首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two diploid taxa, Grindelia procera and G. camporum, and 3 tetraploid ones, G. camporum, G. hirsutula, and G. stricta, have been studied to ascertain their interrelationships. Meiosis in diploid parental strains was regular, the common chromosome configuration being 5 rod bivalents and 1 ring bivalent. The average chiasmata frequency per chromosome was 0.60. Pollen fertility was about 90% in all strains examined. Diploid interspecific hybrids had normal meiosis with an average chiasmata frequency of 0.56 per chromosome. No heterozygosity for inversions or interchanges was detected, and pollen fertility was above 85%. Meiosis in parental tetraploid strains was characterized by the presence of quadrivalents in addition to a complementary number of bivalents. The average chiasmata frequency per chromosome was 0.59 and pollen fertility was generally about 80%. Tetraploid interspecific hybrids also had quadrivalents, normal meiosis, and high pollen fertility. Close genetic relationships between the diploids and between the tetraploids are indicated, and geographical, ecological, and seasonal barriers to gene exchange exist. Attempts to obtain hybrids between diploids and tetraploids were successful in a few cases. The hybrids were tetraploid and had normal meiosis and fertility similar to parental and F1 tetraploids. Their origin was by the union of unreduced gametes of the diploid female parent and normal pollen from the tetraploid parent. On the basis of chromosome homology, normal meiosis, plus high fertility exhibited in the diploid, tetraploid, and diploid X tetraploid interspecific hybrids, these species of Grindelia are considered to be a part of an autopolyploid complex. Gene exchange between diploids and diploids, tetraploids and tetraploids, and diploids and tetraploids is possible. Tetraploid G. camporum may have originated by hybridization between G. procera and diploid G. camporum with subsequent doubling of chromosomes and selection for the combined characteristics of the diploids.  相似文献   

2.
Somatic fusion of mesophyll protoplasts was used to produce hybrids between the frost-tolerant species Solanum commersonii (2n=2x=24) and dihaploid S. tuberosum (2n=2x=24). This is a sexually incompatible combination due to the difference in EBN (Endosperm Balance Number, Johnston et al. 1980). Species with different EBNs as a rule are sexually incompatible. Fifty-seven hybrids were analysed for variation in chromosome number, morphological traits, fertility and frost tolerance. About 70% of the hybrids were tetraploid, and 30% hexaploid. Chloroplast counts in stomatal guard cells revealed a low frequency of cytochimeras. The frequency of aneuploids was relatively higher at the hexaploid level (hypohexaploids) than at the tetraploid level (hypotetraploids). The somatic hybrids were much more vigorous than the parents, and showed an intermediate phenotype for several morphological traits and moderate to profuse flowering. Hexaploid hybrid clones were less vigorous and had a lower degree of flowering than the tetraploid hybrid clones. All of the hybrids were female fertile but male sterile except for one, which was fully fertile and self-compatible. Many seeds were produced on the latter clone by selfing and on the male-sterile clones by crossing. The somatic hybrid plants showed an introgression of genes for frost tolerance and an adaptability to cold from S. commersonii. Therefore, the use of these somatic hybrids in breeding for and in genetic esearch on frost tolerance and cold-hardening is suggested.  相似文献   

3.
Pollen-mediated gene transfer from stress tolerant or herbicide-resistant transgenic plants may cause environmental or agronomic problems. Apomictic seed production found in some bahiagrass cultivars may serve as a natural transgene containment system. Under greenhouse conditions, the average gene transfer frequency from an herbicide-resistant apomictic tetraploid to a population of sexual diploid bahiagrass genotypes or apomictic tetraploid bahiagrass was 0.16% when the transgenic pollen donor was placed at 0.5–1.5 m distance from the non-transgenic pollen receptors. The herbicide-resistant hybrids were characterized for transgene integration, expression and ploidy, by Southern blot analysis, immuno-chromatography and flow cytometry, respectively. Hybrids resulting from open pollination of non-transgenic diploid female plants with transgenic tetraploid male plants were triploids or near-triploids, with 2n = 26–34. These hybrids displayed a wide range of phenotypic variability, including some non-persistent or non-flowering dwarf-type hybrids with good vigor, or hybrids with vegetative growth similar to non-transgenic plants, but with significantly reduced seed set. Non-flowering aneu-triploids with good vigor/field performance will provide the highest level of transgene containment. Embryo sac analysis of pollinated spikelets confirmed a high proportion of aborted ovules. An apospory-linked RFLP marker was detected in 13 of the 15 near-triploid hybrids. All flowering aneuploid hybrids displayed significantly reduced seed set, and none of the sexual near-triploid hybrids produced any seeds. All tetraploid gene transfer events carried the apospory-linked RFLP marker, suggesting that despite the presence of the aposporus locus, a low degree of sexuality co-exists in apomictic tetraploid cultivars. Thus, tetraploid apomictic bahiagrass does not provide complete transgene containment, although intra-specific gene transfer is drastically reduced compared to sexually reproducing perennial grasses.  相似文献   

4.
Hybridisation between diploid (2n=28) dwarf birch Betula nana L. and tetraploid (2n=56) downy birch B. pubescens Ehrh. has occurred in natural populations in Iceland. About 10% of birch plants randomly collected are triploid (2n=42) hybrids. Ribosomal gene mapping on chromosomes and genomic in situ hybridisation confirms the hybridity. However, the triploid hybrids are not morphologically distinct, i.e. they are not different from diploid and tetraploid birch plants that have intermediate morphology. The triploid hybrids have evidently played an important role in driving bi-directional gene flow between these two species. This paper reviews the extent of interspecific hybridisation in selected birch woodland populations and discusses the significance of natural hybridisation and introgression in birch.  相似文献   

5.
The genus Gypsophila contains about 150 annual and perennial flowering plant species native to the temperate regions of Europe and Asia. Nowadays Gypsophila species are present worldwide as garden ornamental plants. Although Gypsophila is one of the most economically important ornamental crops, little is known about its genetic variability and the relationships among the different wild species, cultivars, and commercial hybrids. The aim of our work was to analyze genetic distances among 5 wild species and 13 commercial hybrids of Gypsophila with similar phenotypes but unknown origin. For this purpose, we have used amplified fragment length polymorphism, target region amplification polymorphism, and inter simple sequence repeat whole-genome markers and chloroplast simple sequence repeat (cpSSR), targeting chloroplast DNA. Nuclear markers were found to distinguish all the analyzed samples while cpSSR markers were found to discriminate the different wild species, but could not sufficiently separate the commercial hybrids. This notwithstanding, the data obtained allowed us to cluster the commercial hybrids into different sub-groups and to determine the relationships with the putative species of origin.  相似文献   

6.
The breeding value of tetraploid F1 hybrids between tetrasomic tetraploid S. tuberosum and the disomic tetraploid wild species S. acaule was examined. The F1 hybrids showed a tuber yield and appearance comparable to those of their cultivated parent, indicating a potential as acceptable breeding stocks despite the 50% contribution to their pedigree from wild S. acaule. The cytological behavior of the tetraploid F1 hybrids was examined to determine the probability of recombination for the introgression of S. acaule genes. The majority of the meiotic configurations at metaphase I was bivalents and univalents with mean frequencies of 17.6 and 9.9, respectively. Further, a low frequency of trivalents and quadrivalents was observed. An acceptable low level of meiotic irregularities were observed at the later stages of microsporogenesis, and a reasonable level of pollen stainability was obtained. Therefore, these hybrids could likely be employed for further introgression. From the cytological observations, the following speculations were drawn: (1) some genomic differentiation exists between the S. acaule genomes, (2) at least one of the S. acaule genomes may be homoeologous to the S. tuberosum genomes, (3) intergenomic recombination would likely occur due to the nature of the genomic constitution of the hybrids, and (4) the nature of sesquiploidy of the hybrids may facilitate efficient introgression and establishment of unique aneuploid and euploid recombinant genetic stocks.  相似文献   

7.
The genus Glycine is composed of two subgenera, Glycine and Soja. Soja includes the cultivated soybean, G. max, and its wild annual counterpart G. soja, while Glycine includes seven wild perennial species. Hybridization was carried out within and between wild perennial species of the subgenus Glycine. The success rate (pods set/flowers crossed) was 11% for intraspecific and 8% for interspecific crosses. A total of 220 F1 hybrids was examined morphologically and cytologically where possible. Hybrids within G. canescens (2n = 40) and G. latifolia (2n = 40) were fertile as expected. Glycine clandestina (2n = 40) was morphologically separable into at least three groups, which produced fertile hybrids within each group. One cross between two groups gave vegetatively vigorous but sterile hybrids. The majority of crosses within G. tabacina (2n = 80) were fertile, except that extremely narrow-leaved forms gave sterile hybrids in combination with more usual forms. Sterility was also encountered in G. tomentella when aneuploids (2n = 78) from New South Wales, Australia, were crossed with tetraploids (2n = 80) from either Queensland, Australia, or Taiwan; crosses between the latter two populations resulted in seedling lethality. Cytological behavior of sterile hybrids followed a similar pattern, whether at the diploid or tetraploid level. The frequency of chromosome pairing was approximately half that expected if genomes showed full pairing homology. Bivalent disjunction at anaphase I was usually followed by precocious division of the majority of univalents. Telophase I and II were characterized by lagging chromosomes and micronuclei, so that resulting pollen was misshapen and sterile. Chromosome pairing data from sterile intraspecific hybrids at the tetraploid level may indicate a polyphyletic origin of tetraploids, whereby different diploid populations were involved in their formation. Similarly, chromosome pairing in sterile intraspecific diploid hybrids may indicate that the various diploid groups arose independently of one another. Both 40- and 80-chromosome forms are fully diploidized, however, and if they are of ancient origin, divergence since that time could have resulted in the chromosomal differentiation which becomes apparent when intraspecific hybridization is effected. Diploid (2n = 40) interspecific hybrids G. falcata × G. canescens, and G. falcata × G. tomentella grew poorly and did not reach flowering stage. Diploid (2n = 40) crosses between G. latifolia and G. tomentella produced inviable seedlings. Tetraploid (2n = 80) hybrids between G. tomentella and G. tabacina were vegetatively vigorous but sterile owing to low chromosome pairing at meiosis, indicating little pairing homology between the two species. Diploid hybrids between G. canescens and G. clandestina, however, showed almost complete chromosome pairing at diakinesis and partial fertility. Although morphologically distinct, these two species have not diverged sufficiently to prevent hybridization and possible gene exchange through recombination. Self compatibility, perennial growth habit, and geographic isolation have favored divergence among Glycine populations to the point that gene exchange appears no longer possible in many cases. Internal isolating mechanisms have been shown to operate at various levels of plant development from hybrid lethality at seedling stage, to failure of seed-set in sterile but vegetatively vigorous hybrids.  相似文献   

8.
Artificial interspecific hybrids between large scale loach P. dabryanus and tetraploid pond loach M. anguillicaudatus (Cobitidae, Cypriniformes) are viable. To detect the occurrence of possible natural hybridization, genetic analyses by using microsatellite markers were performed for natural populations of large scale loach and pond loach, the reciprocal laboratory hybrids, and “supposed hybrids” with ambiguous morphology. The fertility of the artificial hybrids was also tested. At one diagnostic microsatellite (Mac50), one out of 20 “supposed hybrids” was identified to be F1 hybrid between the two loach species because it had the same genotype as that of the laboratory hybrids. The triploid hybrids between the two species were confirmed to be female-sterile. The results show that rare hybridization has occurred between diploid large scale loach and tetraploid pond loach in nature although it may have little effect in genetic introgression. This study is helpful for fish conservation and encourages further investigation on natural hybridization and introgression of loaches.  相似文献   

9.
The major constrains for practical exploitation of the somatic hybrids between eggplant and its wild relatives have been their sterility and tetraploidy which prevented their incorporation into breeding programs. Here we demonstrate that anther culture was successfully utilized to bring back the ploidy level to the diploid status in tetraploid interspecific hybrids between eggplant and the allied species S. integrifolium and S. aethiopicum gr. gilo. Both the relative species are resistant to Fusarium oxysporum f. sp. melongenae and to some strains of bacterial wilt (Ralstonia solanacearum) which are very destructive diseases of eggplant. Dihaploid androgenetic plants were obtained from the somatic hybrids, from the “double somatic hybrid” obtained by sexual cross of the two somatic hybrids [(eggplant + S. aethiopicum) × (eggplant + S. integrifolium)], and from tetraploid backcrossed plants between the somatic hybrid with S. aethiopicum and eggplant. Phenotypical, molecular, biological and biochemical characterization, and also artificial inoculation with Fusarium oxysporum are consistent with a recombination between the genomes of the species involved in the hybridizations. Dihaploids resistant to Fusarium were successfully backcrossed with eggplant. Besides their utility as potential valuable breeding materials, the introgressed lines obtained may be utilized in genetic and molecular studies about the resistance to Fusarium from S. integrifolium and S. aethiopicum gr. gilo.  相似文献   

10.
Summary Pearl millet, Pennisetum americanum L. Leeke-napiergrass, Pennisetum purpureum Schum. amphiploids (2n=42) were crossed with pearl millet X Pennisetum squamulatum Fresen. interspecific hybrids (2n=41) to study the potential of germplasm transfer from wild Pennisetum species to pearl millet. These two interspecific hybrids were highly cross-compatible and more than two thousand trispecific progenies were produced from 17 double crosses. All doublecross hybrids were perennial and showed a wide range of morphological variations intermediate to both parents in vegetative and inflorescence characteristics. Some crosses resulted in sublethal progenies. Chromosomes paired mainly as bivalents (¯x15.88) or remained as univalents. At metaphase I, trivalents, quadrivalents, an occasional hexavalent and a high frequency of bivalents indicated some homeology among the genomes of the three species. Delayed separation of bivalents, unequal segregation of multivalents, lagging chromosomes, and chromatin bridges were observed at anaphase I. Although approximately 93% of the double-cross hybrids were male-sterile, pollen stainability in male-fertile plants ranged up to 94%. Seed set ranged from 0 to 37 seed per inflorescence in 71 plants under open-pollinated conditions. Apomictic embryo sac development was observed in double-cross progenies when crosses involved a pearl millet x P. squamulatum apomictic hybrid as pollen parent. These new double-cross hybrids may serve as bridging hybrids to transfer genes controlling apomixis and other plant characteristics from the wild Pennisetum species to pearl millet.  相似文献   

11.
Summary Somatic hybrid plants of various ploidy levels obtained after chemical fusion between two dihaploid clones of potato Solanum tuberosum L. have been analysed by cytological, morphological and molecular methods. The hybrid nature of tetraploid and hexaploid plants and the genome dosage in hexaploid hybrids were confirmed by Giemsa C-banding. Tetraploid and hexaploid hybrids showed numerical as well as structural chromosome mutations. The latter occurred mainly in the nuclear organizing chromosome. The tetraploid hybrids were more vigorous than the dihaploid parents as demonstrated by an increase in height, enlargement of leaves, increase in the number of internodes, restored potential for flowering and increased tuber yield. The grouping of tetraploid somatic hybrids into various classes on the basis of leaf morphology revealed that plants with a full chromosome complement were more uniform than aneuploids. Many hexaploid somatic hybrids were also more vigorous than the dihaploid parents and could be grouped into two different classes on the basis of floral colour and tuber characteristics, the differences being due to their different dosage of parental genomes. Most of the tetraploid somatic hybrids showed pollen development halted at the tetrad stage as one of the parental clones contained a S. Stoloniferum cytoplasm. However, one tetraploid plant produced pollen grains with high viability. The chloroplast genome in the hybrid plants was determined by RFLP analysis. All of the hybrids had a cpDNA pattern identical to one parent, which contained either S. Tuberosum or S. Stoloniferum cpDNA. A slight preference for S. Tuberosum plastids were observed in hybrid plants. No correlation between pollen development and plastid type could be detected.  相似文献   

12.
We studied hybridization between the diploid Centaurea pseudophrygia and the tetraploid C. jacea by performing crossing experiments and screening natural populations using flow cytometry. The experiments confirm that the studied species exhibit strong reproductive isolation. Interspecific hybrids were formed at a low frequency, including triploids (originating from reduced gametes) and tetraploids (involving unreduced gametes of the diploids). In contrast, hybrids were almost absent among seeds and adult plants of natural mixed populations and among the offspring from experimental pollinations with a mixture of pollen of both ploidy levels. We found that mixed pollination is an important mechanism for preventing hybridization between plants of different ploidy levels and sustaining the reproduction of the tetraploids. A mentor effect (induced selfing in the presence of pollen of different ploidy levels) was observed in both diploids and tetraploids, reinforcing the reproductive isolation between cytotypes. Higher ploidy levels (pentaploid, hexaploid) involving unreduced gametes of the tetraploid species were identified. Notably, pentaploids were discovered for the first time in Centaurea sect. Jacea. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 93–106.  相似文献   

13.
Endopolyploidy was observed in the protocorms of diploid Phalaenopsis aphrodite subsp. formosana with ploidy doubling achieved by in vitro regeneration of excised protocorms, or protocorm-like bodies (PLBs). Thirty-four per cent of the PLBs regenerated from the first cycle of sectioned protocorms were found to be polyploids with ploidy doubled once or twice as determined by flow-cytometry. The frequency of ploidy doubling increased as the sectioning cycles increased and was highest in diploid followed by the triploid and tetraploid. Regeneration of the endopolyploid cells in the tissue of the protocorms or PLBs is proposed as the source of the development of ploidy doubled plantlets. The frequency of ploidy doubling was similar in seven other Phalaenopsis species, although the rate of increase within cycles was genotype specific. In two species, a comparison of five parameters between 5-month-old diploid and tetraploid potted plants showed only the stomata density differed significantly. The flowers of the tetraploid plant were larger and heavier than those of the diploids. This ploidy doubling method is a simple and effective means to produce large number of polyploid Phalaenopsis species plants as well as their hybrids. The method will be beneficial to orchid breeding programs especially for the interspecific hybridization between varieties having different chromosome sizes and ploidy levels.  相似文献   

14.
Jacobaea vulgaris subsp. vulgaris (syn. Senecio jacobaea subsp. jacobaea) constitutes an intricate polyploid complex distributed in Europe. Four cytotypes have been reported in this species, three with euploid (diploid, tetraploid and octoploid; 2n=20, 40 and 80) and one with aneuploid (2n=32) chromosome numbers. Here we report that the diploid chromosome number (2n=20) reported from Bulgaria is due to misidentification with Jacobaea aquatica. On the other hand, we have discovered a new, hexaploid (2n=6x=60) cytotype within J. vulgaris subsp. vulgaris using flow cytometry. The new cytotype occurs within four sympatric populations of otherwise tetraploid and octoploid plants in Pannonia (one locality in the eastern Czech Republic and two localities in southwestern Slovakia) and in Podillya (one locality in western Ukraine). The frequency of hexaploid individuals within 76 studied populations is very low (only 10 of 693 analysed plants), and hexaploids probably represent hybrids between tetraploid and octoploid plants. Three mixed populations with hexaploid plants were subjected to detailed morphological and pollen fertility analyses. Multivariate morphometric analysis reveals partial separation of tetraploid and octoploid plants, whereas hexaploid individuals are similar in morphology to octoploids. In comparison with tetraploids, octoploids and hexaploids exhibit slightly longer ray florets, involucral bracts and tubular florets and more hairy outer achenes. Hexaploid plants display larger pollen grains and lower pollen fertility compared to tetraploids and octoploids.  相似文献   

15.
Interspecific somatic hybrids between a diploid potato clone DG 81-68 susceptible to Phytophthora infestans (Mont.) de Bary and a resistant diploid tuber-bearing species Solanum × michoacanum were generated and analyzed. About 30 regenerants displaying an intermediate morphology were obtained as a result of three separate PEG-mediated fusion experiments. The RAPD analysis confirmed the hybridity of all the regenerants. About 50% of the hybrid plants exhibited vigorous growth and were stable in culture, while the rest of them rooted poorly and grew slowly in vitro. Most of the hybrid clones were at the tetraploid level (70%), while 30% of the clones examined were at the hexaploid level. The S. × michoacanum (+) DG 81-68 hybrids with growth anomalies were aneuploid. The variation in late blight resistance of the hybrid clones was found in detached leaflet tests, with enhanced resistance characteristic for three tetraploid hybrids.  相似文献   

16.
 Crossing experiments were conducted to introduce resistance to the root-knot nematodes, Meloidogyne chitwoodi and M. fallax, from various polyploid Central American Solanum spp. into the cultivated potato, S. tuberosum ssp. tuberosum. The most effort was put into producing tetraploid hybrids through inter-EBN (Endosperm Balance Number) crosses. From the crosses of tetraploid S. tuberosum (4 EBN) with tetraploid S. stoloniferum and S. fendleri (both 2 EBN), few seeds were derived that led to viable plants. In vitro culture of immature seeds also yielded several hybrid plants. From crosses of diploid S. tuberosum (2 EBN) with hexaploid S. hougasii (4 EBN) four hybrids were obtained through in vitro culture. Backcrosses were made with selected hybrids and a variable number of seeds was produced depending on the hybrid genotype. The successful introgression of resistance into backcross populations is shown. A scheme is presented for the introgression of traits at a tetraploid level from allotetraploid Solanum species into autotetraploid S. tuberosum through sexual crosses. The relevance of EBN for potato breeding is discussed. Received: 25 November 1996 / Accepted: 14 February 1997  相似文献   

17.
Summary Production of plants from cultured anthers of Solanum chacoense clone IP 33, of its interspecific diploid hybrids with S. tuberosum clones IP 354 and IP 372, and of a complex Solanum hybrid containing in its genome S. ajanhuiri is reported. Genotypic differences were found to influence both the induction phase and the regeneration process. Hybrids derived from clone IP 354 of S. tuberosum were much more responsive in culture than hybrids from clone IP 372. Altogether, 507 plants were regenerated and 309 were cytologically analyzed. Of these, 52% were haploid, 47% diploid and 1% mixoploid or tetraploid. A number of diploid plants probably originated from unreduced microspores and some genetic consequences of this event are discussed.  相似文献   

18.
Two Elymus ambiguus Vasey & Scribn. collections from Utah and Idaho were 2n = 28, and the species behaved meiotically as an allotetraploid. The E. ambiguus plants were highly self-sterile, and they hybridized readily with Asian E. junceus Fisch. (2n = 14), E. karataviensis Roshev. (2n = 28), E. multicaulis Kar. & Kir. (2n = 28), and North American E. innovatus Beal (2n = 28). Chromosome pairing at metaphase-I in the E. ambiguus X E. junceus triploid hybrids indicated that one E. ambiguus genome was closely homologous with the E. junceus genome. Chromosome pairing in the tetraploid hybrids indicated that both E. ambiguus genomes were more or less homologous with the genomes of E. karataviensis, E. multicaulis, and E. innovatus. The basic genome formula of E. ambiguus may be written as JJXX, where J is the E. junceus genome and X is a genome of unknown origin. Chromosome pairing in the hybrids indicated that E. ambiguus is more closely related to North American E. innovatus than to the Asian species. The E. ambiguus X E. innovatus hybrids were the only hybrids that set seed. Gene flow between E. ambiguus and E. innovatus is biologically possible, but geographic separation of the species precludes natural introgression.  相似文献   

19.
Summary Through the in vitro culture of excised embryos and ovules, interspecific hybrids have been obtained from cultivated and wild species of Gossypium. The hybrids matured upon transfer to the field. The anthers, ovules and embryos from both the diploid (2n=26) and tetraploid (2n=52) species underwent proliferation, and this response was genotypic. The diploid species invariably showed profuse callusing in comparison with the tetraploid. The callus showed various chromosome numbers, ranging from haploids to hexaploids, and from high polyploidy to aneuploidy. Hybrid callus culture may augment the genetic variability by providing a means for obtaining genetic exchange in interspecific hybrids. The implications of the in vitro induction of genetic variability for cotton improvement are discussed.  相似文献   

20.
Polyploidy is an important factor shaping the geographic range of a species. Clintonia udensis (Clintonia) is a primary perennial herb widely distributed in China with two karyotypic characteristics—diploid and tetraploid and thereby used to understand the ploidy and distribution. This study unraveled the patterns of genetic variation and spatiotemporal history among the cytotypes of C. udensis using simple sequence repeat or microsatellites. The results showed that the diploids and tetraploids showed the medium level of genetic differentiation; tetraploid was slightly lower than diploid in genetic diversity; recurrent polyploidization seems to have opened new possibilities for the local genotype; the spatiotemporal history of C. udensis allows tracing the interplay of polyploidy evolution; isolated and different ecological surroundings could act as evolutionary capacitors, preserve distinct karyological, and genetic diversity. The approaches of integrating genetic differentiation and spatiotemporal history of diploidy and tetraploidy of Clintonia udens would possibly provide a powerful way to understand the ploidy and plant distribution and undertaken in similar studies in other plant species simultaneously contained the diploid and tetraploid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号