首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
 A new system to study programmed cell death in plants is described. Tomato (Lycopersicon esculentum Mill.) suspension cells were induced to undergo programmed cell death by treatment with known inducers of apoptosis in mammalian cells. This chemical-induced cell death was accompanied by the characteristic features of apoptosis in animal cells, such as typical changes in nuclear morphology, the fragmentation of the nucleus and DNA fragmentation. In search of processes involved in plant apoptotic cell death, specific enzyme inhibitors were tested for cell-death-inhibiting activity. Our results showed that proteolysis plays a crucial role in apoptosis in plants. Furthermore, caspase-specific peptide inhibitors were found to be potent inhibitors of the chemical-induced cell death in tomato cells, indicating that, as in animal systems, caspase-like proteases are involved in the apoptotic cell death pathway in plants. Received: 5 August 1999 / Accepted: 14 March 2000  相似文献   

2.
Voss P  Grune T 《Amino acids》2007,32(4):527-534
Summary. The accumulation of oxidized proteins is known to be linked to some severe neurodegenerative diseases like Alzheimer’s, Parkinson’s and Huntington’s disease. Furthermore, the aging process is also accompanied by an ongoing aggregation of misfolded and damaged proteins. Therefore, mammalian cells have developed potent degradation systems, which selectively degrade damaged and misfolded proteins. The proteasomal system is largely responsible for the removal of oxidatively damaged proteins form the cellular environment. Not only cytosolic proteins are prone to oxidative stress, also nuclear proteins are readily oxidized. The nuclear proteasomal system is responsible for the degradation of these proteins. This review is focused on the specific degradation of oxidized nuclear proteins, the role of the proteasome in this process and the regulation of the nuclear proteasomal system under oxidative conditions.  相似文献   

3.
Travelling of proteins through membranes: translocation into chloroplasts   总被引:9,自引:0,他引:9  
Schleiff E  Soll J 《Planta》2000,211(4):449-456
 Most proteins involved in plastid biogenesis are encoded by the nuclear genome. They are synthesised in the cytosol and have to be transported toward and subsequently translocated into the organelle. This targeting and import process is initiated by a specific chloroplast-targeting signal. The targeting signal of the preprotein is recognised and modified by cytosolic proteins which function in transport toward the chloroplast and in maintaining the import-competent state of the preprotein. The precursor is transferred onto a multi-component complex in the outer envelope of the chloroplasts, which is formed by receptor proteins and the translocation channel. Some proteins, not containing transit sequences, are directly sorted into the outer membrane whereas the majority, containing transit sequences, will be translocated into the stroma. This involves the joint action of a protein complex in the outer envelope, one complex in the inner envelope, and soluble proteins in the intermembrane space and the stroma. The origin of this translocation complex following the endosymbiotic events is an unsolved question. Recent identification of homologous proteins to some members of this machinery in the cyanobacterium Synechocystis PCC6803 gives an initial insight into the origin of the translocation complex. Received: 27 December 1999 / Accepted: 29 March 2000  相似文献   

4.
Kahana C 《Amino acids》2007,33(2):225-230
Summary. Protein degradation mediated by the ubiquitin/proteasome system is the major route for the degradation of cellular proteins. In this pathway the ubiquitination of the target proteins is manifested via the concerted action of several enzymes. The ubiquinated proteins are then recognized and degraded by the 26S proteasome. There are few reports of proteins degraded by the 26S protesome without ubiquitination, with ornithine decarboxylase being the most notable representative of this group. Interestingly, while the degradation of ODC is independent of ubiquitination, the degradation of other enzymes of the polyamine biosynthesis pathway is ubiquitin dependent. The present review describes the degradation of enzymes and regulators of the polyamine biosynthesis pathway.  相似文献   

5.
DeGuzman R  Riggs CD 《Planta》2000,210(6):921-924
Microsporogenesis in Lilium longiflorum Thunb. is a naturally synchronous process and affords a system in which to study stage-specific events of meiosis and anther development. Zymogram gel analyses were conducted with extracts from a variety of stages of anther development to identify proteinases which likely play roles in anther metabolism. These experiments revealed that several proteinases are present at different stages of anther development, and class-specific inhibitors were used to classify these enzymes. Proteolytic activities increased as anther development proceeded and these activities were temporally correlated with the apoptotic events which precede dehiscence, as well as with events crucial for the maturation of viable pollen. Received: 12 October 1999 / Accepted: 13 November 1999  相似文献   

6.
Regulation of apoptosis by nitrosative stress   总被引:3,自引:0,他引:3  
Nitrosative stress can prevent or induce apoptosis. It occurs via S-nitrosylation by the interaction of nitric oxide (NO) with the biological thiols of proteins. Cellular redox potential and non-heme iron content determine S-nitrosylation. Apoptotic cell death is inhibited by S-nitrosylation of the redox-sensitive thiol in the catalytic site of caspase family proteases, which play an essential role in the apoptotic signal cascade. Nitrosative stress can also promote apoptosis by the activation of mitochondrial apoptotic pathways, such as the release of cytochrome c, an apoptosis-inducing factor, and endonuclease G from mitochondria, as well as the suppression of NF-kB activity. In this article we reviewed the mechanisms whereby S-nitrosylation and nitrosative stress regulate the apoptotic signal cascade.  相似文献   

7.
Nitric oxide is a pain signaling molecule and exerts its influence through two primary pathways: by stimulation of soluble guanylylcyclase and by direct S-nitrosylation (SNO) of target proteins. We assessed in the spinal cord the SNO-proteome with two methods, two-dimensional S-nitrosothiol difference gel electrophoresis (2D SNO-DIGE) and SNO-site identification (SNOSID) at baseline and 24h after sciatic nerve injury with/without pretreatment with the nitric oxide synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME). After nerve injury, SNO-DIGE revealed 30 proteins with increased and 23 proteins with decreased S-nitrosylation. SNO-sites were identified for 17 proteins. After sham surgery only 3 proteins were up-nitrosylated. L-NAME pretreatment substantially reduced both constitutive and nerve injury evoked up-S-nitrosylation. For the top candidates S-nitrosylation was confirmed with the biotin switch technique and time course analyses at 1 and 7days showed that SNO modifications of protein disulfide isomerase, glutathione synthase and peroxiredoxin-6 had returned to baseline within 7days whereas S-nitrosylation of mitochondrial aconitase 2 was further increased. The identified SNO modified proteins are involved in mitochondrial function, protein folding and transport, synaptic signaling and redox control. The data show that nitric oxide mediated S-nitrosylation contributes to the nerve injury-evoked pathology in nociceptive signaling pathways.  相似文献   

8.
Arakawa T  Tsumoto K  Kita Y  Chang B  Ejima D 《Amino acids》2007,33(4):587-605
Summary. Amino acids are widely used in biotechnology applications. Since amino acids are natural compounds, they can be safely used in pharmaceutical applications, e.g., as a solvent additive for protein purification and as an excipient for protein formulations. At high concentrations, certain amino acids are found to raise intra-cellular osmotic pressure and adjust to the high salt concentrations of the surrounding medium. They are called “compatible solutes”, since they do not affect macromolecular function. Not only are they needed to increase the osmotic pressure, they are known to increase the stability of the proteins. Sucrose, glycerol and certain amino acids were used to enhance the stability of unstable proteins after isolation from natural environments. The mechanism of the action of these protein-stabilizing amino acids is relatively well understood. On the contrary, arginine was accidentally discovered as a useful reagent for assisting in the refolding of recombinant proteins. This effect of arginine was ascribed to its ability to suppress aggregation of the proteins during refolding, thereby increasing refolding efficiency. By the same mechanism, arginine now finds much wider applications than previously anticipated in the research and development of proteins, in particular in pharmaceutical applications. For example, arginine solubilizes proteins from loose inclusion bodies, resulting in efficient production of active proteins. Arginine suppresses protein–protein interactions in solution and also non-specific adsorption to gel permeation chromatography columns. Arginine facilitates elution of bound proteins from various column resins, including Protein-A or dye affinity columns and hydrophobic interaction columns. This review covers various biotechnology applications of amino acids, in particular arginine.  相似文献   

9.
Wan C  La Y  Zhu H  Yang Y  Jiang L  Chen Y  Feng G  Li H  Sang H  Hao X  Zhang G  He L 《Amino acids》2007,32(1):101-108
Summary. In this study we focused on detecting schizophrenia related changes of plasma proteins using proteomic technology and examining the relation between schizophrenia and haptoglobin (Hp) genotype. We investigated plasma proteins from schizophrenic subjects (n = 42) and healthy controls (n = 46) by two-dimensional gel electrophoresis (2-DE) in combination with mass spectrometry. To further reveal the genetic relationship between acute phase proteins (APPs) and schizophrenia disease, we tested Hp α1/Hp α2 (Hp 1/2) polymorphism and two single nucleotide polymorphisms (SNPs) of Hp, rs2070937 and rs5473, for associations with schizophrenia in the Chinese Han population. With the relatively high number of samples for 2-DE work, we found that four proteins in the family of positive APPs were all up-regulated in patients. In genetic association study, we found significant associations existing between schizophrenia and Hp polymorphisms, Hp 1/2 and rs2070937 variants. Schizophrenia is accompanied by both an altered expression of Hp protein and a different genotype distribution of Hp gene, demonstrating that Hp is associated with schizophrenia. The results from proteomic and genomic aspects both indicate that acute phase reaction is likely to be an aetiological agent in the pathophysiology of schizophrenia, but not just an accompanying symptom. The positive APPs are schizophrenic related proteins, with the highly concordant results on four positive APPs. The first two authors contributed equally.  相似文献   

10.
Proteins that are preferentially produced in developing xylem may play a substantial role in xylogenesis. To reveal the identity of these proteins, comparative two-dimensional polyacrylamide gel electrophoresis was performed on young differentiating xylem, mature xylem, and bark of poplar (Populus trichocarpa Hook. cv. `Trichobel') harvested at different times of the year. The most-abundant xylem proteins were identified by microsequence analysis. For 17 of these proteins a putative function could be assigned based on similarity with previously characterized proteins, and for 15 out of these corresponding expressed sequence tags (ESTs) were found in the poplar EST database. The identified xylem–preferential proteins, defined by comparing the protein patterns from xylem and bark, were all involved in the phenylpropanoid pathway: two caffeoyl-coenzyme A O-methyltransferases (CCoAOMT), one phenylcoumaran benzylic ether reductase (PCBER), one bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase (COMT), five S-adenosyl-L-methionine synthetases, and one homologue of glycine hydroxymethyltransferase (GHMT). Remarkably, the biological function of the two most-abundant xylem-preferential proteins (PCBER and a GHMT homologue) remains unclear. In addition, several housekeeping enzymes were identified: two enolases, two glutamine synthetases, one 70-kDa heat-shock cognate, one calreticulin, and one α-tubulin. In comparison to the xylem-preferential proteins, the housekeeping proteins were expressed at significant levels in the bark as well. Also, several additional protein spots were detected for CCoAOMT, PCBER, and COMT by immunoblot. Our data show that for the study of xylogenesis, two-dimensional protein gel comparisons combined with systematic protein sequencing may yield information complementary to that from EST sequencing strategies. Received: 28 June 1999 / Accepted: 3 September 1999  相似文献   

11.
Summary. Objectives. Human gliomas have a catastrophic prognosis with a median survival in the range of one year even after therapeutic treatment. Relatively high resistance towards apoptotic stimuli is the characteristic feature of malignant gliomas. Since cell cycle control has been shown to be the key mechanism controlling both apoptosis and proliferation, this study focuses on DNA damage analysis and protein expression patterns of essential cell cycle regulators P53 and P21waf1/cip1 in glioma under clinically relevant therapeutic conditions. Material and methods. U87MG cell line, characterised by wild p53-phenotype relevant for the majority of primary malignant glioblastomas, was used. Glioma cells underwent either irradiation or temozolomide treatment alone, or combined radio/chemo treatment. DNA damage was analysed by the “Comet Assay”. Expression rates of target proteins were analysed using “Western-Blot” technique. Results and conclusions. “Comet Assay” demonstrated extensive DNA damage caused by temozolomide treatment alone and in combination with irradiation, correlating well with the low survival rate observed under these treatment conditions. In contrast, irradiation alone resulted in a relatively low DNA damage, correlating well with a high survival rate and indicating a poor therapeutic efficiency of irradiation alone. Unusually low up-regulation of P53 and P21waf1/cip1 expression patterns was produced by the hereby tested stressful conditions. A deficit in cell cycle control might be the clue to the high resistance of malignant glioma cells to established therapeutic approaches.  相似文献   

12.
The flagella of the green alga Scherffelia dubia are covered by scales which consist of acidic polysaccharides and glycoproteins. Experimental deflagellation results in the regeneration of flagella complete with scales. During flagellar regeneration, scales are newly synthesized in the Golgi apparatus, exocytosed and deposited on the growing flagella. Flagellar regeneration is dependent upon protein synthesis and N-glycosylation, as it is blocked by cycloheximide and partially inhibited by tunicamycin. Metabolic labeling with [35S]methionine/cysteine demonstrated that scale-associated proteins were not newly synthesized during flagellar regeneration, suggesting that the proteins deposited on regenerating flagella were drawn from a pool. Quantitative immunoelectron microscopy using a monospecific antibody directed against a scale-associated protein of 126 kDa (SAP126) revealed that the pool of SAP126 was primarily located at the plasma membrane, with minor labeling of the scale reticulum and trans-Golgi cisternae, both before deflagellation and during flagellar regeneration. Since SAP126 was sequestered during flagellar regeneration into secretory vesicles together with newly synthesized scales, it is concluded that the persistent presence of SAP126 in the trans-Golgi cisternae during scale biogenesis requires retrograde transport of the protein from the plasma membrane to the Golgi apparatus. Received: 3 July 1999 / Accepted: 21 August 1999  相似文献   

13.
Summary. The expression of the protein crosslinking enzyme tissue transglutaminase (TG2, tTG), the ubiquitous member of transglutaminase family, can be regulated by multiple factors. Although it has been suggested that TG2 can be involved in apoptotic cell death, high levels of enzyme have also been associated with cell survival in response to different stimuli. Furthermore, evidence indicates that increases in TG2 production cause enzyme translocation to cell membrane. Cell stress can also lead to TG2 accumulation on the cell surface and in the extracellular matrix resulting in changes in cell-matrix interactions. Here, we discuss the underlying mechanisms of TG2 up-regulation induced by various stimuli including glutamate exposure, calcium influx, oxidative stress, UV, and inflammatory cytokines. These findings agree with a postulated role for transglutaminases in molecular mechanisms involved in several diseases suggesting that cross-linking reactions could be a relevant part of the biochemical changes observed in pathological conditions.  相似文献   

14.
Summary. To date, the majority of therapeutic peptides and proteins have to be administered via parenteral routes, which are painful and inconvenient. In order to gain sufficient high blood concentrations after oral application, various barriers in the gastrointestinal tract have to be overcome. Apart from a poor membrane uptake and intense enzymatic degradation, this study will demonstrate that thiol–disulphide reactions are an underestimated essential part of the presystemic metabolism. Glutathione, integrative part of the antioxidant defence system in the gastrointestinal tract, may play an important role in the inactivation of orally given peptides and proteins. In order to verify this hypothesis, desmopressin which bears a single disulphide bond was used as model peptide drug. Desmopressin was incubated with GSH in various concentrations, and the extent of thiol/disulphide exchange reactions between the peptide drug and GSH was investigated in dependence on pH and ratio of reactants determined as a function of time via HPLC, LC-MS and Maldi-Tof-MS analyses. Results showed that desmopressin is degraded by 1% reduced glutathione at pH 4 and pH 5.5. In presence of 0.01%, 0.1% and 1% of reduced glutathione 6.1%, 19.4% and 52.1% of desmopressin, respectively, were degraded. The masses of the conjugates after deconvolution measured by liquid chromatography and electrospray ionisation mass spectrometric detection were m/z 1069.67, m/z 1376.50, m/z 1683.40 and m/z 2138. These molecular masses, confirmed by Maldi-Tof-MS analysis, correspond with the masses of conjugates expected in theory. Under defined conditions, these results reveal that thiol–disulphide exchange reactions have a considerable impact on the alteration of peptide drugs and proteins.  相似文献   

15.
Structural properties of proteins specific to the myelin sheath   总被引:1,自引:0,他引:1  
Kursula P 《Amino acids》2008,34(2):175-185
Summary. The myelin sheath is an insulating membrane layer surrounding myelinated axons in vertebrates, which is formed when the plasma membrane of an oligodendrocyte or a Schwann cell wraps itself around the axon. A large fraction of the total protein in this membrane layer is comprised of only a small number of individual proteins, which have certain intriguing structural properties. The myelin proteins are implicated in a number of neurological diseases, including, for example, autoimmune diseases and peripheral neuropathies. In this review, the structural properties of a number of myelin-specific proteins are described. Author’s address: Dr. Petri Kursula, Department of Biochemistry, University of Oulu, FIN-90014 Oulu, Finland  相似文献   

16.
Kang YH  Lee KA  Yang Y  Kim SH  Kim JH  Park SN  Paik SG  Yoon DY 《Amino acids》2007,33(1):105-112
Summary. Cervical cancer is one of the leading causes of female cancer death worldwide with about 500,000 deaths per year. Both mitomycin C and cisplatin are alkylating agents, which bind and intercalate DNA, and thus used as anti-cancer drugs. In these studies, we focused on investigating the apoptotic effects of intercalating agents on HPV-negative cervical cancer C-33A cells. Accordingly, C-33A cells were treated with carboplatin, mitomycin C or cisplatin. Cell cycle analysis revealed that treatment with mitomycin C and cisplatin but not with carboplatin resulted in apoptosis. Both mitomycin C and cisplatin induced apoptosis in C-33A cells via caspase-8 and -3 processing in a Fas/FasL-dependent manner and also suppressed IL-18 expression, while they down-regulated IκB expression and up-regulated p65 expression. These results suggest that both mitomycin C and cisplatin induce apoptosis, not only via the caspase-8 and -3 dependent Fas/FasL pathway, but also via the regulation of NF-κB activity and IL-18 expression in HPV-negative cervical cancer C-33A cells.  相似文献   

17.
Fruit-specific lectins from banana and plantain   总被引:6,自引:0,他引:6  
 One of the predominant proteins in the pulp of ripe bananas (Musa acuminata L.) and plantains (Musa spp.) has been identified as a lectin. The banana and plantain agglutinins (called BanLec and PlanLec, respectively) were purified in reasonable quantities using a novel isolation procedure, which prevented adsorption of the lectins onto insoluble endogenous polysaccharides. Both BanLec and PlanLec are dimeric proteins composed of two identical subunits of 15 kDa. They readily agglutinate rabbit erythrocytes and exhibit specificity towards mannose. Molecular cloning revealed that BanLec has sequence similarity to previously described lectins of the family of jacalin-related lectins, and according to molecular modelling studies has the same overall fold and three-dimensional structure. The identification of BanLec and PlanLec demonstrates the occurrence of jacalin-related lectins in monocot species, suggesting that these lectins are more widespread among higher plants than is actually believed. The banana and plantain lectins are also the first documented examples of jacalin-related lectins, which are abundantly present in the pulp of mature fruits but are apparently absent from other tissues. However, after treatment of intact plants with methyl jasmonate, BanLec is also clearly induced in leaves. The banana lectin is a powerful murine T-cell mitogen. The relevance of the mitogenicity of the banana lectin is discussed in terms of both the physiological role of the lectin and the impact on food safety. Received: 1 December 1999 / Accepted: 31 January 2000  相似文献   

18.
Water-selective and multifunctional aquaporins from Lotus japonicus nodules   总被引:8,自引:0,他引:8  
Guenther JF  Roberts DM 《Planta》2000,210(5):741-748
  相似文献   

19.
Summary. Collagens form a common family of triple-helical proteins classified in 21 types. This unique structure is further stabilized by specific hydroxylation of distinct lysyl and prolyl residues forming 5-hydroxylysine and hydroxyproline (Hyp) isomers, mostly 4-trans and 3-trans-Hyp. The molecular distribution of the Hyp-isomers among the different collagen types is still not well investigated, even though disturbances in the hydroxylation of collagens are likely to be involved in several diseases such as osteoporosis and autoimmune diseases. Here, a new approach to analyze underivatized amino acids by hydrophilic interaction chromatography (HILIC) coupled on-line to electrospray ionization mass spectrometry (ESI-MS) is reported. This method can separate all three studied Hyp-isomers, Ile, and Leu, which are all isobaric, allowing a direct qualitative and quantitative analysis of collagen hydrolysates. The sensitivity and specificity was increased by a neutral loss scan based on the loss of formic acid (46 u).  相似文献   

20.
Fang Y  Guo Y  Feng Y  Li M 《Amino acids》2008,34(1):103-109
Summary. DNA-binding proteins play a pivotal role in gene regulation. It is vitally important to develop an automated and efficient method for timely identification of novel DNA-binding proteins. In this study, we proposed a method based on alone the primary sequences of proteins to predict the DNA-binding proteins. DNA-binding proteins were encoded by autocross-covariance transform, pseudo-amino acid composition, dipeptide composition, respectively and also the different combinations of the three encoded methods; further, these feature matrices were applied to support vector machine classifiers to predict the DNA-binding proteins. All modules were trained and validated by the jackknife cross-validation test. Through comparing the performance of these substituted modules, the best result was obtained from pseudo-amino acid composition with the overall accuracy of 96.6% and the sensitivity of 90.7%. The results suggest that it can efficiently predict the novel DNA-binding proteins only using the primary sequences. Authors’ address: Menglong Li, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P.R. China  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号