首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 410 毫秒
1.
The aim of this study was to evaluate the enzymatic action of partially purified bitter gourd peroxidase for the degradation/decolorization of complex aromatic structures. Twenty-one dyes, with a wide spectrum of chemical groups, currently being used by the textile and other important industries have been selected for the study. Here, for the first time we have shown peroxidases from Momordica charantia (300 EU/gm of vegetable) to be highly effective in decolorizing industrially important dyes. Dye solutions, containing 50-200 mg dye/l, were used for the treatment with bitter gourd peroxidase (specific activity of 99.0 EU/mg protein). M. charantia peroxidases were able to decolorize most of the textile dyes by forming insoluble precipitate. When the textile dyes were treated with increasing concentration of enzyme, it was observed that greater fraction of the color was removed but four out of eight reactive dyes were recalcitrant to decolorization by bitter gourd peroxidase. Step-wise addition of enzyme to the decolorizing reaction mixture at the interval of 1h further enhanced the dye decolorization. The rate of decolorization was enhanced when the dyes were incubated with fixed quantity of enzyme for increasing times. Decolorization of non-textile dyes resulted in the degradation and removal of dyes from the solution without any precipitate formation. Decolorization rate was drastically increased when the textile and other industrially important non-textile dyes were treated with bitter gourd peroxidase in presence of 1.0 mM 1-hydroxybenzotriazole. Complex mixtures of dyes were prepared by taking three to four reactive textile and non-textile dyes in equal proportions. Each mixture was decolorized by more than 80% when treated with the enzyme in presence of 1.0 mM 1-hydroxybenzotriazole. Our data suggest that the peroxidase/mediator system is an effective biocatalyst for the treatment of effluents containing recalcitrant dyes from textile, dye manufacturing, dyeing and printing industries.  相似文献   

2.
花生壳粉生物吸附水溶液中阴离子染料的研究   总被引:1,自引:1,他引:0  
An untried,low cost, locally available biosorbent for its anionic dye removal capacity from aqueous solution was investigated. Powder prepared from peanut hull had been used for hiosorption of three anionic dyes, amaranth (Am), sunset yellow (SY) and fast green FCF (FG). The effects of various experimental parameters (e.g.initial pH and dye concentration, sorbent dosage, particle size, ion strength, contact time etc.) were examined and optimal experimental conditions were decided. At initial pH 2.0, three dyes studied could be removed effectively.When the dye concentration was 50 mg" L-1 the percentages of dyes sorbed was 95.5 % in Am, 91.3 % in SY and 94.98 % in FG, respectively. The ratios of dyes sorbed had neared maximum values in all three dyes whensorbent dose of 5.0 g·L^-1 and the sorbent particle size in 80—100 mesh was used. The increasing the ion strength of solution caused the decrease in biosorption percentages of dyes. The equilibrium values arrived at about 36 hour for all three dyes. The isothermal data of biosorption followed the Langmuir and Freundlich models. The biosorption processes conformed the pseudo-first-order rate kinetics. The results indicated that powdered peanut hull was an attractive candidate for removing anionic dyes from dye wastewater.  相似文献   

3.
Several model azo dyes are reductively cleaved by growing cultures of an ascomycete yeast species, Issatchenkia occidentalis. In liquid media containing 0.2 mM dye and 2% glucose in a mineral salts base, more than 80% of the dyes are removed in 15 h, essentially under microaerophilic conditions. Under anoxic conditions, decolorization does not occur, even in the presence of pregrown cells. Kinetic assays of azo reduction activities in quasi-resting cells demonstrated the following: (i) while the optimum pH depends on dye structure, the optimum pH range was observed in the acidic range; (ii) the maximum decolorizing activity occurs in the late exponential phase; and (iii) the temperature profile approaches the typical bell-shaped curve. These results indirectly suggest the involvement of an enzyme activity in azo dye reduction. The decolorizing activity of I. occidentalis is still observed, although at a lower level, when the cells switch to aerobic respiration at the expense of ethanol after glucose exhaustion in the culture medium. Decolorization ceased when all the ethanol was consumed; this observation, along with other lines of evidence, suggests that azo dye reduction depends on cell growth. Anthraquinone-2-sulfonate, a redox mediator, enhances the reduction rates of the N,N-dimethylaniline-based dyes and reduces those of the 2-naphthol-based dyes, an effect which seems to be compatible with a thermodynamic factor. The dye reduction products were tested as carbon and nitrogen sources. 1-Amino-2-naphthol was used as a carbon and nitrogen source, and N,N-dimethyl-p-phenylenediamine was used only as a nitrogen source. Sulfanilic and metanilic acids did not support growth either as a carbon or nitrogen source.  相似文献   

4.
Phloroglucinol, thymol, and violuric acid (VIO) were selected as laccase mediators after screening 14 different compounds with indigo carmine (indigoid dye) as a substrate. With the presence of these three mediators, a nearly complete decolorization (90-100%) was attained in 1 h. Thus, these three compounds were used as mediators for the decolorization of other four dyes. The results indicated that VIO was effective mediator in decolorization of Remazol brilliant blue R (RBBR, anthraquinoid dye) and Coomassie brilliant blue G-250 (CBB, triphenylmethane dyes), and Acid red (diazo dye). In presence of VIO, the four dyes described above attained 70% decolorization. Thymol was able to mediate decolorization of RBBR and Azure A (heterocyclic dye). Phloroglucinol has no mediating capability in decolorization of the four dyes analyzed. Mediator concentration, pH, and copper ion have an effect on the decolorization of the RBBR. Our data suggested that the decolorization capabilities of laccase/mediator system were related to the types of mediator, the dye structure and decolorization condition.  相似文献   

5.
In our search for efficient and photostable laser dyes, four new dyes with the basic structure of the commercial BODIPY laser dye PM567, with either an 8-diphenylene or an 8-p-triphenylene group, both substituted at the terminal polyphenylene position with an acetoxymethyl (dyes P2Ar1Ac and P3Ar1Ac, respectively) or a methacryloyloxymethyl group (dyes P2Ar1MA and P3Ar1MA, respectively), have been synthesized. The photophysical and lasing properties of the dyes have been studied both dissolved in liquid solvents (acetoxymethyl dyes) and incorporated into solid polymeric matrices, in the latter case as solutions (acetoxymethyl dyes) or as copolymers with methyl methacrylate (methacryloyloxymethyl dyes). In liquid solution, the photophysics of P2Ar1Ac and P3Ar1Ac is scarcely affected by the number (two or three) of p-phenylene units. Quantum mechanical calculations reveal that the p-phenylene units in these dyes are twisted ca. 37 degrees each other, an that the first 8-p-phenylene group stands nearly perpendicular to the aromatic BODIPY plane, resulting in electronic decoupling of the two chromophores. P2Ar1Ac exhibits a somewhat lower photodegradation quantum yield under UV and visible irradiation, if compared with P3Ar1Ac or with PM567, likely because of its also lower rate constant for the reaction with in situ-generated singlet molecular oxygen. Both acetoxymethyl dyes emit laser radiation in solution in all the solvents tried, under transversal pumping at 532 nm. In ethyl acetate, with a dye concentration of 0.80 x 10(-3) M, laser efficiencies as high as 80% have been observed. When the 8-polyphenylene dyes were incorporated into solid poly(methyl methacrylate) (PMMA) matrices, as solutions or as copolymers, the fluorescence emission increased with respect to that of the parent PM567 dye dissolved in the same matrix, and lasing efficiencies in the range 18-31% were obtained, with good photostability. The dye P2Ar1Ac dissolved in PMMA was found to exhibit the best overall laser behavior, with a good balance between efficiency and photostability.  相似文献   

6.
Low efficiency of dye removal by mixed bacterial communities and high rates of dye decolorization by white-rot fungi suggest a combination of both processes to be an option of treatment of textile wastewaters containing dyes and high concentrations of organics. Bacteria were able to remove mono-azo dye but not other chemically different dyes whereas decolorization rates using Irpex lacteus mostly exceeded 90% within less than one week irrespective of dye structure. Decolorization rates for industrial textile wastewaters containing 2-3 different dyes by fungal trickling filters (FTF) attained 91%, 86%, 35% within 5-12 d. Sequential two-step application of FTF and bacterial reactors resulted in efficient decolorization in 1st step (various single dyes, 94-99% within 5 d; wastewater I, 90% within 7 d) and TOC reduction of 95-97% in the two steps. Large potential of combined use of white-rot fungi and traditional bacterial treatment systems for bioremediation of textile wastewaters was demonstrated.  相似文献   

7.
Summary Anionic dye connective tissue procedures were performed by staining for 5 min and 24 h with (a) 0.00018m and 0.0018m solutions of 28 dyes, and 0.018m solutions of 21 dyes in saturated picric acid (SPA), and (b) 0.0018m and 0.018m solutions of 20 dyes in 1% (w/v) phosphomolybdic acid (PMA). The staining obtained with dyes in SPA was classified as selective (no cytoplasmic staining), moderately selective (traces of cytoplasmic staining) and non-selective (all other staining patterns). The staining of collagen and cytoplasm with dyes in PMA was separately classified on a scale of 1–5 (1 = no staining, 5 = maximum staining). The selectivity of the staining obtained with SPA with solutions of dyes at concentrations of 0.00018m and 0.0018m, and both staining times, was correlated (p < 0.001) with an empirical sulphonic acid constant (SAC) defined as the (number of dye sulphonic acid groups/dye molecular weight) × 103. Correlation with molecular weight was poor and was significant only when staining was performed with 0.00018m dye solutions for 24 h. The dyes were divisible into three groups: group 1 (selectivity independent, or almost independent of staining time), group 2 (selective to moderately selective when staining was performed for 5 min), and group 3 (non-selective). The SAC of the group 1 dyes differed significantly from those of the group 2 and 3 dyes. Selectivity was essentially lost at dye concentrations of 0.018m. The staining with acidic dyes (no amines or substituted amines) in PMA differed significantly (p < 0.001) from that obtained with amphoteric dyes (containing basic substituents). In general, acidic dyes stained cytoplasm. Amphoteric dyes with the exception of indigocarmine stained collagen. However, most of these dyes also stained cytoplasm. In contrast to the results obtained with dyes in SPA, selectivity correlated strongly with molecular weight and only poorly with the SAC. Staining time and dye concentration affected selectivity only when the acidic dyes were used for 5 min at concentrations of 0.0018m and 0.018m. The data obtained do not permit a clear distinction between the rate control and chemical affinity models for the mechanism of staining with anionic dyes. However, it seems possible that different groups of dyes stain by different mechanisms. Part of this work was performed by M.I., S.N., M.J. and L.M. in partial fulfilment of the requirements for the completion of Pathology 438. A partial account of this work was presented at the annual convention of the British Columbia Society of Medical Technology, Victoria, British Columbia, October 1991.  相似文献   

8.
Abstract Equipment and methodology are described that allows the radial variation in axial xylem permeability (hydraulic conductivity) over a tree cross-section to be measured and the flow paths to be identified by the strictly controlled flow of dye through a specimen. The apparatus can be calibrated so that the point-to-point variation of absolute permeability over a xylem cross-section can be calculated from the dye-flow patterns, which otherwise show only relative variations in permeability. The effect of using different dyes and dye concentrations on the penetration time and the shape of the dye patterns was investigated. The penetration time through the wood of identical end-matched specimens is appreciably longer for fixing dyes than for non-fixing dyes, and for the fixing dyes it depends strongly on the dye concentration. However, the dye patterns of the end-matched specimens were indistinguishable with fixing and non-fixing dyes, and independent of dye concentration. The fixing dye toluidine blue at 0.25% to 0.5% (w/w) was found most suitable as it yields a clear permanent pattern.  相似文献   

9.
Several model azo dyes are reductively cleaved by growing cultures of an ascomycete yeast species, Issatchenkia occidentalis. In liquid media containing 0.2 mM dye and 2% glucose in a mineral salts base, more than 80% of the dyes are removed in 15 h, essentially under microaerophilic conditions. Under anoxic conditions, decolorization does not occur, even in the presence of pregrown cells. Kinetic assays of azo reduction activities in quasi-resting cells demonstrated the following: (i) while the optimum pH depends on dye structure, the optimum pH range was observed in the acidic range; (ii) the maximum decolorizing activity occurs in the late exponential phase; and (iii) the temperature profile approaches the typical bell-shaped curve. These results indirectly suggest the involvement of an enzyme activity in azo dye reduction. The decolorizing activity of I. occidentalis is still observed, although at a lower level, when the cells switch to aerobic respiration at the expense of ethanol after glucose exhaustion in the culture medium. Decolorization ceased when all the ethanol was consumed; this observation, along with other lines of evidence, suggests that azo dye reduction depends on cell growth. Anthraquinone-2-sulfonate, a redox mediator, enhances the reduction rates of the N,N-dimethylaniline-based dyes and reduces those of the 2-naphthol-based dyes, an effect which seems to be compatible with a thermodynamic factor. The dye reduction products were tested as carbon and nitrogen sources. 1-Amino-2-naphthol was used as a carbon and nitrogen source, and N,N-dimethyl-p-phenylenediamine was used only as a nitrogen source. Sulfanilic and metanilic acids did not support growth either as a carbon or nitrogen source.  相似文献   

10.
Bromophenol blue and methyl orange removal capabilities of citraconic anhydride-modified horseradish peroxidase were compared with those of native horseradish peroxidase. Citraconic anhydride-modified horseradish peroxidase showed higher decolorization efficiencies for both dyes than native horseradish peroxidase. Upon the chemical modification, the decolorization efficiencies were increased by 1.8% and 12.4% for bromophenol blue and methyl orange, respectively. The quantitative relationships between decolorization efficiencies of dyes and reaction conditions were also investigated. Experimental data revealed that aqueous phase pH, reaction time, temperature, enzyme concentration and ratio of dye and H2O2 play a significant role on the dye degradation. Lower dose of citraconic anhydride-modified horseradish peroxidase was required than that of native enzyme for the decolorizations of both dyes to obtain the same decolorization efficiencies. Citraconic anhydride-modified HRP exhibited a good decolorization of dye over a wide range of dye concentration from 8 to 24 or 32 μmol l−1 at 300 μmol l−1 H2O2, which would match industrial expectations. Kinetic constants for two different dyes were also determined. Citraconic anhydride-modified horseradish peroxidase shows greater affinity and catalytic efficiency than native horseradish peroxidase for both dyes.  相似文献   

11.
Crystal violet has been observed to cause fatal pulmonary alterations in dogs. To further evaluate this toxicity and the toxicity of methyl violet, 12 dogs and 2 calves were given 1 percent aqueous solutions of the dyes intravenously. Both dyes caused the formation of numerous dye protein emboli which lodged in the lungs producing thrombosis and infarction. A 1 per cent solution of the dyes caused precipitate formation when added to bovine serum or heparinized plasma IN VITRO. Serum proteins in general were decreased as determined by paper electrophoresis of serumcrystal violet supernatants. These dyes could be used effectively in studying the pathogenesis of certain pulmonary lesions, especially emphysema and alveolar epithelial hyperplasia.  相似文献   

12.
Biosorption of simulated dyed effluents by inactivated fungal biomasses   总被引:1,自引:0,他引:1  
Treatment of dyed effluents presents several problems mainly due to the toxicity and recalcitrance of dyestuffs. Innovative technologies, such as biosorption, are needed as alternatives to conventional methods to find inexpensive ways of removing dyes from large volumes of effluents. Inactivated biomasses do not require a continuous supply of nutrients and are not sensitive to the toxicity of dyes or toxic wastes. They can also be regenerated and reused in many cycles and are both safe and environment-friendly. The sorption capacities (SC) of autoclaved biomasses of three Mucorales fungi (Cunninghamella elegans, Rhizomucor pusillus and Rhizopus stolonifer), cultured on two different media, were evaluated against simulated effluents containing concentrations of 1000 and 5000 ppm of a single dye and a mix of 10 industrial textile dyes in batch experiments. SC values of up to 532.8 mg of dye g(-1) dry weight of biomass were coupled with high effluent decolourisation percentages (up to 100%). These biomasses may thus prove to be extremely powerful candidates for dye biosorption from industrial wastewaters. Even better results were obtained when a column system with the immobilised and inactivated biomass of one fungus was employed.  相似文献   

13.
Two environmentally sensitive, long-wavelength fluorescent phenoxazine derivatives, INR and IANR, were synthesized with linkers for conjugation to the thiol group of cysteine in binding proteins. The linkers were designed based on the attachment sites at two different positions on the phenoxazine, which were chosen in order to study the orientation of the dye with respect to the binding protein. Conjugation of the dyes to the S337C maltose binding protein (MBP) mutant provided conjugates of these dyes that are capable of detecting maltose with different sensitivities. The dye INR gave a 3-fold (+200%) change in fluorescence intensity upon maltose binding when conjugated to S337C MBP with a binding constant (K(d)) of 435 microM. The fluorescence change for IANR was only 20% and the K(d) was 1.4 mM. Conformational analysis of the dyes by molecular modeling suggested that the linker in IANR imparted greater conformational freedom to the dye, resulting in little change in environment between the open and the closed-form conformations. The linker in INR, on the other hand, showed restricted motion, which placed the dye in different environments in the open and closed forms of the protein. Thus, design and placement of the linker play a critical role in the performance of these dyes as environmentally sensitive probes.  相似文献   

14.
随着我国印染工业的发展,废水对生态环境的危害日趋严重,亟需开发一种脱色明显且成本低廉的降解方法。本研究发现毛木耳Auricularia cornea菌株AC5对不同结构的染料均具有一定的降解作用,尤其是三苯甲烷类染料。利用26℃、160r/min振荡培养7d的粗酶液对染料(75.0mg/L)进行12h降解,结果显示三苯甲烷染料孔雀石绿、结晶紫,蒽醌染料活性蓝19和偶氮染料活性蓝222的降解效率分别为83.27%、71.77%、67.81%和63.92%。染料降解实验和酶活力测定结果表明,毛木耳对孔雀石绿的降解率达到最高时漆酶活性最高,为321.0U/mL,木质素过氧化物酶和锰过氧化物酶活性较低。因此,推测在降解过程中漆酶起到主要作用。研究表明利用毛木耳菌丝发酵液降解染料废水成本低且操作方便,为染料废水的降解研究提供了前期基础。  相似文献   

15.
A simple and inexpensive aqueous two-phase system for the affinity partitioning of proteins is introduced. An aqueous solution consisting of maltodextrin (M100; molecular mass, 1800) and polyvinylpyrrolidone (PVP360; molecular mass, 360,000) formed two phases at 4 degrees C when the concentration of the polymers was 22.5% (w/w) and 4.0% (w/w), respectively. When the amino derivatives of chlorotriazine textile dyes or other azo textile dyes were added to the two-phase system they partitioned asymmetrically, favoring the upper, less dense, PVP360-rich phase. The association of the textile dyes with PVP360 did not prevent them from acting as affinity ligands for proteins. Three of the dyes screened increased the partition coefficient of purified lysozyme nearly 50-fold over a control containing no dye. Parameters such as pH, ionic strength, and dye concentration modulated the affinity-partitioning effect of the system. The partition coefficient of lysozyme in an egg white protein mixture increased severalfold as the total protein content of the system approached 4% (w/w), indicating that protein concentration is also important in determining the partitioning characteristics of this two-phase system. Proteins were efficiently freed of PVP360 and textile dye by recovery in a high-salt solution when another two-phase system was formed upon the addition of a solution of concentrated potassium phosphate to the isolated upper phase of a PVP360/M100/textile dye two-phase system. The affinity-partitioning system presented here allows one to screen large numbers of potentially useful protein ligands to optimize protein separation, followed by direct scaleup to a system size determined by the user.  相似文献   

16.
Synopsis In order to study the reactions involved in some of the histochemical procedures used for demonstrating calcium in calcified tissues, it was considered appropriate to use well characterized synthetic hydroxyapatite in the first instance. In the first paper of this series (Speirs, 1970), it was found that many dyes not previously used in histochemistry were capable of staining hydroxyapatite; the purpose of the present paper is to describe the numerous experimental approaches that have been made in an attempt to elucidate the mechanisms involved in the adsorption of some of these dyes by hydroxyapatite. Dyes have been grouped according to their adsorption curves (in which dye uptake by solid was plotted against the concentration of dye in solution at equilibrium). From these graphs, predictions and calculations were made concerning the orientation of the dye molecules on the surface of hydroxyapatite, the type of bonding possibly involved and the area of surface covered by each molecule. These were then related to the dimensions and structure of the dye molecules. Saturation of surface sites was achieved in the adsorption of some dyes and the nature of these sites was investigated by studying (1) competition between several dyes for the surface, (2) the accessibility of surface calcium and phosphorus in stained and unstained hydroxyapatite, and (3) the release of32P from surface labelled hydroxyapatite during dye adsorption. Most of the dyes adsorbed from 95% ethanol were displaced relatively easily by treatment with 0.5 mM phosphate in ethanol, but those adsorbed from tris buffer, pH 7.45, were more stable when exposed to phosphate in tris. Treatment of stained hydroxyapatite with solvents containing 0.5 mM calcium reduced the rate of elution of the dyes. Convincing evidence for chelation, hydrogen bonding, ion exchange and physical adsorption processes as the mechanisms of adsorption has not been obtained. Future studies to investigate these processes are discussed.  相似文献   

17.
The aniline dye industry was created in 1856 when William Perkin prepared the dye, mauve, from coal tar. Following that discovery, several dye manufacturing businesses were formed in Western Europe, most successfully in Germany. It was to these companies that early investigators turned to obtain these new dyes for the developing field of biology. In 1880, Dr. Georg Grübler started a company in Germany to supply the needs of biologists. Grübler dyes developed a reputation for excellence. In the study reported here, 29 samples of 12 Grübler dyes were compared to modern counterparts using thin layer chromatography. The dyes studied were basic fuchsine, acid fuchsine, safranine, pyronine, aniline blue, ponceau, gentian violet, methylene blue, orange G, malachite green, and Sudan III and IV. I found that these early Grübler dyes closely resembled modern day counterparts; however, the use of synonyms was confusing and some of the fat stains were mislabeled by modern criteria. The chromatograms of some dyes exhibited smearing, probably representing multiple closely related dye species. The study of old dyes provides interesting comparisons with modern counterparts as the center of dye manufacturing is moving from Europe and the United States to Asia.  相似文献   

18.
Decolorization of textile dyes by a laccase from Trametes modesta immobilized on gamma-aluminum oxide pellets was studied. An enzyme reactor was equipped with various UV/Vis spectroscopic sensors allowing the continuous online monitoring of the decolorization reactions. Decolorization of the dye solutions was followed via an immersion transmission probe. Adsorption processes were observed using diffuse reflectance measurements of the solid carrier material. Generally, immobilization of the laccase does not seem to sterically affect dye decolorization. A range of commercial textile dyes was screened for decolorization and it was found that the application of this enzymatic remediation system is not limited to a certain structural group of dyes. Anthrachinonic dyes (Lanaset Blue 2R, Terasil Pink 2GLA), some azo dyes, Indigo Carmine, and the triphenylmethane dye Crystal Violet were efficiently decolorized. However, the laccase displayed pronounced substrate specificities when a range of structurally related model azodyes was subjected to the biotransformation. Azodyes containing hydroxy groups in ortho or para position relative to the azo bond were preferentially oxidized. The reactor performance was studied more closely using Indigo Carmine.  相似文献   

19.
D J Oh  G M Lee  K Francis  B O Palsson 《Cytometry》1999,36(4):312-318
BACKGROUND: The phototoxic effects of the well-known fluorescent membrane dyes PKH2 and PKH26 have been unknown, although their use in cell tracking experiments has increased dramatically. To eliminate the phototoxicity-induced alteration in cell function and morphology, it is essential to examine the suspicious phototoxicity of these dyes. METHODS: Chemical and phototoxic effects of PKH dyes on the human hematopoietic KG1a cell line were examined. To minimize phototoxicity in long-term cell tracking experiments lasting up to 18 h with a fluorescence microscope system, time-lapse monitoring with different time intervals and exposure times was introduced. RESULTS: There were no significant effects of the two PKH dyes on cell viability and growth when using dye concentrations up to 5 microM. However, when stained cells were exposed to excitation light, cell viability decreased dramatically, showing the phototoxicity of the PKH dyes. More than 60% of cells stained with 5 microM PKH26 died after 5 min of continuous light exposure. The phototoxic effect was more extensive in cells stained with higher concentrations of the dyes. CONCLUSIONS: We present guidelines for the optimal use of these dyes by using a defined hardware configuration.  相似文献   

20.
The efficiency of basic, direct and reactive dye removal from water by narrow-leaved cattail (NLC) powder treated with distilled water (DW-NLC), 37% formaldehyde+0.2 N sulfuric acid (FH-NLC), or 0.1 N sodium hydroxide (NaOH-NLC) at various pH levels (3, 5, 7, and 9) was tested. Desorption of the adsorbed dyes was also investigated. The type of NLC treatment and pH of the dye solution had little effect on removal of basic dyes, and efficiencies ranged from 97% to 99% over the range of pH used. Over a wide range of pH levels, all types of treated cattail powder had negative charges and probably attracted the basic dyes possessing positive charges. Efficiency of removal by the three NLC treatments ranged from 37% to 42% for direct dyes and from 22% to 54% for direct dyes at pH 7. The pH of the dye solution had substantial effects on the efficiency of removal in direct and reactive dyes. Dye removal was highest at pH 3, with 99% for a direct dye (Sirius Red Violet RL) and 96% for a reactive dye (Basilen Red M-5B). There was mutual attraction between negatively charged direct dye molecules and positively charged molecules on the surface of the FH-treated cattail. In tests of desorption of dyes from cattail in distilled water, the desorption percentage for FH-NLC after adsorbing basic, direct and reactive dyes was 6%, 10% and 35%, respectively, which indicated a chemisorption mechanism for basic and direct dyes and some physiosorption for reactive dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号