首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonalcoholic fatty liver disease (NAFLD) has been associated with the function and changes in expression levels of microRNAs (miRs). MiR-7 has been proven to play an important role in many cellular processes; however, its functions in the context of liver lipogenesis remain unknown. We applied the microRNA-sponge (miR-SP) technology and generated transgenic miR-7a-SP models (hC7aSP and bC7aSP), which disrupted the activities of hepatic miR-7a and induced the early onset of NAFLD and nonalcoholic steatohepatitis (NASH) in zebrafish. We identified a novel miR-7a target, YY1, and demonstrated novel miR-7a functions to regulate zebrafish hepatic lipid metabolism by controlling YY1 stabilization through the regulation of the expression of lipogenic signaling pathways. Correspondingly, liver specific miR-7a depletion functionally promoted lipid accumulation in hC7ASP livers. NASH hC7aSP increased the expression of inflammatory genes (il-1b, il-6, tnf-α, ifn-γ, nfkb2, and NF-kB) and endoplasmic reticulum stress markers (atf6, ern2, ire1, perk, hspa5 and ddit3). Molecular analysis revealed that miR-7a-SP can stabilize YY1 expression and contribute to the accumulation of hepatic triglycerides by reducing the CHOP-10 expression in the hC7aSP and then inducing the transactivation of C/EBP-α and PPAR-γ expression. PPAR-γ antagonists and miR-7a mimic treatment ameliorate hC7aSP NASH phenotypes. Conclusion: Our results suggest that miR-7a-SP acts as a lipid enhancer by directly increasing YY1 stability to disrupt CHOP-10-dependent suppression of lipogenic pathways, resulting in increased lipid accumulation. MiR-7a expression improves liver steatosis and steatohepatitis in hC7aSPs, which suggests a novel strategy for the prevention and early treatment of NASH in humans.  相似文献   

2.
Fatty liver disease comprises a spectrum ranging from simple steatosis to steatohepatitis which can progress to liver cirrhosis and hepatocellular cancer. Hepatic lipotoxicity may ensue when the hepatic capacity to utilize, store and export fatty acids (FA) as triglycerides is overwhelmed. Additional mechanisms of hepatic lipotoxicity include abnormal FA oxidation with formation of reactive oxygen species, disturbances in cellular membrane FA and phospholipid composition, alterations of cholesterol content and ceramide signalling. Lipotoxicity is a key factor for the progression of fatty liver disease by inducing hepatocellular death, activating Kupffer cells and an inflammatory response, impairing hepatic insulin signalling resulting in insulin resistance, and activation of a fibrogenic response in hepatic stellate cells that can ultimately lead to cirrhosis. Therefore, the concept of hepatic lipotoxicity should be considered in future therapeutic concepts for fatty liver disease.  相似文献   

3.
The temporal relationship of hepatic steatosis and changes in liver oxidative stress and fatty acid (FA) composition to the development of non-alcoholic steatohepatitis (NASH) remain to be clearly defined. Recently, we developed an experimental model of hepatic steatosis and NASH, the transgenic spontaneously hypertensive rat (SHR) that overexpresses a dominant positive form of the human SREBP-1a isoform in the liver. These rats are genetically predisposed to hepatic steatosis at a young age that ultimately progresses to NASH in older animals. Young transgenic SHR versus SHR controls exhibited simple hepatic steatosis which was associated with significantly increased hepatic levels of oxidative stress markers, conjugated dienes, and TBARS, with decreased levels of antioxidative enzymes and glutathione and lower concentrations of plasma α- and γ-tocopherol. Transgenic rats exhibited increased plasma levels of saturated FA, decreased levels of n?3 and n?6 polyunsaturated FA (PUFA), and increased n?6/n?3 PUFA ratios. These results are consistent with the hypothesis that excess fat accumulation in the liver in association with increased oxidative stress and disturbances in the metabolism of saturated and unsaturated fatty acids may precede and contribute to the primary pathogenesis of NASH.  相似文献   

4.
5.
6.
7.
Hepatocarcinogenesis is a multistep process that starts from fatty liver and transitions to fibrosis and, finally, into cancer. Many etiological factors, including hepatitis B virus X antigen (HBx) and p53 mutations, have been implicated in hepatocarcinogenesis. However, potential synergistic effects between these two factors and the underlying mechanisms by which they promote hepatocarcinogenesis are still unclear. In this report, we show that the synergistic action of HBx and p53 mutation triggers progressive hepatocellular carcinoma (HCC) formation via src activation in zebrafish. Liver-specific expression of HBx in wild-type zebrafish caused steatosis, fibrosis and glycogen accumulation. However, the induction of tumorigenesis by HBx was only observed in p53 mutant fish and occurred in association with the up-regulation and activation of the src tyrosine kinase pathway. Furthermore, the overexpression of src in p53 mutant zebrafish also caused hyperplasia, HCC, and sarcomatoid HCC, which were accompanied by increased levels of the signaling proteins p-erk, p-akt, myc, jnk1 and vegf. Increased expression levels of lipogenic factors and the genes involved in lipid metabolism and glycogen storage were detected during the early stages of hepatocarcinogenesis in the HBx and src transgenic zebrafish. The up-regulation of genes involved in cell cycle regulation, tumor progression and other molecular hallmarks of human liver cancer were found at later stages in both HBx and src transgenic, p53 mutant zebrafish. Together, our study demonstrates that HBx and src overexpression induced hepatocarcinogenesis in p53 mutant zebrafish. This phenomenon mimics human HCC formation and provides potential in vivo platforms for drug screening for therapies for human liver cancer.  相似文献   

8.
9.
10.
Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease such as simple steatosis, nonalcoholic steatohepatitis (NASH), cirrhosis and fibrosis. However, the molecular pathogenesis and genetic variations causing NAFLD are poorly understood. The high prevalence and incidence of NAFLD suggests that genetic variations on a large number of genes might be involved in NAFLD. To identify genetic variants causing inherited liver disease, we used zebrafish as a model system for a large-scale mutant screen, and adopted a whole genome sequencing approach for rapid identification of mutated genes found in our screen. Here, we report on a forward genetic screen of ENU mutagenized zebrafish. From 250 F2 lines of ENU mutagenized zebrafish during post-developmental stages (5 to 8 days post fertilization), we identified 19 unique mutant zebrafish lines displaying visual evidence of hepatomegaly and/or steatosis with no developmental defects. Histological analysis of mutants revealed several specific phenotypes, including common steatosis, micro/macrovesicular steatosis, hepatomegaly, ballooning, and acute hepatocellular necrosis. This work has identified multiple post-developmental mutants and establishes zebrafish as a novel animal model for post-developmental inherited liver disease.  相似文献   

11.
Reduced mitochondrial fatty acid (FA) β-oxidation can cause accumulation of triglyceride in liver, while intake of eicosapentaenoic acid (EPA) has been recommended as a promising novel therapy to decrease hepatic triglyceride content. However, reduced mitochondrial FA β-oxidation also facilitates accumulation of EPA. To investigate the interplay between EPA administration, mitochondrial activity and hepatic triglyceride accumulation, we investigated the effects of EPA administration to carnitine-deficient mice with impaired mitochondrial FA β-oxidation. C57BL/6J mice received a high-fat diet supplemented or not with 3% EPA in the presence or absence of 500 mg mildronate/kg/day for 10 days. Liver mitochondrial and peroxisomal oxidation, lipid classes and FA composition were determined. Histological staining was performed and mRNA level of genes related to lipid metabolism and inflammation in liver and adipose tissue was determined. Levels of pro-inflammatory eicosanoids and cytokines were measured in plasma. The results showed that mildronate treatment decreased hepatic carnitine concentration and mitochondrial FA β-oxidation and induced severe triglyceride accumulation accompanied by elevated systemic inflammation. Surprisingly, inclusion of EPA in the diet exacerbated the mildronate-induced triglyceride accumulation. This was accompanied by a considerable increase of EPA accumulation while decreased total n-3/n-6 ratio in liver. However, inclusion of EPA in the diet attenuated the mildronate-induced mRNA expression of inflammatory genes in adipose tissue. Taken together, dietary supplementation with EPA exacerbated the triglyceride accumulation induced by impaired mitochondrial FA β-oxidation. Thus, further thorough evaluation of the potential risk of EPA supplementation as a therapy for NAFLD associated with impaired mitochondrial FA oxidation is warranted.  相似文献   

12.
13.
Methionine-choline-deficient (MCD) diets cause steatohepatitis in rodents and are used to study the pathophysiology of fatty liver disease in human beings. The most widely used commercial MCD formulas not only lack methionine and choline but also contain excess sucrose and fat. The objective of this study was to determine whether dietary sucrose in the MCD formula plays a role in the pathogenesis of MCD-related liver disease. We prepared two custom MCD formulas, one containing sucrose as the principal carbohydrate and the other substituting sucrose with starch. Mice fed the sucrose-enriched formula developed typical features of MCD-related liver disease, including hepatic steatosis, hepatocellular apoptosis, alanine aminotransferase elevation, lipid peroxidation, and hepatic inflammation. In contrast, mice fed MCD-starch were significantly protected against liver injury. MCD-sucrose and MCD-starch mice displayed identical diet-related abnormalities in hepatic fatty acid uptake and triglyceride secretion. Hepatic de novo lipogenesis and triglyceride synthesis, however, were 2 times higher in MCD-sucrose mice than MCD-starch mice (P < 0.01). Hepatic lipid analysis revealed accumulation of excess saturated fatty acids in MCD-sucrose mice that correlated with hepatocellular injury. Overall, the results indicate that dietary sucrose is critical to the pathogenesis of MCD-mediated steatohepatitis. They suggest that saturated fatty acids, which are products of de novo lipogenesis, are mediators of hepatic toxicity in this model of liver disease.  相似文献   

14.
Triglyceride (TG) accumulation in hepatocytes (hepatic steatosis) preludes the development of advanced nonalcoholic fatty liver diseases (NAFLDs) such as steatohepatitis, fibrosis, and cirrhosis. Mutations in human Comparative Gene Identification-58 (CGI-58) cause cytosolic TG-rich lipid droplets to accumulate in almost all cell types including hepatocytes. However, it is unclear if CGI-58 mutation causes hepatic steatosis locally or via altering lipid metabolism in other tissues. To directly address this question, we created liver-specific CGI-58 knockout (LivKO) mice. LivKO mice on standard chow diet displayed microvesicular and macrovesicular panlobular steatosis, and progressed to advanced NAFLD stages over time, including lobular inflammation and centrilobular fibrosis. Compared with CGI-58 floxed control littermates, LivKO mice showed 8-fold and 52-fold increases in hepatic TG content, which was associated with 40% and 58% decreases in hepatic TG hydrolase activity at 16 and 42 weeks, respectively. Hepatic cholesterol also increased significantly in LivKO mice. At 42 weeks, LivKO mice showed increased hepatic oxidative stress, plasma aminotransferases, and hepatic mRNAs for genes involved in fibrosis and inflammation, such as α-smooth muscle actin, collagen type 1 α1, tumor necrosis factor α, and interleukin-1β. In conclusion, CGI-58 deficiency in the liver directly causes not only hepatic steatosis but also steatohepatitis and fibrosis.  相似文献   

15.
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid deposition and oxidative stress. It has been demonstrated that general control nonderepressible 2 (GCN2) is required to maintain hepatic fatty acid homeostasis under conditions of amino acid deprivation. However, the impact of GCN2 on the development of NAFLD has not been investigated. In this study, we used Gcn2?/? mice to investigate the effect of GCN2 on high fat diet (HFD)-induced hepatic steatosis. After HFD feeding for 12?weeks, Gcn2?/? mice were less obese than wild-type (WT) mice, and Gcn2?/? significantly attenuated HFD-induced liver dysfunction, hepatic steatosis and insulin resistance. In the livers of the HFD-fed mice, GCN2 deficiency resulted in higher levels of lipolysis genes, lower expression of genes related to FA synthesis, transport and lipogenesis, and less induction of oxidative stress. Furthermore, we found that knockdown of GCN2 attenuated, whereas overexpression of GCN2 exacerbated, palmitic acid-induced steatosis, oxidative & ER stress, and changes of peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid synthase (FAS) and metallothionein (MT) expression in HepG2 cells. Collectively, our data provide evidences that GCN2 deficiency protects against HFD-induced hepatic steatosis by inhibiting lipogenesis and reducing oxidative stress. Our findings suggest that strategies to inhibit GCN2 activity in the liver may provide a novel approach to attenuate NAFLD development.  相似文献   

16.
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR−/−) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR−/− mice fed MCD diet (FXR−/−/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR−/−/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR−/−/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR−/−/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.  相似文献   

17.
The tissue-specific sources and regulated production of physiological signals that modulate food intake are incompletely understood. Previous work showed that L-Fabp(-/-) mice are protected against obesity and hepatic steatosis induced by a high-fat diet, findings at odds with an apparent obesity phenotype in a distinct line of aged L-Fabp(-/-) mice. Here we show that the lean phenotype in L-Fabp(-/-) mice is recapitulated in aged, chow-fed mice and correlates with alterations in hepatic, but not intestinal, fatty acid amide metabolism. L-Fabp(-/-) mice exhibited short-term changes in feeding behavior with decreased food intake, which was associated with reduced abundance of key signaling fatty acid ethanolamides, including oleoylethanolamide (OEA, an agonist of PPARα) and anandamide (AEA, an agonist of cannabinoid receptors), in the liver. These reductions were associated with increased expression and activity of hepatic fatty acid amide hydrolase-1, the enzyme that degrades both OEA and AEA. Moreover, L-Fabp(-/-) mice demonstrated attenuated responses to OEA administration, which was completely reversed with an enhanced response after administration of a nonhydrolyzable OEA analog. These findings demonstrate a role for L-Fabp in attenuating obesity and hepatic steatosis, and they suggest that hepatic fatty acid amide metabolism is altered in L-Fabp(-/-) mice.  相似文献   

18.
运用PCR技术获得HBx基因,分别克隆到原核表达载体pET-his和真核表达载体pcDNA3.1(-)上。重组质粒pET-his-HBx转化大肠杆菌BL21(DE3)后,IPTG诱导表达,利用Ni柱纯化后的蛋白免疫家兔,获得特异性的抗-HBx兔抗血清。重组质粒pcDNA3.1(-)-HBx分别转染HepG2和Hep3B细胞系后,经RT-PCR和Westernblot检测,证明HBx可以在这两种细胞系中表达。通过报告基因的表达研究了HBx对XBP1和GRP78启动子的激活活性,结果表明瞬时转染HBx的细胞系中,XBP1和GRP78启动子介导的荧光素酶活性比相应的对照细胞增加了3~7倍。通过RT-PCR分析证明,转染了HBx的细胞中XBP1mRNA发生了剪切。因此,可以初步推断HBx在HepG2和Hep3B细胞中的表达可以引起内质网压力反应,为进一步阐明HBx表达对内质网的影响和肝脏病原发生机制奠定了基础。  相似文献   

19.
In vivo1H magnetic resonance spectroscopy (MRS) was used to examine the progression of fatty liver in two murine models of progressive hepatic steatosis: leptin-deficient obese (ob/ob) mice and mice maintained on a diet deficient in methionine and choline (MCDD). Ob/ob mice displayed high levels of intracellular hepatic triglycerides as early as 9 weeks after birth, as observed with MRS and histopathology. Single voxel spectra of ob/ob liver displayed strong resonances arising from saturated (1.3 ppm) and unsaturated (2.8 and 5.3 ppm) fatty acyl chains that could be resolved in the absence of water suppression. Hepatic inflammation, induced by lipopolysaccharide administration, led to a significant increase in unsaturated and polyunsaturated fatty acyl chain resonances (P < 0.05), indicating a change in the composition of hepatic triglycerides in lipid droplets. Mice maintained on the MCDD displayed histological evidence of hepatic steatosis as early as two weeks, progressing to macrovesicular steatohepatitis at 10 weeks. The histological changes were accompanied by significant increases in saturated and unsaturated fatty acyl chain resonances and a significant decrease in the lipid/(water + lipid) ratio (P < 0.05). These results indicate that in vivo1H MRS may be a suitable method to monitor the progression of steatohepatitis.  相似文献   

20.
Consumption of trans-fatty acids (TFA), unsaturated fatty acids (FA) containing trans double bonds, is a risk factor for metabolic syndrome and steatohepatitis. Peroxisome proliferator-activated receptor α (PPARα) is a master regulator of hepatic lipid homeostasis. To examine the contribution of PPARα to changes in liver phenotypes induced by TFA, two diets were used: a purified control diet and an isocaloric diet in which most of the soybean oil, a major source of FA in the diet, was replaced with TFA-rich shortening. The diets were fed to wild-type and Ppara-null mice for 2 months. Ppara-null mice fed a TFA-containing diet showed more severe hepatic steatosis and liver damage compared with similarly treated wild-type mice, as revealed by increased hepatic triglyceride (TG) contents and serum alanine aminotransferase activities. While the TFA-rich diet increased the hepatic expression of enzymes involved in de novo FA synthesis and decreased TG-hydrolyzing enzymes in both genotypes, the expression of FA-catabolizing enzymes was decreased in Ppara-null mice, resulting in more severe hepatosteatosis. Additionally, the expression levels of key contributors to inflammation, such as osteopontin, were increased, and nuclear factor-kappa B was activated in TFA-containing diet-fed Ppara-null mice. Enhanced inflammatory signaling in these mice was presumably mediated by toll-like receptor 2, with no accompanying inflammasome activation. Collectively, these results suggest a protective role for PPARα in the pathological changes in the liver following TFA consumption. PPARα might prevent TFA-containing diet-induced steatohepatitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号