menin gene in a few multiple endocrine neoplasma type 1 (MEN I)-associated lipomas and loss of heterozygosity (LOH) on chromosome 11q13 in some sporadic lipomas has stimulated the hypothesis that lipomas may belong to the group of sporadic tumors caused by defects of the gene responsible for MEN I. Since it is unclear if the above hypothesis applies to all patients with lipoma or just to specific subsets, we searched to enlarge the database on this topic. For this purpose, we identified two patients with multiple cutaneous lipomas. One had an additional pituitary adenoma and familial presentation of multiple lipomas, the other had recurrent goiter in the setting of a family history of adenomatous goiter. Deoxyribonucleic acid (DNA) was analyzed by complete direct DNA sequencing of all coding exons and splice junctions of the MEN I gene. No mutation was identified in the coding exons of the menin gene. In contrast to former data on sporadic lipomas, these data are the first to render evidence that mutations of the MEN I gene may not be responsible for the formation of multiple lipomas, even if they appear in the context of other endocrine tumors.  相似文献   

15.
There is substantial evidence for a susceptibility gene for late-onset Alzheimer's disease (AD) on chromosome 10. One of the characteristic features of AD is the degeneration and dysfunction of the cholinergic system. The genes encoding choline acetyltransferase (ChAT) and its vesicular transporter (VAChT), CHAT and SLC18A3 respectively, map to the linked region of chromosome 10 and are therefore both positional and obvious functional candidate genes for late-onset AD. We have screened both genes for sequence variants and investigated each for association with late-onset AD in up to 500 late-onset AD cases and 500 control DNAs collected in the UK. We detected a total of 17 sequence variants. Of these, 14 were in CHAT, comprising three non-synonymous variants (D7N in the S exon, A120T in exon 5 and L243F in exon 8), one synonymous change (H547H), nine single-nucleotide polymorphisms in intronic, untranslated or promoter regions, and a variable number of tandem repeats in intron 7. Three non-coding SNPs were detected in SLC18A3. None demonstrated any reproducible association with late-onset AD in our samples. Levels of linkage disequilibrium were generally low across the CHAT locus but two of the coding variants, D7N and A120T, proved to be in complete linkage disequilibrium.  相似文献   

16.
BACKGROUND: Mutations in the presenilin proteins cause early-onset, familial Alzheimer's disease (FAD). MATERIALS AND METHODS: We characterized the cellular localization and endoproteolysis of presenilin 2 (PS2) and presenilin 1 (PS1) in brains from 25 individuals with presenilin-mutations causing FAD, as well as neurologically normal individuals and individuals with sporadic Alzheimer's disease (AD). RESULTS: Amino-terminal antibodies to both presenilins predominantly decorated large neurons. Regional differences between the broad distributions of the two presenilins were greatest in the cerebellum, where most Purkinje cells showed high levels of only PS2 immunoreactivity. PS2 endoproteolysis in brain yielded multiple amino-terminal fragments similar in size to the PS1 amino-terminal fragments detected in brain. In addition, two different PS2 amino-terminal antibodies also detected a prominent 42 kDa band that may represent a novel PS2 form in human brain. Similar to PS1 findings, neither amino-terminal nor antiloop PS2 antibodies revealed substantial full-length PS2 in brain. Immunocytochemical examination of brains from individuals with the N141I PS2 mutation or eight different PS1 mutations, spanning the molecule from the second transmembrane domain to the large cytoplasmic loop domain, revealed immunodecoration of no senile plaques and only neurofibrillary tangles in the M139I PS1 mutation stained with PS1 antibodies. CONCLUSIONS: Overall presenilin expression and the relative abundance of full-length and amino-terminal fragments in presenilin FAD cases were similar to control cases and sporadic AD cases. Thus, accumulation of full-length protein or other gross mismetabolism of neither PS2 nor PS1 is a consequence of the FAD mutations examined.  相似文献   

17.
To clarify the role of presenilin-1 (PS-1) in the pathology of Alzheimer's disease (AD), we tested four antisera to PS-1. The specific antisera to the N-terminus (HSN-2) and C-terminus (HS-C) of PS-1 detected a 44/40kD holoprotein, a 25kD N-terminal fragment (NTF) and a 16kD C-terminal fragment (CTF) of PS-1 in COS-7 cells. The 25kD NTF and 16kD CTF were observed in human brains, and their amounts were not significantly different between the control and AD brains. The antibody HS-C labeled extensive neurofibrillary tangles, dystrophic neurites and curly fibers in the AD brains. In the paired helical filament (PHF) fraction containing A68 protein from AD brains, a smear pattern of CTFs was revealed. Antisera (HS-L292 and HS-L300) to cleavage sites of PS-1 also revealed immunoreactive neurofibrillary tangles in the AD brain sections and the smear pattern of CTFs of A68 protein fraction. The CTFs of PS-1 accumulate with PHF tau, suggesting a close relationship between PS-1 and cytoskeletal abnormalities in AD brains.  相似文献   

18.
The gene for the beta A4-amyloid precursor protein (APP) consists of 19 exons which code for a typical N- and O-glycosylated transmembrane protein with four extracellular domains followed by the transmembrane domain and a short cytoplasmic domain. The beta A4-amyloid sequence is part of exons 16 and 17. Several APP isoforms can be generated by alternative splicing of exons 7 and 8, encoding domains with homologies to Kunitz-type protease inhibitors and the MRC OX-2 antigen, respectively. The mechanism by which the pathological beta A4 is generated is unknown, it is however a critical event in Alzheimer's disease and is distinct from the normally occurring cleavage and secretion of APPs within the beta A4 sequence. We report here for the first time considerable APP mRNA expression by rat brain microglial cells. In addition we showed by S1 nuclease protection and polymerase chain reaction analysis of reverse transcribed RNA (RT-PCR) that T-lymphocytes, macrophages, and microglial cells expressed a new APP isoform by selection of a novel alternative splice site and exclusion of exon 15 of the APP gene. This leads to a transmembrane, beta A4 sequence containing APP variant, lacking 18 amino acid residues close to the amyloidogenic region. The use of this novel alternative splice site alters the structure of APP in close proximity to the beta A4 region and thus may determine a variant, potentially pathogenic processing of leukocyte-derived APP in brain.  相似文献   

19.
A dramatic paradigm shift in understanding Parkinson's disease (PD) has emerged with implications for Alzheimer's disease (AD) because: (1) Mutations in the alpha-synuclein (AS) gene cause familial PD, (2) Antibodies to AS detect Lewy bodies (LBs) and dystrophic Lewy neurites in PD, dementia with LBs (DLB), sporadic AD and the LB variant of AD (LBVAD), (3) Insoluble AS filaments are recovered from DLB brains and purified LBs, (4) Recombinant AS assembles into LB-like filaments and residues 71–82 are essential for filament assembly, (5) AS transgenic mice and flies develop a PD-like phenotype, (6) Cortical LBs detected with antibodies to AS correlate with dementia in PD, DLB and LBVAD, (7) Antibodies to AS detect LBs in 50% of familial AD, sporadic AD and Down's syndrome brains, (8) AS forms glial cytoplasmic inclusions (GCIs) in multiple system atrophy, (9) Epitopes throughout AS in LBs and GCIs, (10) Filamentous AS aggregates in LBs, GCIs and related lesions contain nitrated tyrosines, (11) Cells transfected with AS and treated with nitric oxide generators develop LB-like AS inclusions, (12) Bigenic mice overexpressing mutant human APP and AS show an augmentation in AS inclusions. Thus, neurodegenerative diseases characterized by AS pathologies are synucleinopathies, and the filamentous AS lesions in these disorders may result in part from oxidative/nitrative damage to AS. Abnormal interactions of brain proteins may underlie synucleinopathies and other neurodegenerative disorders. Acknowledgements:
Supported by NIA/NIH and Alzheimer's Association.  相似文献   

20.
Hatfield JT  Rothnagel JA  Smith R 《Gene》2002,295(1):33-42
The mouse hnRNP A2/B1/B0 gene has been cloned using a PCR-based strategy and sequenced. Analysis of this sequence showed that the gene organization closely follows that of the human orthologue with 12 exons and 11 introns. The hnRNP A2/B1/B0 gene gives rise to four splice variants through alternative splicing of exons 2 and 9. RT-PCR assays indicated that all splice variants were expressed in mouse brain, skin, and stomach tissues of varying ages, although their ratios to one another varied with age and tissue type. We also identified a small subset of all polyadenylated splice variants that included intron 11, which shows 94% sequence identity between human and mouse. Several processed pseudogenes were identified in the mouse genome. A search of the mouse genome databases located five pseudogenes, four of which are presumed to be non-functional because of the presence of premature stop codons, large deletions or rearrangements within the coding region. The fifth, which possesses putative promoter elements and has a coding sequence identical to that of the hnRNP A2 mRNA variant, may be functional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号