首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured innate immune responses by primary human tracheal epithelial (HTE) cells grown as confluent, pseudostratified layers during exposure to inflammatory activators on apical vs. basolateral surfaces. Apical Pseudomonas aeruginosa strain PAK (but not flagellin mutant PAK·fliC), flagellin, and flagellin + PAK·fliC activated NF-B and IL-8 expression and secretion. In contrast, HTE cells were insensitive to LPS compared to flagellin. Flagellin activated NF-B in columnar but not basal cells. IL-1 + TNF- elicited responses similar to those of flagellin. Basolateral flagellin or IL-1 + TNF- caused 1.5- to 4-fold larger responses, consistent with the fact that NF-B activation occurred in both columnar and basal cells. MyD88 (toll receptor-associated adapter), IL-1 receptor (IL1R)1, and TNF- receptor (TNFR)1 were expressed in columnar and basal cells. ZO-1 was localized to tight junctions of columnar cells but not to basal cells. We infer the following. 1) Flagellin is necessary and sufficient to trigger inflammatory responses in columnar cells during accumulation of P. aeruginosa in the airway surface liquid (ASL); columnar cells express toll-like receptor 5 and MyD88, often associated with flagellin-activated cell signaling. 2) IL-1 + TNF- in the ASL also activate columnar cells, and these cells also express IL1R1 and TNFR1. 3) Apical flagellin, IL-1, and TNF- do not activate basal cells because tight junctions between columnar cells prevent access from the apical surface to the basal cells. 4) Exposure of basolateral surfaces to inflammatory activators elicits larger responses because both columnar and basal cells are activated, likely because both cell types express receptors for flagellin, IL-1, and TNF-. toll-like receptor; nuclear factor-B; interleukin-8; tumor necrosis factor; interleukin-1  相似文献   

2.
We recently reported that a considerable amount of the sodium-D-glucose cotransporter SGLT1 present in Caco-2 cells, a model for human enterocytes, is located in intracellular compartments attached to microtubules (Kipp H, Khoursandi S, Scharlau D, and Kinne RKH. Am J Physiol Cell Physiol 285: C737–C749, 2003). A similar distribution pattern was also observed in enterocytes in thin sections from human jejunum, highlighting the validity of the Caco-2 cell model. Fluorescent surface labeling of live Caco-2 cells revealed that the intracellular compartments containing SGLT1 were accessible by endocytosis. To elucidate the role of endosomal SGLT1 in the regulation of sodium-dependent D-glucose uptake into enterocytes, we compared SGLT1-mediated D-glucose uptake into Caco-2 cells with the subcellular distribution of SGLT1 after challenging the cells with different stimuli. Incubation (90 min) of Caco-2 cells with mastoparan (50 µM), a drug that enhances apical endocytosis, shifted a large amount of SGLT1 from the apical membrane to intracellular sites and significantly reduced sodium-dependent -[14C]methyl-D-glucose uptake (–60%). We also investigated the effect of altered extracellular D-glucose levels. Cells preincubated (1 h) with D-glucose-free medium exhibited significantly higher sodium-dependent -[14C]methyl-D-glucose uptake (+45%) than did cells preincubated with high D-glucose medium (100 mM, 1 h). Interestingly, regulation of SGLT1-mediated D-glucose uptake into Caco-2 cells by extracellular D-glucose levels occurred without redistribution of cellular SGLT1. These data suggest that, pharmacologically, D-glucose uptake can be regulated by a shift of SGLT1 between the plasma membrane and the endosomal pool; however, regulation by the physiological substrate D-glucose can be explained only by an alternative mechanism. endosomes; enterocytes  相似文献   

3.
Focal adhesion kinase (FAK) integrates various extracellular and intracellular signals and is implicated in a variety of biological functions, but its exact role and downstream targeting signals in the regulation of apoptosis in intestinal epithelial cells (IECs) remains unclear. The current study tested the hypothesis that FAK has an antiapoptotic role in the IEC-6 cell line by altering NF-B signaling. Induced FAK expression by stable transfection with the wild-type (WT)-FAK gene increased FAK phosphorylation, which was associated with an increase in NF-B activity. These stable WT-FAK-transfected IECs also exhibited increased resistance to apoptosis when they were exposed to TNF- plus cycloheximide (TNF-/CHX). Specific inhibition of NF-B by the recombinant adenoviral vector containing the IB superrepressor prevented increased resistance to apoptosis in WT-FAK-transfected cells. In contrast, inactivation of FAK by ectopic expression of dominant-negative mutant of FAK (DNM-FAK) inhibited NF-B activity and increased the sensitivity to TNF-/CHX-induced apoptosis. Furthermore, induced expression of endogenous FAK by depletion of cellular polyamines increased NF-B activity and resulted in increased resistance to TNF-/CHX-induced apoptosis, both of which were prevented by overexpression of DNM-FAK. These results indicate that increased expression of FAK suppresses TNF-/CHX-induced apoptosis, at least partially, through the activation of NF-B signaling in IECs. polyamines; -difluoromethylornithine; X-linked inhibitor of apoptosis protein; IB  相似文献   

4.
Using intestinal Caco-2 cells, we previously showed that assembly of cytoskeleton is required for monolayer barrier function, but the underlying mechanisms remain poorly understood. Because the -isoform of PKC is present in wild-type (WT) intestinal cells, we hypothesized that PKC- is crucial for changes in cytoskeletal and barrier dynamics. We have created the first multiple sets of gastrointestinal cell clones transfected with varying levels of cDNA to stably inhibit native PKC- (antisense, AS; dominant negative, DN) or to express its activity (sense). We studied transfected and WT Caco-2 cells. First, relative to WT cells, AS clones underexpressing PKC- showed monolayer injury as indicated by decreased native PKC- activity, reduced tubulin phosphorylation, increased tubulin disassembly (decreased polymerized and increased monomeric pools), reduced architectural integrity of microtubules, reduced stability of occludin, and increased barrier hyperpermeability. In these AS clones, PKC- was substantially reduced in the particulate fractions, indicating its inactivation. In WT cells, 82-kDa PKC- was constitutively active and coassociated with 50-kDa tubulin, forming an endogenous PKC-/tubulin complex. Second, DN transfection to inhibit the endogenous PKC- led to similar destabilizing effects on monolayers, including cytoskeletal hypophosphorylation, depolymerization, and instability as well as barrier disruption. Third, stable overexpression of PKC- led to a mostly cytosolic distribution of -isoform (<10% in particulate fractions), indicating its inactivation. In these sense clones, we also found disruption of occludin and microtubule assembly and increased barrier dysfunction. In conclusion, 1) PKC- isoform is required for changes in the cytoskeletal assembly and barrier permeability in intestinal monolayers, and 2) the molecular event underlying this novel biological effect of PKC- involves changes in phosphorylation and/or assembly of the subunit components of the cytoskeleton. The ability to alter the cytoskeletal and barrier dynamics is a unique function not previously attributed to PKC-. microtubules; tubulin; occludin; epithelial barrier permeability; protein kinase C isoform  相似文献   

5.
Although 17-estradiol (E2) administration following trauma-hemorrhage prevents the suppression in splenocyte cytokine production, it remains unknown whether the salutary effects of 17-estradiol are mediated via estrogen receptor (ER)- or ER-. Moreover, it is unknown which signaling pathways are involved in 17-estradiol's salutary effects. Utilizing an ER-- or ER--specific agonist, we examined the role of ER- and ER- in E2-mediated restoration of T-cell cytokine production following trauma-hemorrhage. Moreover, since MAPK, NF-B, and activator protein (AP)-1 are known to regulate T-cell cytokine production, we also examined the activation of MAPK, NF-B, and AP-1. Male rats underwent trauma-hemorrhage (mean arterial pressure 40 mmHg for 90 min) and fluid resuscitation. ER- agonist propyl pyrazole triol (PPT; 5 µg/kg), ER- agonist diarylpropionitrile (DPN; 5 µg/kg), 17-estradiol (50 µg/kg), or vehicle (10% DMSO) was injected subcutaneously during resuscitation. Twenty-four hours thereafter, splenic T cells were isolated, and their IL-2 and IFN- production and MAPK, NF-B, and AP-1 activation were measured. T-cell IL-2 and IFN- production was decreased following trauma-hemorrhage, and this was accompanied with a decrease in T-cell MAPK, NF-B, and AP-1 activation. PPT or 17-estradiol administration following trauma-hemorrhage normalized those parameters, while DPN administration had no effect. Since PPT, but not DPN, administration following trauma-hemorrhage was as effective as 17-estradiol in preventing the T-cell suppression, it appears that ER- plays a predominant role in mediating the salutary effects of 17-estradiol on T cells following trauma-hemorrhage, and that such effects are likely mediated via normalization of MAPK, NF-B, and AP-1 signaling pathways. shock; MAPK; NF-B; activator protein-1; propyl pyrazole triol; diarylpropionitrile  相似文献   

6.
Upregulation of inducible nitric oxide synthase (iNOS) is key to oxidant-induced disruption of intestinal (Caco-2) monolayer barrier, and EGF protects against this disruption by stabilizing the cytoskeleton. PLC- appears to be essential for monolayer integrity. We thus hypothesized that PLC- activation is essential in EGF protection against iNOS upregulation and the consequent cytoskeletal oxidation and disarray and monolayer disruption. Intestinal cells were transfected to stably overexpress PLC- or to inhibit its activation and were then pretreated with EGF ± oxidant (H2O2). Wild-type (WT) intestinal cells were treated similarly. Relative to WT monolayers exposed to oxidant, pretreatment with EGF protected monolayers by: increasing native PLC- activity; decreasing six iNOS-related variables (iNOS activity/protein, NO levels, oxidative stress, actin oxidation/nitration); increasing stable F-actin; maintaining actin stability; and enhancing barrier integrity. Relative to WT cells exposed to oxidant, transfected monolayers overexpressing PLC- (+2.3-fold) were protected, as indicated by decreases in all measures of iNOS-driven pathway and enhanced actin and barrier integrity. Overexpression-induced inhibition of iNOS was potentiated by low doses of EGF. Stable inhibition of PLC- prevented all measures of EGF protection against iNOS upregulation. We conclude that 1) EGF protects against oxidative stress disruption of intestinal barrier by stabilizing F-Actin, largely through the activation of PLC- and downregulation of iNOS pathway; 2) activation of PLC- is by itself essential for cellular protection against oxidative stress of iNOS; and 3) the ability to suppress iNOS-driven reactions and cytoskeletal oxidation and disassembly is a novel mechanism not previously attributed to the PLC family of isoforms. actin cytoskeleton; gut barrier; growth factors; oxidative stress; nitration and carbonylation; reactive nitrogen metabolites; phospholipase C isoform; inflammatory bowel disease; Caco-2 cells  相似文献   

7.
Pancreatic stellate cells (PSCs) are activated during pancreatitis and promote pancreatic fibrosis by producing and secreting ECMs such as collagen and fibronectin. IL-1 has been assumed to participate in pancreatic fibrosis by activating PSCs. Activated PSCs secrete various cytokines that regulate PSC function. In this study, we have examined IL-1 secretion from culture-activated PSCs as well as its regulatory mechanism. RT-PCR and ELISA have demonstrated that PSCs express IL-1 mRNA and secrete IL-1 peptide. Inhibition of TGF-1 activity secreted from PSCs by TGF-1-neutralizing antibody attenuated IL-1 secretion from PSCs. Exogenous TGF-1 increased IL-1 expression and secretion by PSCs in a dose-dependent manner. Adenovirus-mediated expression of dominant-negative (dn)Smad2/3 expression reduced both basal and TGF-1-stimulated IL-1 expression and secretion by PSCs. Coexpression of Smad3 with dnSmad2/3 restored IL-1 expression and secretion by PSCs, which were attenuated by dnSmad2/3 expression. In contrast, coexpression of Smad2 with dnSmad2/3 did not alter them. Furthermore, inhibition of IL-1 activity secreted from PSCs by IL-1-neutralizing antibody attenuated TGF-1 secretion from PSCs. Exogenous IL-1 enhanced TGF-1 expression and secretion by PSCs. IL-1 activated ERK, and PD-98059, a MEK1 inhibitor, blocked IL-1 enhancement of TGF-1 expression and secretion by PSCs. We propose that an autocrine loop exists between TGF-1 and IL-1 in activated PSCs through Smad3- and ERK-dependent pathways. fibrosis; cytokine; chronic pancreatitis  相似文献   

8.
Airway goblet cell mucin secretion is controlled by agonist activation of P2Y2 purinoceptors, acting through Gq/PLC, inositol-1,4,5-trisphosphate (IP3), diacylglycerol, Ca2+ and protein kinase C (PKC). Previously, we showed that SPOC1 cells express cPKC, nPKC, nPKC, and nPKC; of these, only nPKC translocated to the membrane in correlation with mucin secretion (Abdullah LH, Bundy JT, Ehre C, Davis CW. Am J Physiol Lung Physiol 285: L149–L160, 2003). We have verified these results and pursued the identity of the PKC effector isoform by testing the effects of altered PKC expression on regulated mucin release using SPOC1 cell and mouse models. SPOC1 cells overexpressing cPKC, nPKC, and nPKC had the same levels of ATPS- and phorbol-1,2-myristate-13-acetate (PMA)-stimulated mucin secretion as the levels in empty retroviral vector expressing cells. Secretagogue-induced mucin secretion was elevated only in cells overexpressing nPKC (14.6 and 23.5%, for ATPS and PMA). Similarly, only SPOC1 cells infected with a kinase-deficient nPKC exhibited the expected diminution of stimulated mucin secretion, relative to wild-type (WT) isoform overexpression. ATPS-stimulated mucin secretion from isolated, perfused mouse tracheas was diminished in P2Y2-R null mice by 82% relative to WT mice, demonstrating the utility of mouse models in studies of regulated mucin secretion. Littermate WT and nPKC knockout (KO) mice had nearly identical levels of stimulated mucin secretion, whereas mucin release was nearly abolished in nPKC KO mice relative to its WT littermates. We conclude that nPKC is the effector isoform downstream of P2Y2-R activation in the goblet cell secretory response. The translocation of nPKC observed in activated cells is likely not related to mucin secretion but to some other aspect of goblet cell biology. protein kinase C; mucins; goblet cells; exocytosis; airways; epithelium; lung  相似文献   

9.
Activation of PLC-delta1 by Gi/o-coupled receptor agonists   总被引:1,自引:0,他引:1  
The mechanism of phospholipase (PLC)- activation by G protein-coupled receptor agonists was examined in rabbit gastric smooth muscle. Ca2+ stimulated an eightfold increase in PLC-1 activity in permeabilized muscle cells. Treatment of dispersed or cultured muscle cells with three Gi/o-coupled receptor agonists (somatostatin, -opioid agonist [D-Pen2,D-Pen5]enkephalin, and A1 agonist cyclopentyl adenosine) caused delayed increase in phosphoinositide (PI) hydrolysis (8- to 10-fold) that was strongly inhibited by overexpression of dominant-negative PLC-1(E341R/D343R; 65–76%) or constitutively active RhoA(G14V). The response coincided with capacitative Ca2+ influx and was not observed in the absence of extracellular Ca2+, but was partly inhibited by nifedipine (16–30%) and strongly inhibited by SKF-96365, a blocker of store-operated Ca2+ channels. Treatment of the cells with a Gq/13-coupled receptor agonist, CCK-8, caused only transient, PLC-1-mediated PI hydrolysis. Unlike Gi/o-coupled receptor agonists, CCK-8 activated RhoA and stimulated RhoA:PLC-1 association. Inhibition of RhoA activity with C3 exoenzyme or by overexpression of dominant-negative RhoA(T19N) or G13 minigene unmasked a delayed increase in PI hydrolysis that was strongly inhibited by coexpression of PLC-1(E341R/D343R) or by SKF-96365. Agonist-independent capacitative Ca2+ influx induced by thapsigargin stimulated PI hydrolysis (8-fold), which was partly inhibited by nifedipine (25%) and strongly inhibited by SKF-96365 (75%) and in cells expressing PLC-1(E341R/D343R). Agonist-independent Ca2+ release or Ca2+ influx via voltage-gated Ca2+ channels stimulated only moderate PI hydrolysis (2- to 3-fold), which was abolished by PLC-1 antibody or nifedipine. We conclude that PLC-1 is activated by Gi/o-coupled receptor agonists that do not activate RhoA. The activation is preferentially mediated by Ca2+ influx via store-operated Ca2+ channels. phospholipase C; G protein  相似文献   

10.
Transforming growth factor- (TGF-) stimulates myofibroblast transdifferentiation, leading to type I collagen accumulation and fibrosis. We investigated the function of Src in TGF--induced collagen I accumulation. In human mesangial cells, PTyr416 Src (activated Src) was 3.3-fold higher in TGF--treated cells than in controls. Src activation by TGF- was blocked by rottlerin and by a dominant negative mutant of protein kinase C (PKC), showing that TGF- activates Src by a PKC-based mechanism. Pharmacological inhibitors and a dominant negative Src mutant prevented the increase in collagen type I secretion in cells exposed to TGF-. Similarly, on-target Src small interference RNA (siRNA) prevented type I collagen secretion in response to TGF-, but off-target siRNA complexes had no effect. It is well established in mesangial cells that upregulation of type I collagen by TGF- requires extracellular signal-regulated kinase 1/2 (ERK1/2), and we found that activation of ERK1/2 by TGF- requires Src. In conclusion, these results suggest that stimulation of collagen type I secretion by TGF- requires a PKC-Src-ERK1/2 signaling motif. mesangial cells; fibrosis; glomerulus; transforming growth factor-  相似文献   

11.
Using monolayers of intestinal cells, we reported that upregulation of inducible nitric oxide synthase (iNOS) is required for oxidative injury and that activation of NF-B is key to cytoskeletal instability. In the present study, we hypothesized that NF-B activation is crucial to oxidant-induced iNOS upregulation and its injurious consequences: cytoskeletal oxidation and nitration and monolayer dysfunction. Wild-type (WT) cells were pretreated with inhibitors of NF-B, with or without exposure to oxidant (H2O2). Other cells were transfected with an IB mutant (an inhibitor of NF-B). Relative to WT cells exposed to vehicle, oxidant exposure caused increases in IB instability, NF-B subunit activation, iNOS-related activity (NO, oxidative stress, tubulin nitration), microtubule disassembly and instability (increased monomeric and decreased polymeric tubulin), and monolayer disruption. Monolayers pretreated with NF-B inhibitors (MG-132, lactacystin) were protected against oxidation, showing decreases in all measures of the NF-B iNOS NO pathway. Dominant mutant stabilization of IB to inactivate NF-B suppressed all measures of the iNOS/NO upregulation while protecting monolayers against oxidant insult. In these mutants, we found prevention of tubulin nitration and oxidation and enhancement of cytoskeletal and monolayer stability. We concluded that 1) NF-B is required for oxidant-induced iNOS upregulation and for the consequent nitration and oxidation of cytoskeleton; 2) NF-B activation causes cytoskeletal injury following upregulation of NO-driven processes; and 3) the molecular event underlying the destabilizing effects of NF-B appears to be increases in carbonylation and nitrotyrosination of the subunit components of cytoskeleton. The ability to promote NO overproduction and cytoskeletal nitration/oxidation is a novel mechanism not previously attributed to NF-B in cells. tubulin cytoskeleton; microtubules; oxidation/nitration; inducible nitric oxide synthase/peroxynitrite; inflammatory bowel disease; Caco-2 cells; gut barrier; nuclear factor-B/IB  相似文献   

12.
Cyclooxygenase-2 (COX-2) mediates various inflammatory responses and is expressed in pancreatic tissue from patients with chronic pancreatitis. To examine the role of COX-2 in chronic pancreatitis, we investigated its participation in regulating functions of pancreatic stellate cells (PSCs), using isolated rat PSCs. COX-2 was expressed in culture-activated PSCs but not in freshly isolated quiescent PSCs. TGF-1, IL-1, and IL-6 enhanced COX-2 expression in activated PSCs, concomitantly increasing the expression of -smooth muscle actin (-SMA), a parameter of PSC activation. The COX-2 inhibitor NS-398 blocked culture activation of freshly isolated quiescent PSCs. NS-398 also inhibited the enhancement of -SMA expression by TGF-1, IL-1, and IL-6 in activated PSCs. These data indicate that COX-2 is required for the initiation and promotion of PSC activation. We further investigated the mechanism by which cytokines enhance COX-2 expression in PSCs. Adenovirus-mediated expression of dominant negative Smad2/3 inhibited the increase in expression of COX-2, -SMA, and collagen-1 mediated by TGF-1 in activated PSCs. Moreover, dominant negative Smad2/3 expression attenuated the expression of COX-2 and -SMA enhanced by IL-1 and IL-6. Anti-TGF- neutralizing antibody also attenuated the increase in COX-2 and -SMA expression caused by IL-1 and IL-6. IL-6 as well as IL-1 enhanced TGF-1 secretion from PSCs. These data indicate that Smad2/3-dependent pathway plays a central role in COX-2 induction by TGF-1, IL-1, and IL-6. Furthermore, IL-1 and IL-6 promote PSC activation by enhancing COX-2 expression indirectly through Smad2/3-dependent pathway by increasing TGF-1 secretion from PSCs. transforming growth factor-; interleukin; Smad; autocrine; pancreatic fibrosis  相似文献   

13.
To determine whether homocysteine(Hcy)-mediated activation of endocardial endothelial (EE) cells isameliorated by peroxisome proliferator-activated receptor (PPAR), weisolated EE cells from mouse endocardium. Matrix metalloproteinase(MMP) activity and intercellular adhesion molecule (ICAM)-1 in EE cellswere measured in the presence and absence of Hcy, and ciprofibrate (CF;PPAR- agonist) or 15-deoxy-12,14-prostaglandinJ2 (PGJ2; PPAR- agonist) by zymography andWestern blot analyses, respectively. Results suggest that Hcy-mediated MMP activation and ICAM-1 expression are ameliorated by CF and PGJ2. To test the hypothesis that Hcy competes with otherligands for binding to PPAR and -, we prepared cardiac nuclearextracts. Extracts were loaded onto an Hcy-cellulose affinity column.Bound proteins were eluted with CF and PGJ2. To determineconformational changes in PPAR upon binding to Hcy, we measured PPARfluorescence at 334 nm. Dose-dependent increase in PPAR fluorescencedemonstrated a primary binding affinity of 0.32 ± 0.06 µM. There wasdose-dependent quenching of PPAR fluorescence byfluorescamine-homocysteine (F-Hcy). PPAR- fluorescence quenching wasabrogated by the addition of CF but not by PGJ2. PPAR-fluorescence quenching was abrogated by the addition ofPGJ2 but not by CF. These results suggest that Hcy competeswith CF and PGJ2 for binding to PPAR- and -,respectively, indicating a role of PPAR in amelioration of Hcy-mediatedEE dysfunction.

  相似文献   

14.
Distribution of ClC-2 chloride channel in rat and human epithelial tissues   总被引:4,自引:0,他引:4  
The ubiquitous ClC-2 Clchannel is thought to contribute to epithelial Clsecretion, but the distribution of the ClC-2 protein in human epitheliahas not been investigated. We have studied the distribution of ClC-2 inadult human and rat intestine and airways by immunoblotting andconfocal microscopy. In the rat, ClC-2 was present in the lateralmembranes of villus enterocytes and was predominant at the basolateralmembranes of luminal colon enterocytes. The expression pattern of ClC-2in the human intestine differed significantly, because ClC-2 was mainlydetected in a supranuclear compartment of colon cells. We foundsignificant expression of ClC-2 at the apex of ciliated cells in bothrat and human airways. These results show that the distribution ofClC-2 in airways is consistent with participation of ClC-2 channels inCl secretion and indicate that extrapolation of resultsfrom studies of ClC-2 function in rat intestine to human intestine isnot straightforward.

  相似文献   

15.
ATP, a purinergic receptor agonist, has been shown to be involved in vascular smooth muscle (VSM) cell DNA synthesis and cell proliferation during embryonic and postnatal development, after injury, and in atherosclerosis. One mechanism that ATP utilizes to regulate cellular function is through activation of ERK1/2. In the present study, we provide evidence that ATP-dependent activation of ERK1/2 in VSM cells utilizes specific isoforms of the multifunctional serine/threonine kinases, PKC, and Ca2+/calmodulin-dependent protein kinase II (CaMKII) as intermediates. Selective inhibition of PKC- activity with rottlerin, or adenoviral overexpression of kinase-negative PKC-, attenuated the ATP- and phorbol 12,13-dibutyrate (PDBu)-stimulated ERK1/2 activation. Inhibition of PKC- activity with Gö-6976, or adenoviral overexpression of kinase-negative PKC-, was ineffective. Alternatively, treatment with KN-93, a selective inhibitor of CaMKII activation, or adenoviral overexpression of kinase-negative CaMKII-2, inhibited ATP-dependent activation of ERK1/2 but had no effect on PDBu- or PDGF-stimulated ERK1/2. In addition, adenoviral overexpression of dominant-negative ras (Ad.HA-RasN17) partially inhibited the ATP- and PDBu-induced activation of ERK1/2 and blocked ionomycin- and EGF-stimulated ERK1/2, and inhibition of tyrosine kinases with AG-1478, an EGFR inhibitor, or the src family kinase inhibitor PP2 attenuated ATP-stimulated ERK1/2 activation. Taken together, these data indicate that PKC- and CaMKII-2 coordinately mediate ATP-dependent transactivation of EGF receptor, resulting in increased ERK1/2 activity in VSM cells. protein kinase C-; calcium/calmodulin-dependent protein kinase II- 2; extracellular signal-regulated kinase 1/2; epidermal growth factor receptor transactivation; adenovirus  相似文献   

16.
We have examined the effects of the cannabinoid anandamide (AEA) and its stable analog, methanandamide (methAEA), on large-conductance, Ca2+-activated K+ (BK) channels using human embryonic kidney (HEK)-293 cells, in which the -subunit of the BK channel (BK-), both - and 1-subunits (BK-1), or both - and 4-subunits (BK-4) were heterologously expressed. In a whole cell voltage-clamp configuration, each cannabinoid activated BK-1 within a similar concentration range. Because methAEA could potentiate BK-, BK-1, and BK-4 with similar efficacy, the -subunits may not be involved at the site of action for cannabinoids. Under cell-attached patch-clamp conditions, application of methAEA to the bathing solution increased BK channel activity; however, methAEA did not alter channel activity in the excised inside-out patch mode even when ATP was present on the cytoplasmic side of the membrane. Application of methAEA to HEK-BK- and HEK-BK-1 did not change intracellular Ca2+ concentration. Moreover, methAEA-induced potentiation of BK channel currents was not affected by pretreatment with a CB1 antagonist (AM251), modulators of G proteins (cholera and pertussis toxins) or by application of a selective CB2 agonist (JWH133). Inhibitors of CaM, PKG, and MAPKs (W7, KT5823, and PD-98059) did not affect the potentiation. Application of methAEA to mouse aortic myocytes significantly increased BK channel currents. This study provides the first direct evidence that unknown factors in the cytoplasm mediate the ability of endogenous cannabinoids to activate BK channel currents. Cannabinoids may be hyperpolarizing factors in cells, such as arterial myocytes, in which BK channels are highly expressed. anandamide; channel opener  相似文献   

17.
Direct association of RhoA with specific domains of PKC-alpha   总被引:1,自引:0,他引:1  
Previous studies performed at our laboratory have shown that agonist-induced contraction of smooth muscle is associated with translocation of protein kinase C (PKC)- and RhoA to the membrane and that this interaction is due to a direct protein-protein interaction. To determine the domains of PKC- involved in direct interaction with RhoA, His-tagged PKC- proteins of individual domains and different combinations of PKC- domains were used to perform in vitro binding assays with the fusion protein glutathione-S-transferase (GST)-RhoA. Coimmunoprecipitation was also performed using smooth muscle cells transfected with truncated forms of PKC- in this study. The data indicate that RhoA directly bound to full-length PKC-, both in vitro (82.57 ± 15.26% above control) and in transfected cells. RhoA bound in vitro to the C1 domain of PKC- [PKC- (C1)] (70.48 ± 20.78% above control), PKC- (C2) (72.26 ± 29.96% above control), and PKC- (C4) (90.58 ± 26.79% above control), but not to PKC- (C3) (0.64 ± 5.18% above control). RhoA bound in vitro and in transfected cells to truncated forms of PKC-, PKC- (C2, C3, and C4), and PKC- (C3 and C4) (94.09 ± 12.13% and 85.10 ± 16.16% above control, respectively), but not to PKC- (C1, C2, and C3) or to PKC- (C2 and C3) (0.47 ± 1.26% and 7.45 ± 10.76% above control, respectively). RhoA bound to PKC- (C1 and C2) (60.78 ± 13.78% above control) only in vitro, but not in transfected cells, and PKC- (C2, C3, and C4) and PKC- (C3 and C4) bound well to RhoA. These data suggest that RhoA bound to fragments that may mimic the active form of PKC-. The studies using cells transfected with truncated forms of PKC- indicate that PKC- (C1 and C2), PKC- (C1, C2, and C3), and PKC- (C2 and C3) did not associate with RhoA. Only full-length PKC-, PKC- (C2, C3, and C4), and PKC- (C3 and C4) associated with RhoA. The association increased upon stimulation with acetylcholine. These results suggest that the functional association of PKC- with RhoA may require the C4 domain. domains; histidine; fusion proteins  相似文献   

18.
This study examined the ability of protein kinase C (PKC) toinduce heterologous desensitization by targeting specific G proteinsand limiting their ability to transduce signals in smooth muscle.Activation of PKC by pretreatment of intestinal smooth muscle cellswith phorbol 12-myristate 13-acetate, cholecystokinin octapeptide, orthe phosphatase 1 and phosphatase 2A inhibitor, calyculin A,selectively phosphorylated Gi-1 and Gi-2,but not Gi-3 or Go, and blockedinhibition of adenylyl cyclase mediated by somatostatin receptorscoupled to Gi-1 and opioid receptors coupled toGi-2, but not by muscarinic M2 and adenosineA1 receptors coupled to Gi-3. Phosphorylationof Gi-1 and Gi-2 and blockade of cyclaseinhibition were reversed by calphostin C and bisindolylmaleimide, andadditively by selective inhibitors of PKC and PKC. Blockade ofinhibition was prevented by downregulation of PKC. Phosphorylation ofG-subunits by PKC also affected responses mediated by-subunits. Pretreatment of muscle cells withcANP-(4-23), a selective agonist of the natriureticpeptide clearance receptor, NPR-C, which activates phospholipase C(PLC)-3 via the -subunits of Gi-1 andGi-2, inhibited the PLC- response to somatostatin and[D-Pen2,5]enkephalin. The inhibition waspartly reversed by calphostin C. Short-term activation of PKC had noeffect on receptor binding or effector enzyme (adenylyl cyclase orPLC-) activity. We conclude that selective phosphorylation ofGi-1 and Gi-2 by PKC partly accounts forheterologous desensitization of responses mediated by the - and-subunits of both G proteins. The desensitization reflects adecrease in reassociation and thus availability of heterotrimeric G proteins.

  相似文献   

19.
Numerous studies have demonstrated a central role of renal tubular epithelial cells in the etiology of kidney injury and disease through the elaboration of inflammatory mediators. However, little is known about the cellular signaling mechanisms involved in this process. In this study we employed normal rat kidney epithelial (NRK52E) cells to identify a novel LPS-induced signaling pathway in which RhoA-mediated AP-1 activity promotes expression of cyclooxygenase-2 (COX-2) with consequent feedback inhibition of NF-B activation through IKK. Inhibition of RhoA signaling using either the RhoA kinase inhibitor Y-27632 or a dominant negative mutant of RhoA (RhoA-DN) dramatically extended the duration of p65-DNA binding, IB phosphorylation, and IKK activity following LPS treatment. Prolongation of events associated with NF-B activation was also observed in cells pretreated and/or cotransfected with the JNK inhibitor SP600125 or deletion mutants of MEKK1 (MEKK1-KD) or Jun (Jun-DN). Conversely, constitutive expression of RhoA prevented NF-B activation by LPS, and this effect was reversed by cotransfection with MEKK1-KD. In addition, we found that the RhoA/AP-1 signaling axis plays a necessary role in COX-2 expression by LPS and that this effect is independent of NF-B activation. Moreover, inhibition of COX-2 activity results in persistent p65-DNA binding, IB phosphorylation, and IKK activity, similar to that observed after prevention of RhoA/AP-1 axis signaling. These findings suggest that COX-2 links the RhoA/AP-1 signaling cascade to NF-B activation, thereby defining a novel integrated model for regulation of the inflammatory response of kidney epithelial cells to LPS and potentially other external stimuli. AP-1; cyclooxygenase-2; inflammation; lipopolysaccharide, nuclear factor-B; IB kinase  相似文献   

20.
Chronic gastrointestinaldiseases such as ulcerative colitis and Crohn's disease arecharacterized by severe diarrhea. Mucosal biopsies of these patientsshow enhanced levels of cytokines, secreted by infiltrated inflammatorycells. In this study, we investigated the effect of the cytokine tumornecrosis factor- (TNF-) on ion secretion in human intestinalepithelial cells. The conventional microelectrode technique in the cellline HT29cl.19A was used, which allows for simultaneous measurements oftransepithelial potential difference and intracellular potentialdifference across the apical membrane. Preincubation (2-78 h) with10 ng/ml TNF- did not change basal secretory activity. However, thesecretory response to the muscarinic receptor agonist carbachol wasstrongly increased after exposure to TNF-. Application of theprotein kinase C (PKC) inhibitor GF 109203X (bisindolylmaleimide I)inhibited the response to carbachol as well as the TNF--potentiatedresponse, indicating that PKC mediates the effect of carbachol in thiscell line. Propranolol, a substance that inhibits the phospholipase D(PLD) pathway, strongly reduced the response to muscarinic stimulation and its potentiation by TNF-. The results indicate that activation of PLD is involved in ion secretion induced by muscarinic receptor activation and that TNF- can potentiate this pathway.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号