首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 623 毫秒
1.
The effect of partial and complete spinal cord transection (Th7–Th8) on locomotor activity evoked in decerebrated cats by electrical epidural stimulation (segment L5, 80–100 μA, 0.5 ms at 5 Hz) has been investigated. Transection of dorsal columns did not substantially influence the locomotion. Disruption of the ventral spinal quadrant resulted in deterioration and instability of the locomotor rhythm. Injury to lateral or medial descending motor systems led to redistribution of the tone in antagonist muscles. Locomotion could be evoked by epidural stimulation within 20 h after complete transection of the spinal cord. The restoration of polysynaptic components in EMG responses correlated with recovery of the stepping function. The data obtained confirm that initiation of locomotion under epidural stimulation is caused by direct action on intraspinal systems responsible for locomotor regulation. With intact or partially injured spinal cord, this effect is under the influence of supraspinal motor systems correcting and stabilizing the evoked locomotor pattern.  相似文献   

2.
The present study used microdialysis techniques in an intact rabbit model to measure the release of amino acids within the lumbar spinal cord in response to transcranial electrical stimulation. Dialysis samples from the extracellular space were obtained over a stimulation period of 90 minutes and were examined using high pressure liquid chromatography. Neuronal excitation was verified by recerding corticomotor evoked potentials (CMEPs) from the spinal cord. A significant increase in the release of glycine and taurine compared to sham animals was measured after 90 minutes of transcranial stimulation. Glutamate and aspartate release was not significantly elevated. GABA concentrations were consistently low. CMEP components repeatedly showed adequate activation of descending fiber pathways and segmental interneuron pools during dialysis sampling. Since glycine, and to a lesser extent taurine, have been shown to inhibit motor neuron activity and are closely associated with segmental interneuron pools, suprasegmental modulation of motor activity may be, in part, through these inhibitory amino acid neurotransmitters in the rabbit lumbar spinal cord.  相似文献   

3.
In decerebrate paralyzed cats, we examined the effects of two central motor commands (fictive locomotion and scratching) on the discharge of dorsal horn neurons receiving input from group III and IV tibial nerve afferents. We recorded the impulse activity of 74 dorsal horn neurons, each of which received group III input from the tibial nerve. Electrical stimulation of the mesencephalic locomotor region (MLR), which evoked fictive static contraction or fictive locomotion, inhibited the discharge of 44 of the 64 dorsal horn neurons tested. The mean depth from the dorsal surface of the spinal cord of the 44 neurons whose discharge was inhibited by MLR stimulation was 1.77 +/- 0.04 mm. Fictive scratching, evoked by topical application of bicuculline to the cervical spinal cord and irritation of the ear, inhibited the discharge of 22 of the 29 dorsal horn neurons tested. Fourteen of the twenty-two neurons whose discharge was inhibited by fictive scratching were found to be inhibited by MLR stimulation as well. The mean depth from the dorsal surface of the cord of the 22 neurons whose discharge was inhibited by fictive scratching was 1.77 +/- 0.06 mm. Stimulation of the MLR or the elicitation of fictive scratching had no effect on the activity of 22 dorsal horn neurons receiving input from group III and IV tibial nerve afferents. The mean depth from the dorsal surface of the cord was 1.17 +/- 0.07 mm, a value that was significantly (P < 0.05) less than that for the neurons whose discharge was inhibited by either MLR stimulation or fictive scratching. We conclude that centrally evoked motor commands can inhibit the discharge of dorsal horn neurons receiving thin fiber input from the periphery.  相似文献   

4.
《Life sciences》1991,49(17):PL113-PL118
The role of amino acid (AA) neurotransmitters in the spinal cord has been primarily studied using in vitro preparations and histochemical methods. The technology necessary to estimate AA levels in an intact animal has only recently become available. Such an investigation could yield valuable information regarding the segmental neurochemical environment. We measured the release of AAs into the rabbit lumbar spinal cord in response to sciatic nerve and transcranial stimulation with stereotaxically placed microdialysis catheters. Samples were obtained periodically during 90 minutes of continuous stimulation of either the left or right sciatic nerve, or motor cortex. Quantification of γ-amino butyric acid (GABA), aspartate, glutamate, glycine, and taurine was performed using high pressure liquid chromatography (HPLC). Adequate neural excitation was verified by recording somatosensory evoked potentials (SSEPs) or corticomotor evoked potentials (CMEPs). Sensory activation at intensities sufficient to activate small and large diameter peripheral fibers of the ipsilateral (to the microdialysis probe) sciatic nerve produced a significant change only in segmental glycine levels. Contralateral sciatic nerve stimulation failed to evoke a significant elevation of AAs. In addition, a significant increase in the release of glycine and taurine was measured after 90 minutes of transcranial stimulation. SSEP and CMEP components repeatedly showed adequate activation of primary afferent, descending motor fiber pathways, and segmental interneuron pools during dialysis sampling. Our data are consistent with the hypothesis that suprasegmental influence over peripheral afferent and motor activity may be, in part, through these amino acid neurotransmitters in the rabbit lumbar spinal cord.  相似文献   

5.
Cortical reorganization in training.   总被引:4,自引:0,他引:4  
Plasticity within the human central motor system occurs and has been studied with transcranial magnetic stimulation in patients with amputations, spinal cord injuries, and ischemic nerve block. These studies have identified a pattern of motor system reorganization that results in enlarged muscle representation areas and large motor evoked potentials (MEPs) for muscles immediately proximal to the lesion. Some of these changes are apparent minutes after ischemic nerve block, weeks after spinal cord injury, and as early as six months after amputation.These studies motivated us to study the cortical motor reorganization after finger movement training in normals and after anastomosis of intercostal nerves to the musculocutaneous nerve in young patients with cervical root avulsions due to a traumatic motorcycle injury.  相似文献   

6.
The method of transcutaneous electrical stimulation of the spinal cord (ESSC) has recently begun to be actively used for both experimental studies of human motor functions and the rehabilitation of motor function in patients with spinal cord pathology. The spinal cord is the most important center of the regulation of vital functions, and ESSC affects as spinal locomotor networks as the visceral system too, which should be taken into account for the development of an improved method of rehabilitation and its use in experiments on healthy volunteers. We present a review of studies on the possible mechanisms of ESSC effects on the peripheral and cerebral circulation, cardiovascular, respiratory, excretory, and digestive systems of mammals.  相似文献   

7.
Descending serotonergic, noradrenergic, and dopaminergic systems project diffusely to sensory, motor and autonomic spinal cord regions. Using neonatal mice, this study examined monoaminergic modulation of visceral sensory input and sympathetic preganglionic output. Whole-cell recordings from sympathetic preganglionic neurons (SPNs) in spinal cord slice demonstrated that serotonin, noradrenaline, and dopamine modulated SPN excitability. Serotonin depolarized all, while noradrenaline and dopamine depolarized most SPNs. Serotonin and noradrenaline also increased SPN current-evoked firing frequency, while both increases and decreases were seen with dopamine. In an in vitro thoracolumbar spinal cord/sympathetic chain preparation, stimulation of splanchnic nerve visceral afferents evoked reflexes and subthreshold population synaptic potentials in thoracic ventral roots that were dose-dependently depressed by the monoamines. Visceral afferent stimulation also evoked bicuculline-sensitive dorsal root potentials thought to reflect presynaptic inhibition via primary afferent depolarization. These dorsal root potentials were likewise dose-dependently depressed by the monoamines. Concomitant monoaminergic depression of population afferent synaptic transmission recorded as dorsal horn field potentials was also seen. Collectively, serotonin, norepinephrine and dopamine were shown to exert broad and comparable modulatory regulation of viscero-sympathetic function. The general facilitation of SPN efferent excitability with simultaneous depression of visceral afferent-evoked motor output suggests that descending monoaminergic systems reconfigure spinal cord autonomic function away from visceral sensory influence. Coincident monoaminergic reductions in dorsal horn responses support a multifaceted modulatory shift in the encoding of spinal visceral afferent activity. Similar monoamine-induced changes have been observed for somatic sensorimotor function, suggesting an integrative modulatory response on spinal autonomic and somatic function.  相似文献   

8.
Complex electrophysiological examination of the state of spinal neuronal mechanisms was carried out in patients after complicated vertebral trauma (n = 52). Electromyographic responses of the muscles of the upper and lower limbs evoked by stimulation of the peripheral nerves, effects of magnetic stimulation (MS) of the brain cortex (transcranial MS, TMS) and spinal roots, and somatosensory evoked potentials (SSEPs) were recorded. Partial disorders of the motor functions of the lower limbs were observed in 21 patients. Subjects with complete absence of movements of the limbs demonstrated two variants of the patterns of electrophysiological phenomena. In 21 patients, evoked potentials were entirely absent, while reduced MS-evoked motor responses (MS MRs) and SSEPs could be observed in 10 subjects. The presence of these potentials was indicative of partial preservation of the cerebrospinal pathways after damage to the spinal cord. Thus, estimation of the results of complex electrophysiological examination allows one to objectively verify the state and dynamics of transmission via the spinal pathways, to make justified the tactics of treatment, and to estimate the efficacy of the measures directed toward recovery of the lost functions of spinal mechanisms.  相似文献   

9.
Neural mechanisms underlying selection of motor responses are largely unknown in vertebrates. This study shows that in immobilized Xenopus embryos, brief mechanical or electrical stimulation of the trunk skin can trigger sustained fictive swimming, whereas sustained pressure or repetitive electrical stimulation can evoke fictive struggling. These two rhythmic motor patterns are distinct: alternating single motor root spikes propagate from head to tail during swimming; alternating motor root bursts propagate from tail to head during struggling. As both motor patterns can be evoked in embryos with the CNS transected caudal to the cranial roots, the sensory pathway responsible must have direct access to the spinal cord. Rohon-Beard sensory neurons provide the only such pathway known. They respond appropriately to brief stimuli applied to the trunk skin, and also to repetitive electrical stimuli and sustained pressure. The results suggest that Rohon-Beard sensory neurons can both trigger sustained swimming and 'gate in' struggling motor patterns, and thus effect behavioural selection according to their pattern of activity.  相似文献   

10.
A series of observations have provided important insight into properties of the spinal as well as supraspinal circuitries that control posture and movement. We have demonstrated that spinal rats can regain full weight-bearing standing and stepping over a range of speeds and directions with the aid of electrically enabling motor control (eEmc), pharmacological modulation (fEmc), and training [1, 2]. Also, we have reported that voluntary control movements of individual joints and limbs can be regained after complete paralysis in humans [3, 4]. However, the ability to generate significant levels of voluntary weight-bearing stepping with or without epidural spinal cord stimulation remains limited. Herein we introduce a novel method of painless transcutaneous electrical enabling motor control (pcEmc) and sensory enabling motor control (sEmc) strategy to neuromodulate the physiological state of the spinal cord. We have found that a combination of a novel non-invasive transcutaneous spinal cord stimulation and sensory-motor stimulation of leg mechanoreceptors can modulate the spinal locomotor circuitry to state that enables voluntary rhythmic locomotor movements.  相似文献   

11.
Animals produce a variety of behaviors using a limited number of muscles and motor neurons. Rhythmic behaviors are often generated in basic form by networks of neurons within the central nervous system, or central pattern generators (CPGs). It is known from several invertebrates that different rhythmic behaviors involving the same muscles and motor neurons can be generated by a single CPG, multiple separate CPGs, or partly overlapping CPGs. Much less is known about how vertebrates generate multiple, rhythmic behaviors involving the same muscles. The spinal cord of limbed vertebrates contains CPGs for locomotion and multiple forms of scratching. We investigated the extent of sharing of CPGs for hind limb locomotion and for scratching. We used the spinal cord of adult red-eared turtles. Animals were immobilized to remove movement-related sensory feedback and were spinally transected to remove input from the brain. We took two approaches. First, we monitored individual spinal cord interneurons (i.e., neurons that are in between sensory neurons and motor neurons) during generation of each kind of rhythmic output of motor neurons (i.e., each motor pattern). Many spinal cord interneurons were rhythmically activated during the motor patterns for forward swimming and all three forms of scratching. Some of these scratch/swim interneurons had physiological and morphological properties consistent with their playing a role in the generation of motor patterns for all of these rhythmic behaviors. Other spinal cord interneurons, however, were rhythmically activated during scratching motor patterns but inhibited during swimming motor patterns. Thus, locomotion and scratching may be generated by partly shared spinal cord CPGs. Second, we delivered swim-evoking and scratch-evoking stimuli simultaneously and monitored the resulting motor patterns. Simultaneous stimulation could cause interactions of scratch inputs with subthreshold swim inputs to produce normal swimming, acceleration of the swimming rhythm, scratch-swim hybrid cycles, or complete cessation of the rhythm. The type of effect obtained depended on the level of swim-evoking stimulation. These effects suggest that swim-evoking and scratch-evoking inputs can interact strongly in the spinal cord to modify the rhythm and pattern of motor output. Collectively, the single-neuron recordings and the results of simultaneous stimulation suggest that important elements of the generation of rhythms and patterns are shared between locomotion and scratching in limbed vertebrates.  相似文献   

12.
13.
A new method for the activation of spinal locomotor networks (SLN) in humans by transcutaneous electrical spinal cord stimulation (tESCS) has been described. The tESCS applied in the region of the T11-T12 vertebrae with a frequency of 5?C40 Hz elicited involuntary step-like movements in healthy subjects with their legs suspended in a gravity-neutral position. The amplitude of evoked step-like movements increased with increasing tESCS frequency. The frequency of evoked step-like movements did not depend on the frequency of tESCS. It was shown that the hip, knee, and ankle joints were involved in the evoked movements. It has been suggested that tESCS activates the SPG (SLN) through in part, via the dorsal roots that enter the spinal cord. tESCS can be used as a noninvasive method in rehabilitation of spinal pathology.  相似文献   

14.
The functional properties of the spinal-cord structures of experimental rats under a 7-day gravitational unloading were assessed using the method of transcranial magnetic stimulation. Hypogravity was modeled by hanging the animals by their tails in an antiorthostatic position. The gastrocnemius muscle potentials evoked by magnetic stimulation of the efferent structures of the spinal cord were registered. We found that gravitational unloading causes significant changes in motor-potential parameters and the central motor transmission time. We propose that the cause of the revealed transformations is afferent inflow limitation, first of all the motor type, as well as adaptation of the central nervous system to new conditions of motor activity.  相似文献   

15.
Epidural electrodes implanted for a percutaneous trial of therapeutic spinal cord stimulation were used to record electrical events evoked by the stimulation of peripheral nerves or of the spinal cord itself. The data collected in patients with no neurological deficit were analyzed in order (1) to check the consistency between epidural and surface recordings, (2) to get information on the genesis of such potentials, and (3) to demonstrate the feasibility of complex neurophysiological studies by means of epidural electrodes. Spinal cord potentials evoked by segmental volleys were recorded at cervical levels with the recording electrodes anterior, lateral and posterior to the spinal cord. The refractory period of the evoked potentials has been studied as well. Responses to stimulation of the tibial nerve were obtained at T11-12 vertebral level with posterior epidural electrodes. Segmental cervical potentials were characterized by a P10, N11, N13/P13 followed by a slow positivity/negativity. A response of similar waveform, but with different peak latencies, was recorded at segmental levels following tibial nerve stimulation. Such a response showed an increasing number of spikes while ascending along the spinal cord. Maximum conduction velocities in the cord were between 65 and 85 m/s. Our epidural recordings are similar to those obtained from the skin, but with a greater amplitude and waveform resolution. Furthermore, the use of epidural electrodes made it feasible to perform complex examinations of sensory function (i.e., the study of orthodromic and antidromic conduction along the dorsal cord and of the influence of a single dorsal cord volley on the segmental cervical potential). Finally, the genesis of the potentials recorded is discussed.  相似文献   

16.
本文描述了大鼠脊髓L_1节段后柱、后索、侧索和前角的诱发电位及其损伤后的变化,并观察了切断L_4、L_5脊神经背、腹根与横断高位颈髓对电位的影响,以进行行电位来源分析。结果可见,上述四个区域的诱发电位基本由早反应三相波和晚反应组成。分别电解损毁这些部位后,电位波幅均普遍降低,晚期反应较早反应降低明显。后柱或后索受损对电位影响最大。局部损毁后可见L_1及T_(13)水平的硬膜上电位改变明显,尤其晚反应减弱、波峰平坦。反应时值与潜伏时未见明显改变。切断L_4脊神经背、腹根后、电位基本消失。去大脑对电位未见明显影响。结果表明,刺激坐骨神经诱发的脊髓电位起源于低位腰段传入神经和脊髓内多通路的兴奋传导,在一定程度上受腹根逆行活动的影响,与大脑及脊髓下行传导束活动无直接联系。脊髓诱发电位的幅度与波形改变可作为脊髓损伤的判断指标之一。  相似文献   

17.
Voluntary activation of muscle is commonly quantified by comparison of the extra force added by motor nerve stimulation during a contraction [superimposed twitch (SIT)] with that produced at rest by the same stimulus (resting twitch). An inability to achieve 100% voluntary activation implies that failure to produce maximal force output from the muscle must have occurred at a site at or above the level of the motoneurons. We have used cortical stimulation to quantify voluntary activation. Here, incomplete activation implies a failure at or above the level of motor cortical output. With cortical stimulation, it is inappropriate to compare extra force evoked during a contraction with the twitch evoked in resting muscle because motor cortical and spinal cord excitability both increase with activity. However, an appropriate "resting twitch" can be estimated. We previously estimated its amplitude by extrapolation of the linear relation between SIT amplitude and voluntary torque calculated from 35 contractions of >50% maximum (Todd G, Taylor JL, and Gandevia SC. J Physiol 551: 661-671, 2003). In this study, we improved the utility of this method to enable evaluation of voluntary activation when it may be changing over time, such as during the development of fatigue, or in patients who may be unable to perform large numbers of contractions. We have reduced the number of contractions required to only three. Estimation of the resting twitch from three contractions was reliable over time with low variability. Furthermore, its reliability and variability were similar to the resting twitch estimated from 30 contractions and to that evoked by conventional motor nerve stimulation.  相似文献   

18.
One patient with an incomplete traumatic myelopathy underwent epidural spinal cord stimulation for the management of severe intractable spasms, which were abolished by the stimulation. After several months of stimulation, the patient regained some voluntary motor function in the lower extremities. Voluntary motor control of the left quadriceps was present only when spinal cord stimulation was activated and stopped immediately after it was turned off. The effects could be consistently reproduced. EMG polygraphic recordings confirmed the results.  相似文献   

19.
Locomotion induced by spinal cord stimulation in the neonate rat in vitro.   总被引:2,自引:0,他引:2  
The present studies employed the neonate rat brain stem-spinal cord preparation to determine whether electrical stimulation of the lumbosacral enlargement (LE) of the spinal cord itself can be used to elicit locomotion, and whether or not such stimulation persists in inducing locomotion following midthoracic spinal cord transection or hindlimb deafferentation. Results suggest that (1) stimulation of the dorsal columns or ventral funiculus of the LE is effective in inducing airstepping in the neonatal rat brain stem-spinal cord limb-attached preparation; (2) central disconnection by midthoracic spinal cord transection does not alter LE-stimulation-induced airstepping and may lead to an increase in stepping frequency if suprathreshold stimulation is used; and (3) dorsal root section also leads to an increase in the frequency of suprathreshold LE-stimulation-induced locomotion, but there is not further increase in frequency if a spinal cord transection is performed in addition to dorsal rhizotomy.  相似文献   

20.
The effects of mechanoreceptor stimulation and subsequent ATP release in spinal cord injured and normal bladders was examined to demonstrate if spinal cord injury (SCI) modulates the basal or evoked release of ATP from bladder urothelium and whether intravesical botulinum toxin A (BTX-A) administration inhibits urothelial ATP release, a measure of sensory nerve activation. A Ussing chamber was used to isolate and separately measure resting and mechanoreceptor evoked (e.g. hypoosmotic stimulation) ATP release from urothelial and serosal sides of the bladder. Following spinal cord injury, resting urothelial release of ATP was ninefold higher than that of normal rats. Botulinum toxin A instillation did not significantly affect the resting release of ATP after spinal cord injury. Evoked ATP release following hypoosmotic stimulation was significantly higher in chronic spinal cord injured compared to normal rat bladders. However, botulinum toxin A treatment markedly reduced ATP release in spinal cord injured bladders by 53% suggesting that ATP release by mechanoreceptor stimulation, as opposed to basal release, occurs by exocytotic mechanisms. In contrast, there was no significant difference in basal or evoked ATP release from bladder serosa following spinal cord injury. Moreover, intravesical instillation of botulinum toxin A did not affect ATP release from the serosal side after spinal cord injury, suggesting that its effects were confined to the urothelial side of the bladder preparation. In summary: (1) increased release of ATP from the urothelium of spinal cord injured bladders may contribute to the development of bladder hyperactivity and, (2) mechanoreceptor stimulated vesicular ATP release, as opposed to basal non-vesicular release of ATP, is significantly inhibited in spinal cord injured bladders by intravesical instillation of botulinum toxin A. These results may have important relevance in our understanding of the mechanisms underlying plasticity of bladder afferent pathways following SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号