首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Nuclear magnetic resonance (NMR) spectroscopy is a proven technique for protein structure and dynamic studies. To study proteins with NMR, stable magnetic isotopes are typically incorporated metabolically to improve the sensitivity and allow for sequential resonance assignment. Reductive 13C-methylation is an alternative labeling method for proteins that are not amenable to bacterial host over-expression, the most common method of isotope incorporation. Reductive 13C-methylation is a chemical reaction performed under mild conditions that modifies a protein''s primary amino groups (lysine ε-amino groups and the N-terminal α-amino group) to 13C-dimethylamino groups. The structure and function of most proteins are not altered by the modification, making it a viable alternative to metabolic labeling. Because reductive 13C-methylation adds sparse, isotopic labels, traditional methods of assigning the NMR signals are not applicable. An alternative assignment method using mass spectrometry (MS) to aid in the assignment of protein 13C-dimethylamine NMR signals has been developed. The method relies on partial and different amounts of 13C-labeling at each primary amino group. One limitation of the method arises when the protein''s N-terminal residue is a lysine because the α- and ε-dimethylamino groups of Lys1 cannot be individually measured with MS. To circumvent this limitation, two methods are described to identify the NMR resonance of the 13C-dimethylamines associated with both the N-terminal α-amine and the side chain ε-amine. The NMR signals of the N-terminal α-dimethylamine and the side chain ε-dimethylamine of hen egg white lysozyme, Lys1, are identified in 1H-13C heteronuclear single-quantum coherence spectra.  相似文献   

2.
A guinea pig liver transglutaminase (G-TGase)-mediated procedure for the site-specific modification of chimeric proteins was recently reported. Here, an alternative method with advantages over the recent approach is described. This protocol utilizes a microbial transglutaminase (M-TGase) instead of the G-TGase as the catalyst. M-TGase, which has rather broad structural requirements as compared to the G-TGase, tends to catalyze an acyl transfer reaction between the gamma-carboxamide group of a intact protein-bound glutamine residue and various primary amines. To demonstrate the applicability of the M-TGase-catalyzed protein modification in a drug delivery system, we have utilized recombinant human interleukin 2 (rhIL-2) as the target protein and two synthetic alkylamine derivatives of poly(ethyleneglycol) (PEG12; MW 12 kDa) and galactose-terminated triantennary glycosides ((Gal)(3))) as the modifiers. For the M-TGase-catalyzed reaction with PEG12 and (Gal)(3), 1 mol of alkylamine was incorporated per mole of rhIL-2, respectively. Peptide mapping of (Gal)(3)-modified rhIL-2 ((Gal)(3)-rhIL-2) by liquid chromatography-electrospray ionization mass spectrometry (LC-ESI/MS) suggested that the Gln74 residue in rhIL-2 was site specifically modified with (Gal)(3). The PEG12-rhIL-2 and (Gal)(3)-rhIL-2 conjugates retained full bioactivity relative to the unmodified rhIL-2. In pharmacokinetic studies, PEG12-rhIL-2 was eliminated more slowly from the circulation than rhIL-2, whereas (Gal)(3)-rhIL-2 accumulated in the liver via hepatic asialoglycoprotein receptor binding. The results of this study expand the applicability of the TGase-catalyzed methodology for the preparation of protein conjugates for clinical use.  相似文献   

3.
Thymosin β4 (43 aa) is a highly conserved acidic peptide, which regulates actin polymerization in mammalian cells by sequestering globular actin. Thymosin β4 is undergoing clinical trials as a drug for treatment of venous stasis ulcers, corneal wounds and injuries, as well as acute myocardial infarction. Currently, thymosin β4 is produced by a solid-phase chemical synthesis. Biotechnological synthesis of this peptide is difficult, because the N-terminal amino acid residue of thymosin β4 playing an essential role in the actin interaction is acetylated. In this study, we proposed a method for production of a thymosin β4 recombinant precursor and its directed chemical acetylation. Deacetylthymosin β4 was synthesized as a part of a hybrid protein containing thioredoxin and a specific TEV (tobacco etch virus) protease cleavage site. The following scheme was developed for purification of deacetylthymosin β4: (i) biosynthesis of a soluble hybrid protein (HP) in Escherichia coli, (ii) isolation of HP by ion exchange chromatography, (iii) cleavage of HP with TEV protease, and (iv) purification of deacetylthymosin β4 by ultrafiltration. N-Terminal acetylation of the serine residue of deacetylthymosin β4 was performed with acetic anhydride under acidic conditions (pH 3.0). The reaction yield was 55%. Thymosin β4 was finally purified by reverse-phase HPLC. The proposed method of isolation of recombinant thymosin β4 can be scaled-up and provide a highly purified preparation in a yield of 20 mg per 1 L of culture suitable for use in medical practice.  相似文献   

4.
The preparation of the thymine peptide nucleicacid (PNA) monomer carrying a 2-nitrophenyl group in position4 is described. This monomer is incorporated into PNAoligomers and reacted with amines to yield PNA oligomerscarrying 5-methylcytosine derivatives. During thedeprotection-modification step two side reactions weredetected: degradation of PNA oligomer from the N-terminal residue and modification of N 4-tert-butylbenzoyl cytosine residue. Protection of the N-terminal position and the use of N 4-acetyl group for the protection of cytosine eliminate these side reactions.  相似文献   

5.
Summary The preparation of the thymine peptide nucleic acid (PNA) monomer carrying a 2-nitrophenyl group in position 4 is described. This monomer is incorporated into PNA oligomers and reacted with amines to yield PNA oligomers carrying 5-methylcytosine derivatives. During the deprotection-modification step two side reactions were detected: degradation of PNA oligomer from theN-terminal residue and modification ofN 4-tert-butylbenzoyl cytosine residue. Protection of theN-terminal position and the use ofN 4-acetyl group for the protection of cytosine eliminate these side reactions.  相似文献   

6.
1. Pseudomonas cytochrome c-551 was modified by treatment at 20° with glyoxylate in the presence of pyridine and cupric sulphate. The change in its chromatographic properties was consistent with conversion of its N-terminal residue into an oxo acyl residue by transamination. 2. The product underwent further modification on treatment with o-phenylenediamine or 4-methylphenylene-1,2-diamine in strong acetate buffer at 37°. The final product had chromatographic properties and the N-terminal residue consistent with its differing from the native cytochrome solely in the absence of the original terminal residue. 3. The nature of analogous reactions supports these interpretations of the modifications. 4. These two treatments provide a method for specific removal of the N-terminal residue of a protein. 5. The intermediate and final products were oxidized by cytochrome oxidase at about the same rate as the original cytochrome.  相似文献   

7.
The presence of an acetyl blocking group at theN-terminus of the coat protein of papaya mosaic virus has been identified by FAB mass spectrometry. Furthermore, we have found that theN-terminal sequence of the protein is four amino-acid residues (AC-Ser-Lys-Ser-Ser-) longer than that previously reported, while Glu instead of Gln is theC-terminal residue. The present paper shows that PMV-protein is made up of 215 amino acid residues, with a molecular mass of 22,960 Da.This paper is dedicated to the memory of Mr. Maurice Rees.  相似文献   

8.
Anemone toxins are useful tools for the investigation of sodium channels in nerve membranes. For this application radioactive derivatives are necessary and are described in this report. Toxin II from Anemonia sulcata (ATX II) has been tritiated by reductive alkylation via the Schiff base formed by pyridoxal phosphate and amino groups of the peptide toxin. From the mixture of reaction products two monosubstituted toxins have been isolated by ion-exchange chromatography. The site of modification has been identified as the N-terminal amino group in the one toxin and the ?-amino group of lysine 35 in the other. The modified toxins prolonged action potentials similar to those of the native toxins. The threshold concentration to obtain this effect was approximately three times higher for the tritiated derivatives.  相似文献   

9.
“Mono-N-methyl scan” is a rational approach for the optimization of the peptide biological properties. N-Methylation of the –CONH– functionality is also a useful tool for discriminating solvent exposed from intramolecularly H-bonded secondary amide groups in peptides. We are currently extending this reaction to linear peptides based on Cα-tetrasubstituted α-amino acids. Following our study on the synthesis and conformation of the mono-N-methylated peptides from Cα-methylated residues, in this work we investigated the N-methylation reaction on homo-peptides to the pentamer level from the Cα-ethylated residue Cα,α-diethylglycine. Under the classical experimental conditions used, exclusively mono-N-methylation (on the N-terminal, acetylated residue) takes place, as unambiguously shown by mass spectrometry, 2D-NMR, and X-ray diffraction techniques. This backbone modification does not seem to involve any significant change in the peptide conformation in the crystalline state. Dedicated to the memory of Prof. Miroslav T. Leplawy (Technical University of Łodz, Poland), who performed the first synthesis of the extremely sterically demanding Cα,α-diethylglycine peptides.  相似文献   

10.
The reaction of the vulgare and U2 strains of tobacco mosaic virus with 4-sulpho-phenylisothiocyanate has been investigated. The coat protein of the U2 strain has a proline residue at its N-terminus and a lysine residue at position 53. Whereas both residues could be reacted with 4-sulpho-phenylisothiocyanate in the isolated coat protein, only proline-1 was modified during treatment of the intact virus with the same reagent, thereby showing that the loss of reactivity of the ?-amino group of lysine-53 is a consequence of the virus structure. The 4-sulpho-phenylthiocarbamoyl derivative of amino groups shows considerable tautomerism and, as a consequence, it proved possible to prepare a heavy-atom derivative of the intact U2 strain in which methyl mercury nitrate was bound by the modified N-terminal residue of the coat protein.On the other hand, when the intact vulgare strain was treated with 4-sulphophenylisothiocyanate, little or no modification of the ?-amino groups of the two lysine residues (positions 53 and 68) per polypeptide chain was observed. Taking into account previous studies on the reactivity of the amino groups of the coat protein in tobacco mosaic virus vulgare and assuming that all strains and mutants have closely similar three-dimensional structures, these experiments suggest that the N-terminal residue is more exposed (i.e. probably nearer the virus “surface”) than the side-chain of lysine-68, which in turn is more accessible than the side-chain of lysine-53. This interpretation is readily compatible with the results of X-ray diffraction analysis carried out on these chemically modified viruses (Mandelkow &; Holmes, 1974) and lends support to the hope that such methods of preparing heavy-atom derivatives of proteins will be of general use.  相似文献   

11.
The posttranslational methylation of N-terminal α-amino groups (α-N-methylation) is a ubiquitous reaction found in all domains of life. Although this modification usually occurs on protein substrates, recent studies have shown that it also takes place on ribosomally synthesized natural products. Here we report an investigation of the bacterial α-N-methyltransferase CypM involved in the biosynthesis of the peptide antibiotic cypemycin. We demonstrate that CypM has low substrate selectivity and methylates a variety of oligopeptides, cyclic peptides such as nisin and haloduracin, and the ε-amino group of lysine. Hence it may have potential for enzyme engineering and combinatorial biosynthesis. Bayesian phylogenetic inference of bacterial α-N-methyltransferases suggests that they have not evolved as a specific group based on the chemical transformations they catalyze, but that they have been acquired from various other methyltransferase classes during evolution.  相似文献   

12.
Granulocyte-colony stimulating factor stimulates production and antibacterial function of neutrophiles. Therapy using the recombinant protein drug represents a major step forward in oncology. The protein has not been, however, completely sequenced at the protein level and this formed the rationale of the current study. Recombinant G-CSF (filgrastim) was run on two-dimensional gel electrophoresis (2DE), the protein was in-gel digested with trypsin and chymotrypsin, and peptides were analysed on Nano-ESI-LC–MS/MS (high performance ion trap, HCT). Bioinformatic tools used were Mascot v2.2 and ModiroTM v1.1 softwares. A single spot was detected on 2DE and peptides resulting from in-gel digestion were unambiguously identified by the MS/MS approach leading to complete sequencing when both searching engines were applied. N-terminal methionine loss, N-terminal methionine oxidation and amidination were observed. Both softwares identified modifications. Complete sequencing by a non-sophisticated and rapid gel-based mass spectrometry approach confirmed the primary structure predicted from nucleic acid sequences. A chemical modification of glutamine 26 with the interim name PentylamineBiotin (Unimod accession number #800) compatible with biotinylation with 5-(biotinamido) pentylamine by the producer was detected by both softwares. Although there is some evidence that biotinylated G-CSF analogues are active, it remains open whether this modification may be responsible for the side effects observed or lead to changes of antigenicity.  相似文献   

13.
A mutanase (α-1,3-glucanase)-producing microorganism was isolated from a soil sample and was identified as a relative of Paenibacillus sp. The mutanase was purified to homogeneity from culture, and its molecular mass was around 57 kDa. The gene for the mutanase was cloned by PCR using primers based on the N-terminal amino acid sequence of the purified enzyme. The determined nucleotide sequence of the gene consisted of 3651-bp open reading frame that encoded a predicted 1217-amino acid polypeptide including a 43-amino acid signal peptide. The mature enzyme showed similarity to mutanases RM1 of Bacillus sp. strain RM1 and KA-304 of Bacillus circulans with 65.6% and 62.7% identity, respectively. The predicted molecular mass of the mutanase was 123 kDa. Thus, the enzyme purified from the isolate appears to be truncated by proteolysis. The genes for the full-length and truncated mutanases were expressed in Bacillus subtilis cells, and the corresponding recombinant enzymes were purified to homogeneity. The molecular masses of the two enzymes were 116 and 57 kDa, respectively. The specific activity was 10-fold higher for the full-length enzyme than for the truncated enzyme. The optimal pH and temperature for both recombinant enzymes was pH 6.4 in citrate buffer and 45 °C to 50 °C. Amongst several tested polysaccharides, the recombinant full-length enzyme specifically hydrolyzed mutan.  相似文献   

14.
    
Two forms of recombinant human G-CSF (rhG-CSF) are available for clinical use: filgrastim is expressed inE coli and non-glycosylated, whereas lenograstim is derived from Chinese hamster ovary (CHO) cells and glycosylated. The function of the sugar chain, accounting for approximately 4% of the molecular weight of lenograstim (and native G-CSF), is not known. Glycosylation of the G-CSF molecule does not prolong its circulation half life. Lenograstim is more active than filgrastim (and research-use deglycosylated G-CSF) on a weight-by-weight basis inin vitro colony-forming and cell line assays. An international potency standard assigns a specific activity of 100 000 IU/μg to filgrastim and 127 760 IU/μg to lenograstim. Correspondingly, two randomised crossover studies in normal subjects, comparingmass equivalent doses of the two rhG-CSFs, have demonstrated a 25–30% higher concentration of blood stem cells (CD34+, CFU-GM) during lenograstim administration. No difference in side effects was observed. Results from a prospective, randomised, non-crossover trial in breast cancer patients suggest thatbioequivalent doses of filgrastim and lenograstim have a similar effect on mobilisation of CD34+ cells and immature CD34+ cell subsets, respectively. Although comparisons outside the setting of stem cell mobilisation are lacking, the clinical relevance of the greater specific activity of lenograstim may thus be limited. The difference in potency between μg identical doses of the two rhG-CSFs makes dosing in biological units (IU) rather than mass units (μg) more appropriate.  相似文献   

15.
Chemical modification of chitosan by introducing quaternary ammonium moieties into the polymer backbone renders excellent antimicrobial activity to the adducts. In the present study, we have synthesized 17 derivatives of chitosan consisting of a variety of N-aryl substituents bearing either electron-donating or electron-withdrawing groups. Selective N-arylation of chitosan was performed via Schiff bases formed by the reaction between the 2-amino groups of the glucosamine residue of chitosan with aromatic aldehydes under acidic conditions, followed by reduction of the Schiff base intermediates with sodium cyanoborohydride. Each of the derivatives was further quaternized using N-(3-chloro-2-hydroxypropyl)trimethylammonium chloride (Quat-188) as the quaternizing agent that reacted with either the primary amino or hydroxyl groups of the glucosamine residue of chitosan. The resulting quaternized materials were water soluble at neutral pH. Minimum inhibitory concentration (MIC) antimicrobial studies of these materials were carried out on Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria in order to explore the impact of the extent of N-substitution (ES) on their biological activities. At ES less than 10%, the presence of the hydrophobic substituent, such as benzyl and thiophenylmethyl, yielded derivatives with lower MIC values than chitosan Quat-188. Derivatives with higher ES exhibited reduced antibacterial activity due to low quaternary ammonium moiety content. At the same degree of quaternization, all quaternized N-aryl chitosan derivatives bearing either electron-donating or electron-withdrawing substituents did not contribute antibacterial activity relative to chitosan Quat-188. Neither the functional group nor its orientation impacted the MIC values significantly.  相似文献   

16.
A novel method for selectively labeling and isolating N-terminal peptide from protein has been developed. An Nα-amino group of protein was converted to a carbonyl group through transamination reaction and the resulting carbonyl group was modified with O-(4-nitrobenzyl)hydroxylamine (NBHA). After proteolytic digestion using Grifola frondosa metalloendopeptidase (LysN), the modified N-terminal peptide remained unbound in the following treatment using amino-reactive p-phenylenediisothiocyanate (DITC) glass, whereas peptides other than the N-terminal peptide were effectively scavenged from the supernatant solution. The modified N-terminal peptide was thus successfully isolated and sequenced by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) analysis.  相似文献   

17.
Recombinant human erythropoietin (rhEPO) has been purified to apparent homogeneity from a Chinese hamster ovary cell line expressing a cDNA clone of the human gene. NH2-terminal sequencing of the recombinant hormone indicates that the 27-residue leader peptide is correctly and consistently cleaved during secretion of the recombinant protein into conditioned medium, yielding the mature NH2 terminus (Ala-Pro-Pro-Arg...). Analysis of the COOH terminus of rhEPO by peptide mapping and fast atom bombardment mass spectrometry (FABMS) demonstrates that the arginyl residue predicted to be at the COOH terminus (based on confirmation of both genomic and cDNA sequences) is completely missing from the purified protein. The truncated form of the recombinant hormone, designated des-Arg166 rhEPO, displays an in vivo specific activity of greater than 200,000 units/mg protein. Structural characterization of natural human urinary EPO (uEPO) by peptide mapping and FABMS reveals that the urinary hormone is also missing the COOH-terminal Arg166 amino acid residue, a modification that remained undetected until now. There is no evidence of further proteolytic processing at the COOH terminus beyond specific removal of the Arg166 amino acid residue in either rhEPO or uEPO. On the basis of the FABMS data, we propose that the physiologically active form of the hormone circulating in plasma and interacting with target cells in vivo is des-Arg166 EPO.  相似文献   

18.
N-Amidinoproline, a hybrid structure modeling key features of the Arg-Pro sequence, was synthesized. The activation of carboxyl group of free N-amidinoproline was found to result in the formation of a cyclic side product, whose structure was confirmed by ESI MS, 1H NMR, and 13C NMR spectra. The preparation of N-(mesitylenesulfonylamidino)-L-proline using the mesitylenesulfonyl derivative of 2-methylisothiourea was demonstrated to be accompanied by partial racemization. The target product was synthesized by modification of N-amidinoproline by mesitylenesulfonyl chloride. The possibility of using N-amidinoproline in the N-terminal modification of a peptide chain was shown by the example of synthesis of an analogue of the 95–98 fragment of fibrinogen α chain.  相似文献   

19.
Azo coupling reactions of N-α-acetylhistidine, N-α-acetyltyrosine, and N-α-acetyllysine with p-methylbenzenediazonium ion were investigated as model reactions to obtain information on the relative reactivity of the histidine, tyrosine, and lysine moieties of protein, separated from structural effects. The azo coupling yields of the amino acids increased as the pH of the reaction medium was increased, indicating that the ractive species are the imidazole anion of histidine, the phenolate anion of tyrosine, and the neutral ε-amino group of lysine. It was calculated, based on percentage yields of the azo products, that the imidazole anion is more reactive than the phenolate anion and the ε-amino group, respectively.  相似文献   

20.
Functional modification of protein through N-terminal acetylation is common in eukaryotes but rare in prokaryotes. Prothymosin α is an essential protein in immune stimulation and apoptosis regulation. The protein is N-terminal acetylated in eukaryotes, but similar modification has never been found in recombinant protein produced in prokaryotes. In this study, two mass components of recombinant human prothymosin α expressed in Escherichia coli were identified and separated by RP-HPLC. Mass spectrometry of the two components showed that one of them had a 42 Da mass increment as compared with the theoretical mass of human prothymosin α, which suggested a modification of acetylation. The mass of another one was equal to that of the theoretical one. Peptides mass spectrometry of the modified component showed that the 42-Da mass increment occurred in the N-terminal peptide domain, and MS/MS peptide sequencing of the N-terminal peptide found that the acetylated modification occurred at the N-terminal serine residue. So, part of the recombinant human prothymosin α produced by E. coli was N-terminal acetylated. This finding adds a new clue for the mechanism of acetylated modification in prokaryotes, and also suggested a new method for production of N-terminal modificated prothymosin α and thymosin α1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号