首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 172 毫秒
1.
趋磁细菌WD—1的超微结构及批量培养方法   总被引:3,自引:0,他引:3  
报道了趋磁细菌WD-1的超微结构,菌株WD-1的超薄切片清楚地显示了细胞壁(CW)、细胞膜(CM)、细胞内部的聚β-羟基丁酸(poly-β-hydroxybutyrate)和磁小体(Magnetosomes MS)。建立了菌体和磁小体批量培养和收集的方法,经培养每升培养基可获得135mg干菌体。经SEM能谱分析菌体和磁小都含有Fe、AI、Si、P、S、Ca、Zn等元素组分;菌体和磁小体中铁的含量分别为3.07%和84.57%。  相似文献   

2.
趋磁细菌的磁小体   总被引:4,自引:0,他引:4  
趋磁细菌是一类对磁场有趋向性反应的细菌,其菌体能吸收外界环境中铁元素并在体内合成包裹有膜的纳米磁性颗粒Fe3O4或Fe3O3S4晶体即磁小体。综述了趋磁细菌的磁小体生物矿化的条件,以及趋磁细菌的铁离子吸收、磁小体囊泡的形成、铁离子的转运到磁小体囊泡及囊泡中受控的Fe3O4生物矿化的分子生物学和生物化学等方面的研究进展,重点介绍了趋磁细菌磁小体合成机制的研究进展及未来研究磁小体的发展方向。  相似文献   

3.
近年来,趋磁细菌及其生物自身合成的磁小体由于良好的生物安全性逐渐被人们所认识,并被用于生物工程和医学应用研究。与人工化学合成磁性纳米颗粒相比,从趋磁细菌中提取的磁小体具有生物膜包被、生物相容性高、粒径均一及磁性高等优势。趋磁细菌因磁小体在其胞内呈链状排列,具有沿磁场方向泳动的能力,也被应用于各种应用研究。因此,综述了趋磁细菌及磁小体特性,并就最近的研究进展重点综述趋磁细菌和磁小体在生物工程及医学应用等领域的最新研究进展。  相似文献   

4.
趋磁细菌是一类具有趋磁行为的革兰氏阴性茵的统称,其趋磁特性是由于菌体内含有磁小体。磁小体是由膜包被的纳米尺寸单磁畴颗粒,在菌体内多呈链状排列。自被发现以来,趋磁细菌及磁小体已逐步成为新的生物资源被广泛研究于材料学、医学、生物学、物理学、地质学等多个学科领域,并在仿生学、生态学、医学、地质学、工业处理、卫生检验等多个领域得到应用。主要介绍了趋磁细菌的生物特征、研究发展进程,以及近年来在多个学科领域的研究与应用。  相似文献   

5.
徐丛  张文燕  陈一然  张蕊  董逸  杜海舰  潘红苗  肖天 《生态学报》2016,36(14):4346-4354
在青岛太平湾潮间带沉积物中发现了一定量的海洋趋磁细菌,最大丰度可达350个/cm~3。透射电镜观察发现该区域趋磁细菌均为趋磁球菌。磁小体个体形状单一,皆是立方体状;磁小体排列方式多样,以链状排列为主,包括单链、双链与多链,也有少数成簇排列。EDS结果表明,磁小体成分为四氧化三铁。据估算,趋磁细菌的铁元素含量(干重)范围在0.40%—6.91%之间,平均为2.19%。通过16S rRNA基因文库的构建与测序得到了47个趋磁细菌序列,分属13个OTU。系统发育分析结果表明,它们都属于α-变形菌纲,其中9个OTU与已知最相似序列的相似性低于97%,有5个OTU与已知最相似序列的相似性低于93%,可能代表了趋磁细菌的9个新种、5个新属,说明该区域潜在的微生物新种质资源十分可观。  相似文献   

6.
何世颖  顾宁 《生物磁学》2006,6(1):19-21
趋磁性细菌是一种由于体内含有对磁场具有敏感性的磁小体,而能够沿着磁力线运动的特殊细菌,本文综述了趋磁细菌的分布、分类、特性、磁小体研究以及趋磁细菌在生物导航方面的研究进展.  相似文献   

7.
趋磁细菌及其应用于生物导航的研究进展   总被引:2,自引:2,他引:0       下载免费PDF全文
趋磁性细菌是一种由于体内含有对磁场具有敏感性的磁小体,而能够沿着磁力线运动的特殊细菌,本文综述了趋磁细菌的分布、分类、特性、磁小体研究以及趋磁细菌在生物导航方面的研究进展。  相似文献   

8.
【目的】研究趋磁细菌AMB-1生物矿化相关蛋白Mms6与磁小体合成的关系。【方法】在液体静置培养条件和好氧条件下对AMB-1进行培养,分析基因mms6在不同培养条件下转录水平的变化;对基因mms6进行基因敲除,分析突变株的生长和产磁变化。【结果】基因mms6的转录水平随着磁小体的合成逐渐升高;mms6的突变导致菌株在液体静置培养条件下趋磁性降低约50%,但不会影响菌株的生长水平。【结论】基因mms6参与了趋磁细菌AMB-1胞内磁小体的合成。  相似文献   

9.
刘召明  林敏  杨雪  汲霞 《生物工程学报》2021,37(9):3190-3200
提高抗肿瘤药物的靶向性是肿瘤治疗、降低药物副作用的重要手段。在肿瘤组织内部由于癌细胞的快速增殖致使其形成低氧区,低氧区会对多种肿瘤治疗方案产生耐受。趋磁细菌 (Magnetotactic bacteria, MTB) 是一类能在细胞内产生外包生物膜、纳米尺寸、单磁畴磁铁矿 (Fe3O4) 或硫铁矿 (Fe3S4) 晶体颗粒-磁小体的微生物的统称。在磁场的作用下,趋磁细菌可凭借鞭毛运动至厌氧区。趋磁细菌在动物体内毒性较低且生物相容性良好,其磁小体与人工合成的磁性纳米材料相比优势显著。文中在介绍趋磁细菌及其磁小体生物学特点、理化性能的基础上,综述了趋磁细菌作为载体偶联药物进入肿瘤内部,并通过感受低氧信号定位于肿瘤低氧区,以及趋磁细菌竞争肿瘤细胞铁源的研究进展,总结了磁小体运载化疗药物、抗体、DNA疫苗靶向结合肿瘤的研究进展,分析了趋磁细菌及磁小体肿瘤治疗中面临的问题,并对趋磁细菌和磁小体在肿瘤治疗中的应用进行了展望。  相似文献   

10.
趋磁细菌磁小体研究进展   总被引:5,自引:0,他引:5  
趋磁细菌能在细胞内形成由膜包裹的纳米级单畴磁性颗粒——磁小体。磁小体的形成是受生物严格控制的矿化过程,包括铁离子的吸收、转运和结晶成核等。磁小体膜在磁铁矿(Fe3O4)晶体的形成中起着重要的作用。主要介绍近年来关于磁小体形成过程和参与这一过程的蛋白质等方面的一些重要研究进展。  相似文献   

11.
Magnetotactic bacteria (MTB) are a diverse group of microorganisms with the ability to orient and migrate along geomagnetic field lines. This unique feat is based on specific intracellular organelles, the magnetosomes, which, in most MTB, comprise nanometer-sized, membrane bound crystals of magnetic iron minerals and organized into chains via a dedicated cytoskeleton. Because of the special properties of the magnetosomes, MTB are of great interest for paleomagnetism, environmental magnetism, biomarkers in rocks, magnetic materials and biomineralization in organisms, and bacterial magnetites have been exploited for a variety of applications in modern biological and medical sciences. In this paper, we describe general characteristics of MTB and their magnetic mineral inclusions, but focus mainly on the magnetosome formation and the magnetisms of MTB and bacterial magnetosomes, as well as on the significances and applications of MTB and their intracellular magnetic mineral crystals.  相似文献   

12.
Magnetotactic bacteria (MTB) represent a heterogeneous group of Gram-negative aquatic prokaryotes with a broad range of morphological types, including vibrioid, coccoid, rod and spirillum. MTBs possess the virtuosity to passively align and actively swim along the magnetic field. Magnetosomes are the trademark nano-ranged intracellular structures of MTB, which comprise magnetic iron-bearing inorganic crystals enveloped by an organic membrane, and are dedicated organelles for their magnetotactic lifestyle. Magnetosomes endue high and even dispersion in aqueous solutions compared with artificial magnetites, claiming them as paragon nanomaterials. MTB and magnetosomes offer high technological potential in modern science, technology and medicines. This review focuses on the applicability of MTB and magnetosomes in various areas of modern benefits.  相似文献   

13.
We investigate through simulations the phenomena of magnetoreception to enable an understanding of the minimum requirements of a fail-safe mechanism, operational at the cellular level, to sense a weak magnetic field at ambient temperature in a biologically active environment. To do this, we use magnetotactic bacteria (MTB) as our model system. The magnetic field sensing ability of these bacteria is due to the presence of magnetosomes, which are internal membrane-bound organelles that contain an iron-based magnetic mineral crystal. These magnetosomes are usually found arranged in a chain aligned with the long axis of the bacterial body. This arrangement yields an overall magnetic dipole moment to the bacterial cell. To simulate this orientation process, we set up a rotational Langevin stochastic differential equation and solve it repeatedly over appropriate time steps for isolated spherical shaped MTB as well as for a more realistic model of spheroidal MTB with flagella. The orientation process appears to depend on shape parameters with spheroidal MTB showing a slower response time compared to spherical MTB. Further, our simulation also reveals that the alignment to the external magnetic field is more robust for an MTB when compared to single magnetosome. For the simulation involving magnetosomes, we include an extra torque that arises from the twisting of an attachment tether and enhance the viscosity of the surrounding medium to mimic intracellular conditions in the governing Langevin equation. The response time of alignment is found to be substantially reduced when one includes a dipole interaction term with a neighboring magnetosome and the alignment becomes less robust with increase in inter dipole distance. The alignment process can thereby be said to be very sensitively dependent on the distance between magnetosomes. Simulating the process of alignment between two neighboring magnetosomes, both in the absence and presence of an ambient magnetic field, we conclude that alignment between these dipoles at the distances typical in an MTB is highly probable and it would be the locked unit that responds to changes in the external magnetic field.  相似文献   

14.
Magnetotactic bacteria show an ability to navigate along magnetic field lines because of magnetic particles called magnetosomes. All magnetotactic bacteria are unicellular except for the multicellular prokaryote (recently named 'Candidatus Magnetoglobus multicellularis'), which is formed by an orderly assemblage of 17-40 prokaryotic cells that swim as a unit. A ciliate was used in grazing experiments with the M. multicellularis to study the fate of the magnetosomes after ingestion by the protozoa. Ciliates ingested M. multicellularis, which were located in acid vacuoles as demonstrated by confocal laser scanning microscopy. Transmission electron microscopy and X-ray microanalysis of thin-sectioned ciliates showed the presence of M. multicellularis and magnetosomes inside vacuoles in different degrees of degradation. The magnetosomes are dissolved within the acidic vacuoles of the ciliate. Depending on the rate of M. multicellularis consumption by the ciliates the iron from the magnetosomes may be recycled to the environment in a more soluble form.  相似文献   

15.
Magnetotactic bacteria (MTB) in the phylum Nitrospirae synthesize up to hundreds of intracellular bullet-shaped magnetite magnetosomes. In the present study, a watermelon-shaped magnetotactic bacterium (designated MWB-1) from Lake Beihai in Beijing, China, was characterized. This uncultivated microbe was identified as a member of the phylum Nitrospirae and represents a novel phylogenetic lineage with ≥6% 16S rRNA gene sequence divergence from all currently described MTB. MWB-1 contained 200 to 300 intracellular bullet-shaped magnetite magnetosomes and showed a helical swimming trajectory under homogeneous magnetic fields; its magnetotactic velocity decreased with increasing field strength, and vice versa. A robust phylogenetic framework for MWB-1 and all currently known MTB in the phylum Nitrospirae was constructed utilizing maximum-likelihood and Bayesian algorithms, which yielded strong evidence that the Nitrospirae MTB could be divided into four well-supported groups. Considering its population densities in sediment and its high numbers of magnetosomes, MWB-1 was estimated to account for more than 10% of the natural remanent magnetization of the surface sediment. Taken together, the results of this study suggest that MTB in the phylum Nitrospirae are more diverse than previously realized and can make important contributions to the sedimentary magnetization in particular environments.  相似文献   

16.
Magnetotactic bacteria (MTB) are major constituents of natural microbial communities in sediments and chemically stratified water columns. The ability of MTB to migrate along magnetic field lines is based on specific intracellular structures, the magnetosomes, which, in most MTB, are nanometer-sized, membrane-bound magnetic particles consisting of the iron mineral magnetite (Fe3O4). A broad diversity of morphological forms has been found in various MTB. The unique characteristics of bacterial magnetosomes have attracted a broad interdisciplinary research interest. The magnetosome membrane (MM) in Magnetospirillum gryphiswaldense contains a number of specific Mam proteins. Several mam genes were analyzed and assigned to different genomic regions. Many of the Mam proteins are highly conserved in other MTB but display low sequence similarity to any proteins from nonmagnetic organisms. Electronic Publication  相似文献   

17.
Magnetotactic bacteria (MTB), which can orient and migrate along a magnetic line of force due to intracellular nanosized magnetosomes, have been a subject of research in the medical field, in dating environmental changes, and in environmental remediation. This paper reviews the recent development of MTB as biosorbents for heavy metals. Ultrastructures and taxis of MTB are investigated. Adsorptions in systems of unitary and binary ions are highlighted, as well as adsorption conditions (temperature, pH value, biomass concentration, and pretreatments). The separation and desorption of MTB in magnetic separators are also discussed. A green method to produce metal nanoparticles is provided, and an energy-efficient way to recover precious metals is put forward during biosorption.  相似文献   

18.
Magnetotactic bacteria (MTB) build magnetic nanoparticles in chain configuration to generate a permanent dipole in their cells as a tool to sense the Earth’s magnetic field for navigation toward favorable habitats. The majority of known MTB align their nanoparticles along the magnetic easy axes so that the directions of the uniaxial symmetry and of the magnetocrystalline anisotropy coincide. Desulfovibrio magneticus sp. strain RS-1 forms bullet-shaped magnetite nanoparticles aligned along their (100) magnetocrystalline hard axis, a configuration energetically unfavorable for formation of strong dipoles. We used ferromagnetic resonance spectroscopy to quantitatively determine the magnetocrystalline and uniaxial anisotropy fields of the magnetic assemblies as indicators for a cellular dipole with stable direction in strain RS-1. Experimental and simulated ferromagnetic resonance spectral data indicate that the negative effect of the configuration is balanced by the bullet-shaped morphology of the nanoparticles, which generates a pronounced uniaxial anisotropy field in each magnetosome. The quantitative comparison with anisotropy fields of Magnetospirillum gryphiswaldense, a model MTB with equidimensional magnetite particles aligned along their (111) magnetic easy axes in well-organized chain assemblies, shows that the effectiveness of the dipole is similar to that in RS-1. From a physical perspective, this could be a reason for the persistency of bullet-shaped magnetosomes during the evolutionary development of magnetotaxis in MTB.  相似文献   

19.
Magnetotactic bacteria (MTB) synthesize intracellular magnetic nanocrystals called magnetosomes, which are composed of either magnetite (Fe3O4) or greigite (Fe3S4) and covered with lipid membranes. The production of magnetosomes is achieved by the biomineralization process with strict control over the formation of magnetosome membrane vesicles, uptake and transport of iron ions, and synthesis of mature crystals. These magnetosomes have high potential for both biotechnological and nanotechnological applications, but it is still extremely difficult to grow MTB and produce a large amount of magnetosomes under the conventional cultural conditions. Here, we investigate as a first attempt the effect of polyethylene glycol (PEG) added to the culture medium on the increase in the yield of magnetosomes formed in Magnetospirillum magnetotacticum MS-1. We find that the yield of the formation of magnetosomes can be increased up to approximately 130 % by adding PEG200 to the culture medium. We also measure the magnetization of the magnetosomes and find that the magnetosomes possess soft ferromagnetic characteristics and the saturation mass magnetization is increased by 7 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号