首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major central site of olfactory information processing in the terrestrial slug Limax maximus is the procerebral lobe of the cerebral ganglion, which exhibits oscillatory dynamics of its local field potential and propagates activity waves from its apex to its base, as determined by multisite optical and electrical measurements in vitro. The learning-dependent uptake of Lucifer yellow into procerebral neurons suggests that the procerebral lobe may form learned representations of odors. To determine the role of the procerebral lobe in odor processing and odor learning, we developed procedures to implant fine wire electrodes in the lobe, which allowed recordings of local field potential in freely behaving slugs. The procerebral lobe displays oscillatory dynamics of its local field potential in vivo; however the amplitude and frequency of the local field potential are much more variable in vivo than in vitro. Odor presentation leads to increased frequency and amplitude of the local field potential signal. Several lines of evidence indicate that the variations in the local field potential signal recorded in vivo are not due to movement artifacts or activity in adjacent muscles. Multiple amine, gaseous, and peptide neuromodulators known to be present in the procerebral lobe provide pathways by which activity or coupling of bursting neurons in the procerebral lobe could be altered, resulting in the observed amplitude and frequency modulation of the local field potential.  相似文献   

2.
To examine the distribution of nitric oxide (NO)-generative cells and NO-responsive cells in the tentacles and procerebral lobes (olfactory processing center) of terrestrial slugs, we applied NADPH diaphorase (NADPH-d) histochemistry and NO-induced cyclic GMP (cGMP)-like immunohistochemistry. We found that NADPH-d reactive cells/fibers and cGMP-like immunoreactive cells/fibers were different, but they were localized adjacent to each other, in both the tentacles and the procerebral lobes. Then, we measured the concentration of NO that was generated around the procerebral lobes using an NO sensitive electrode, when the olfactory nerve was electrically stimulated as a replacement for an odorant stimulus. Stimulation of the olfactory nerve evoked an increase in NO concentration at nanomolar levels, suggesting that binding of nanomolar concentrations of NO to the prosthetic heme group activates soluble guanylyl cyclase. Taken together with previously reported physiological data, our results, therefore, showed that the NO/cGMP pathways are involved in slug olfactory processing.  相似文献   

3.
刺激源的方位是刺激的重要特性之一.行为学的研究发现,动物能够利用气味到达左右鼻腔的时间差和强度差信息对气味方位进行感知,但作为嗅觉系统第一神经中枢的嗅球,是否具有利用两侧鼻间差信息对气味方位进行编码的能力一直受到质疑.为探讨该问题,在本研究中通过比较嗅球中84个僧帽细胞对同侧气味刺激、对侧气味刺激以及对侧气味刺激略先于同侧气味刺激时的反应,发现有29个僧帽细胞可被同侧气味所兴奋,其中18个虽然对对侧气味刺激不反应,但对侧气味的存在却能显著降低其对同侧气味刺激的反应.另外,50个僧帽细胞在只给予同侧或对侧气味刺激时不反应,但其中11个在对侧刺激略先于同侧刺激的方式给出气味时,表现出明显的兴奋性反应.我们的研究结果一方面提示僧帽细胞具有编码气味到达两个鼻腔的时间差,或气味源位置信息的能力;另一方面也表明对侧刺激不仅能对同侧嗅球僧帽细胞产生抑制效应,还可能存在目前还不明确的机制而产生兴奋效应.  相似文献   

4.
Food-attraction conditioning is a learning phenomenon by which adult Helix pomatia acquire the ability to locate food through exposure to that particular food. Food-conditioned snails can be distinguished from naive snails during their approach to food. Naive snails keep their tentacles upright — whereas food-conditioned animals bend the tentacles down-ward, in a horizontal orientation, pointed in the direction of the food.Tentacle musculature is innervated by two peritentacular nerves (PTn), each projecting to approximately one hemi-section of the tentacle wall. Stimulating the peritentacular nerves caused the tentacles to bend downward in a manner reflecting the full complement of tentacle movements performed by conditioned snails.The neural correlate of tentacle movements was investigated in isolated ganglion preparations with the posterior tentacles attached. PT nerve activity was recorded while the olfactory epithelia were stimulated with natural food odors. Preparations obtained from conditioned animals responded with a substantial increase in unit activity (mean increase 280%) to stimulation with odor of the conditioned food but not to other odors. Preparations from naive animals did not respond to food odor stimulation. The electrophysiological results demonstrated that plasticity due to conditioning the snails in vivo survived dissection and could be monitored in vitro.Abbreviations ext PTn external peritentacular nerve - int PTn internal peritentacular nerve  相似文献   

5.
Objective—The primary nerves innervating the female genitalia are the dorsal nerve of the clitoris (DNC) and the perineal nerve, which innervate the clitoris and the external genitalia/distal vagina, respectively. We describe two novel electrodiagnostic techniques for evaluating the integrity of these female genital somatosensory pathways.

Subjects and methods—Seventy-seven healthy women (mean age 29.3 years) were enrolled for this study. We performed DNC somatosensory evoked potentials (SEPs), stimulating through self-adhesive disk electrodes on either side of the clitoris. Perineal nerve SEPs were evoked through a vaginal probe. Cortical responses were measured through cup electrodes affixed to the scalp at Cpz and Fpz. Stimulus parameters were duration 0.1?ms, frequency 4.1?Hz, filters 5–5,000?Hz, at three times sensory threshold.

Results—DNC and perineal nerve SEPs from both the right and left sides were reproducible and easily discerned. The mean P1 latencies were: right DNC 39.4?ms (SD 2.8?ms), left DNC 39.3?ms (SD 3.3?ms), right perineal nerve 37.8?ms (SD 3.4?ms), left perineal nerve 37.6?ms (SD 3.1?ms). We recorded SEP responses from 90 to 92% of subjects for the DNC, and 69% for the perineal nerve.

Conclusions—We are able to evoke somatosensory potentials from the four primary somatic nerves that mediate female genital cutaneous sensation. In healthy subjects, the DNC responses are robust and maintain laterality. The perineal nerve responses are less consistently obtained, but when recorded, are easily discerned. These preliminary data provide a foundation from which to study female genital innervation, particularly as it applies to sexual function.  相似文献   

6.
The major central site of olfactory information processing in the terrestrial slug Limax maximus is the procerebral lobe of the cerebral ganglion, which exhibits oscillatory dynamics of its local field potential and propagates activity waves from its apex to its base, as determined by multisite optical and electrical measurements in vitro. The learning‐dependent uptake of Lucifer yellow into procerebral neurons suggests that the procerebral lobe may form learned representations of odors. To determine the role of the procerebral lobe in odor processing and odor learning, we developed procedures to implant fine wire electrodes in the lobe, which allowed recordings of local field potential in freely behaving slugs. The procerebral lobe displays oscillatory dynamics of its local field potential in vivo; however the amplitude and frequency of the local field potential are much more variable in vivo than in vitro. Odor presentation leads to increased frequency and amplitude of the local field potential signal. Several lines of evidence indicate that the variations in the local field potential signal recorded in vivo are not due to movement artifacts or activity in adjacent muscles. Multiple amine, gaseous, and peptide neuromodulators known to be present in the procerebral lobe provide pathways by which activity or coupling of bursting neurons in the procerebral lobe could be altered, resulting in the observed amplitude and frequency modulation of the local field potential. © 2001 John Wiley & Sons, Inc. J Neurobiol 46: 126–141, 2001  相似文献   

7.
New techniques in female pudendal somatosensory evoked potential testing   总被引:1,自引:0,他引:1  
OBJECTIVE: The primary nerves innervating the female genitalia are the dorsal nerve of the clitoris (DNC) and the perineal nerve, which innervate the clitoris and the external genitalia/distal vagina, respectively. We describe two novel electrodiagnostic techniques for evaluating the integrity of these female genital somatosensory pathways. SUBJECTS AND METHODS: Seventy-seven healthy women (mean age 29.3 years) were enrolled for this study. We performed DNC somatosensory evoked potentials (SEPs), stimulating through self-adhesive disk electrodes on either side of the clitoris. Perineal nerve SEPs were evoked through a vaginal probe. Cortical responses were measured through cup electrodes affixed to the scalp at Cpz and Fpz. Stimulus parameters were duration 0.1 ms, frequency 4.1 Hz, filters 5-5,000 Hz, at three times sensory threshold. RESULTS: DNC and perineal nerve SEPs from both the right and left sides were reproducible and easily discerned. The mean P1 latencies were: right DNC 39.4 ms (SD 2.8 ms), left DNC 39.3 ms (SD 3.3 ms), right perineal nerve 37.8 ms (SD 3.4 ms), left perineal nerve 37.6 ms (SD 3.1 ms). We recorded SEP responses from 90 to 92% of subjects for the DNC, and 69% for the perineal nerve. CONCLUSIONS: We are able to evoke somatosensory potentials from the four primary somatic nerves that mediate female genital cutaneous sensation. In healthy subjects, the DNC responses are robust and maintain laterality. The perineal nerve responses are less consistently obtained, but when recorded, are easily discerned. These preliminary data provide a foundation from which to study female genital innervation, particularly as it applies to sexual function.  相似文献   

8.
Nitric oxide (NO) modulates the dynamics of central olfactory networks and has been implicated in olfactory processing including learning. Land mollusks have a specialized olfactory lobe in the brain called the procerebral (PC) lobe. The PC lobe produces ongoing local field potential (LFP) oscillation, which is modulated by olfactory stimulation. We hypothesized that NO should be released in the PC lobe in response to olfactory stimulation, and to prove this, we applied an NO electrode to the PC lobe of the land slug Limax in an isolated tentacle-brain preparation. Olfactory stimulation applied to the olfactory epithelium transiently increased the NO concentration in the PC lobe, and this was blocked by the NO synthase inhibitor L-NAME at 3.7 mM. L-NAME at this concentration did not block the ongoing LFP oscillation, but did block the frequency increase during olfactory stimulation. Olfactory stimulation also enhanced spatial synchronicity of activity, and this response was also blocked by L-NAME. Single electrical stimulation of the superior tentacle nerve (STN) mimicked the effects of olfactory stimulation on LFP frequency and synchronicity, and both of these effects were blocked by L-NAME. L-NAME did not block synaptic transmission from the STN to the nonbursting (NB)-type PC lobe neurons, which presumably produce NO in an activity-dependent manner. Previous behavioral experiments have revealed impairment of olfactory discrimination after L-NAME injection. The recording conditions in the present work likely reproduce the in vivo brain state in those behavioral experiments. We speculate that the dynamical effects of NO released during olfactory perception underlie precise odor representation and memory formation in the brain, presumably through regulation of NB neuron activity.  相似文献   

9.
On isolated preparations of the superior cervical ganglion (SCG, n = 8) taken from 21-day-old rats, we studied the intraganglion pathways and mechanisms underlying generation of synaptic responses of SCG neurons to antidromic stimulation. One of the three nerves connected with the SCG was stimulated, and compound action potentials were recorded simultaneously from the other two nerves; then, the order of stimulated and recorded nerves was changed. Orthodromic stimulation of the cervical sympathetic nerve (CSN) evoked responses in the internal carotid nerve (ICN), which could be completely blocked by hexamethonium, and responses in the external carotid nerve (ECN), which contained a component that was not blocked by this of the ECN caused responses in the CSN, which were not blocked by hexamethonium. Effects of superfusion of the SCG with a Ca2+-free solution allowed us to conclude that the hexamethonium-insensitive component of the responses in the CSN and ECN and ECN-CSN conduction can be explained by the presence of direct fibers going from the CSN to the ECN with no synaptic relay. Possible mechanisms underlying antidromic stimulation-induced synaptic responses in SCG neurons are discussed. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 396–399, July–October, 2007.  相似文献   

10.
A biophysical model for the interactions between bursting (B) cells and nonbursting (NB) cells in the procerebral lobe of Limax is developed and tested. Phase-sensitivity of the NB cells is exhibited due to the strong inhibition from the rhythmically bursting B cells. Electrical and chemical junctions coupled with a parameter gradient lead to sustained periodic waves in the lobe. Excitatory interactions between the NB cells, which rarely fire, lead to stimulus evoked synchrony in the lobe oscillations. A novel calcium current is suggested to explain the effects of nitric oxide (NO) on the lobe. Gap junctions are shown both experimentally and through simulations to be required for the oscillating field potentials.  相似文献   

11.
The dorsal cord, dorsal root, and focal potentials in response to peripheral nerve stimulation were investigated in rats with local depression of inhibition in the left or right half of the lumbar segments produced by the action of tetanus toxin. The investigation was carried out at the stage of poisoning when excitation of the neuron population with disturbed inhibition caused generalized excitation of spinal and bulbar motoneurons. Experiments on spinal animals showed that if a cutaneous nerve is stimulated on the side affected by the toxin these responses have a greater amplitude and a much longer duration than those evoked by stimulation of the opposite nerve or responses in healthy rats. The maximal increase in amplitude and duration of the negative component of the focal potential corresponding to the time of the increased P wave of the dorsal cord potential was found in the ventral quadrant on the side affected by the toxin. Besides evoked focal potentials, spontaneous rhythmic negative waves also were recorded in this area. The mechanisms of spread of seizure activity from the focus of depressed inhibition are discussed and the structures generating spreading seizure activity are identified.  相似文献   

12.
This study attempts to evaluate the effects of deviation of external nose to nasal airflow patterns. Four typical subjects were chosen for model reconstruction based on computed tomography images of undeviated, S-shaped deviated, C-shaped deviated and slanted deviated noses. To study the hypothetical influence of deviation of external nasal wall on nasal airflow (without internal blockage), the collapsed region along the turbinate was artificially reopened in all the three cases with deviated noses. Computational fluid dynamics simulations were carried out in models of undeviated, original deviated and reopened nasal cavities at both flow rates of 167 and 500 ml/s. The shape of the anterior nasal roof was found to be collapsed on one side of the nasal airways in all the deviated noses. High wall shear stress region was found around the collapsed anterior nasal roof. The nasal resistances in cavities with deviated noses were considerably larger than healthy nasal cavity. Patterns of path-line distribution and wall shear stress distribution were similar between original deviated and reopened models. In conclusion, the deviation of an external nose is associated with the collapse of one anterior nasal roof. The crooked external nose induced a larger nasal resistance compared to the undeviated case, while the internal blockage of the airway along the turbinates further increased it.  相似文献   

13.
The gaseous neurotransmitters nitric oxide (NO) and carbon monoxide(CO) are prominent and universal components of the array ofneurotransmitters found in olfactory information processingsystems. These highly mobile communication compounds have effectson both second messenger signaling and directly on ion channelgating in olfactory receptors and central synaptic processingof receptor input. Olfactory systems are notable for the plasticityof their synaptic connections, revealed both in higher-orderassociative learning mechanisms using odor cues and developmentalplasticity operating to maintain function during addition ofnew olfactory receptors and new central olfactory interneurons.We use the macrosmatic terrestrial mollusk Limax maximus toinvestigate the role of NO and CO in the dynamics of centralodor processing and odor learning. The major central site ofodor processing in the Limax CNS is the procerebral (PC) lobeof the cerebral ganglion, which displays oscillatory dynamicsof its local field potential and periodic activity waves modulatedby odor input. The bursting neurons in the PC lobe are dependenton local NO synthesis for maintenance of bursting activity andwave propagation. New data show that these bursting PC interneuronsare also stimulated by carbon monoxide. The synthesizing enzymefor carbon monoxide, heme oxygenase 2, is present in the neuropilof the PC lobe. Since the PC lobe exhibits two forms of synapticplasticity related to both associative odor learning and continualconnection of new receptors and interneurons, the use of multiplegaseous neurotransmitters may be required to enable these multipleforms of synaptic plasticity.  相似文献   

14.
To analyse the mechanism by which sensory inputs are integrated, interactions of somatosensory evoked potentials (SEPs) in response to simultaneous stimulation of two nerves were examined in 12 healthy subjects. Right, left and bilateral median nerves were stimulated in random order so that a precise comparison could be made among the SEPs. The arithmetical sum of the independent right and left median nerve SEPs was almost equal within 40 msec of stimulus onset to that evoked by the simultaneous stimulation of bilateral median nerves. However, a difference emerged after 40 msec. The greatest difference was recorded after 100 msec. Sensory information from right and left median nerves may interact in the late phase of sensory processing. Left median, left ulnar, and both nerves together were stimulated. The sum of the SEPs of left median and ulnar nerves was not equal to that evoked by the simultaneous stimulation of the two nerves even at early latencies. Differences between them were first recorded at 14–18 msec and became greater after 30–40 msec. It is suggested that the neural interactions between impulses in the median and ulnar nerves begin below the thalamic level.  相似文献   

15.
Short-latency cortical somatosensory evoked potentials (SEPs) to left median nerve stimulation were recorded with either the left or right earlobe as reference. With a right earlobe reference the voltage of the parietal N20 and P27 was reduced while the voltage of the frontal P20 and N30 was enhanced. The effects were consistent, but their size varied with the SEP component considered and also among the subjects. Analysis of SEPs at different scalp sites and at either earlobe suggested that the ear contralateral to the side stimulated picked up transient potential differences, depending a.o. on side asymmetry and geometry of the neural generators as disclosed in topographic mapping. For example, the right ear potential can be shifted negatively by the right N20 field evoked by left median nerve stimulation. The changes involve the absolute potential values, but not the time features of the gradients of potential fields. Scalp current density (SCD) maps are not affected. The results are pertinent for current discussions about which reference to use and document the practical recommendation of recording short-latency cortical SEPs with a reference at the ear ipsilateral (not contralateral) to the side of stimulation.  相似文献   

16.
记录了麻痹猫的体感皮层(SI)神经元的自发和隐神经的A类和C类纤维传入诱发放电(A-ED和C-ED)。用NCCVF分析神经元放电。结果表明,SI区神经元对同时刺激隐神经的A类和C类纤维的反应呈多种型式:(1)A-ED和C-ED共存,包括Ⅰ.A-ED和C-ED始终相互伴随出现;Ⅱ.在刺激之初,只出现A-ED,但是,当阻断A类纤维传入并由C类纤维传入诱发神经元放电后,再同时刺激A类和C类纤维时,A-ED和C-ED便同时出现。(2)A-ED制约C-ED,特点是,只要A-ED存在,C/ED就不出现。只有阻断A类纤维传入后,C-ED才产生。(3)单一A-ED,不管在什么刺激条件下,这类神经元都只有A-ED,而不产生C-ED 结论:根据反应型式的不同,可将SI区的神经元分为Ⅰ.A类和C类纤维传入同时驱动的神经元;Ⅱ.A-ED制约C-ED的神经元;Ⅲ.只由A类纤维传入驱动的神经元。  相似文献   

17.
Gottfried JA 《Neuron》2005,47(4):473-476
It is widely thought that locating the source of a smell is an ability best left to nonhuman members of the animal kingdom. In this issue of Neuron, two complementary articles highlight the neural mechanisms underlying the localization of an odor, either to the left or right side of the nose (Porter et al.) or to the inside or outside of the mouth (Small et al.). Together, these studies validate the idea that the human brain is equipped with the apparatus necessary to pinpoint the location of an odor source.  相似文献   

18.
The anterior faucial pillar, which is innervated by the glossopharyngeal nerve, is thought to be important in eliciting the pharyngeal swallow in awake humans. Glossopharyngeal evoked potentials (GPEP), elicited by mechanically stimulating this structure, were recorded from 30 normal adults using standard averaging techniques and a recording montage of 16 scalp electrodes. Ten of the subjects experienced a desire to swallow in response to stimulation. Repeatable responses were recorded from all 30 subjects. The GPEPs recorded from the posterior scalp were W-shaped and consisted of P1, N1, P2, N2 and P3 peaks. Mean latencies of P1, N1 and P2 were 11, 16 and 22 msec, respectively, for both left and right pillar stimulation. In contrast, latencies of N2 and P3 varied significantly between left and right pillar stimulation. Mean latencies of N2 and P3 were 27 and 34 msec for left, and 29 and 35 msec for right pillar stimulation. Topographical maps acquired at peak latencies for P1, N1 and P2 revealed consistent asymmetrical voltage distributions between the two hemispheres; the largest responses were recorded from the hemisphere ipsilateral to the side of stimulation. The scalp topography of N2 and P3 varied between male and female subjects as well as between left and right pillar stimulation. These findings support the hypothesis that mechanical stimulation to the anterior faucial pillar alone can elicit repeatable responses from the central nervous system. The integration of this subcortical/cortical activity with that of the medullary swallowing center may play an important role in eliciting the pharyngeal swallow.  相似文献   

19.
The von Bezold-Jarisch reflex (BJR) is a vagally mediated chemoreflex from the heart and lungs, causing hypopnea, bradycardia, and inhibition of sympathetic vasomotor tone. However, cardiac sympathetic nerve activity (CSNA) has not been systematically compared with vasomotor activity during the BJR. In 11 urethane-anesthetized (1-1.5 g/kg iv), artificially ventilated rats, we measured CSNA simultaneously with lumbar sympathetic activity (LSNA) while the BJR was evoked by right atrial bolus injections of phenylbiguanide (0.5, 1.0, 1.5, and 2 microg). Nerve and heartbeat responses were analyzed by calculating normalized cumulative sums. LSNA and heartbeats were always reduced by the BJR. An excitatory "rebound" component often followed the inhibition of LSNA but never outweighed it. For CSNA, however, excitation usually (in 7 of 11 rats) outweighed any initial inhibition, such that the net response to phenylbiguanide was excitatory. The differences in net response between LSNA, CSNA, and heartbeats were all significant (P < 0.01). A second experimental series on seven rats showed that methyl atropine (1 mg/kg iv) abolished the bradycardia of the BJR, whereas subsequent bilateral vagotomy substantially reduced LSNA and CSNA responses, both excitatory and inhibitory. These findings show that, during the BJR, 1) CSNA is often excited, 2) there may be coactivation of sympathetic and parasympathetic drives to the heart, 3) divergent responses may be evoked simultaneously in cardiac vagal, cardiac sympathetic, and vasomotor nervous pathways, and 4) those divergent responses are mediated primarily by the vagi.  相似文献   

20.
The location of cerebral neurons innervating the three recently described flexor muscles involved in the orientation of the posterior tentacles was investigated by applying parallel retrograde Co- and Ni-lysine tracing via the olfactory and the peritentacular nerves. Their innervation patterns in the flexor muscles were studied by applying anterograde neurobiotin tracings via these nerves. The labeled neurons are clustered in eight groups in the cerebral ganglion. They send both common and distinct innervation pathways to the flexor and the tegumental muscles and to the tentacular retractor muscle. The common pathway reaches the muscles via the olfactory nerve, whereas the distinct pathways innervate via the internal and external peritentacular nerves. The three anchoring points of the three flexor muscles at the base of the tentacle outline the directions of three force vectors generated by the contraction of the muscles and enable the protracted tentacle to bend around a basal pivot. In the light of earlier physiological and the present anatomical findings, we suggest that the common innervation pathway to the muscles is required for tentacle withdrawal and the retractor mechanism, whereas the distinct pathways primarily serve the bending of the protracted posterior tentacles during foraging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号