首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The active elements of the beta-globin locus control region (LCR) are located within domains of unique chromatin structure. These nuclease hypersensitive sites (HSs) are characterized by high DNase I sensitivity, erythroid specificity, similar nucleosomal structure, and evolutionarily conserved clusters of cis-acting elements that are required for the formation and function of the core elements. To determine the requirements for HS core formation in the setting of nuclear chromatin, we constructed a series of artificial HS cores containing binding sites for GATA-1, NF-E2, and Sp1. In contrast to the results of previous in vitro experiments, we found that when constructs were stably integrated in mouse erythroleukemia cells the binding sites for NF-E2, GATA-1, or Sp1 alone or in any combination were unable to form core HS structures. We subsequently identified two new cis-acting elements from the LCR HS4 core that, when combined with the NF-E2, Sp1, and tandem inverted GATA elements, result in core structure formation. Both new cis-acting elements bind Sp1, and one binds erythroid Kruppel-like factor (EKLF). We conclude that in vivo beta-globin LCR HS core formation is more complex than previously thought and that several factors are required for this process to occur.  相似文献   

3.
4.
5.
The beta-globin locus control region (LCR) is a cis regulatory element that is located in the 5' part of the locus and confers high-level erythroid lineage-specific and position-independent expression of the globin genes. The LCR is composed of five DNase I hypersensitive sites (HSs), four of which are formed in erythroid cells. The function of the 5'-most site, HS5, remains unknown. To gain insights into its function, mouse HS5 was cloned and sequenced. Comparison of the HS5 sequences of mouse, human, and galago revealed two extensively conserved regions, designated HS5A and HS5B. DNase I hypersensitivity mapping revealed that two hypersensitive sites are located within the HS5A region (designated HS5A(major) and HS5A(minor)), and two are located within the HS5B region (HS5B(major), HS5B(minor)). The positions of each of these HSs colocalize with either GATA-1 or Ap1/NF-E2 motifs, suggesting that these protein binding sites are implicated in the formation of HS5. Gel retardation assays indicated that the Ap1/NF-E2 motifs identified in murine HS5A and HS5B interact with NF-E2 or similar proteins. Studies of primary murine cells showed that HS5 is formed in all hemopoietic tissues tested (fetal liver, adult thymus, and spleen), indicating that this HS is not erythroid lineage specific. HS5 was detected in murine brain but not in murine kidney or adult liver, suggesting that this site is not ubiquitous. The presence of GATA-1 and NF-E2 motifs (which are common features of the DNase I hypersensitive sites of the LCR) suggests that the HS5 is organized in a manner similar to that of the other HSs. Taken together, our results suggest that HS5 is an inherent component of the beta-globin locus control region.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Deletion of the 234-bp core element of the DNase I hypersensitive site 3 (5'HS3) of the locus control region (LCR) in the context of a human beta-globin locus yeast artificial chromosome (beta-YAC) results in profound effects on globin gene expression in transgenic mice. In contrast, deletion of a 2.3-kb 5'HS3 region, which includes the 234-bp core sequence, has a much milder phenotype. Here we report the effects of these deletions on chromatin structure in the beta-globin locus of adult erythroblasts. The 234-bp 5'HS3 deletion abolished histone acetylation throughout the beta-globin locus; recruitment of RNA polymerase II (pol II) to the LCR and beta-globin gene promoter was reduced to a basal level; and formation of all the 5' DNase I hypersensitive sites of the LCR was disrupted. The 2.3-kb 5'HS3 deletion mildly reduced the level of histone acetylation but did not change the profile across the whole locus; the 5' DNase I hypersensitive sites of the LCR were formed, but to a lesser extent; and recruitment of pol II was reduced, but only marginally. These data support the hypothesis that the LCR forms a specific chromatin structure and acts as a single entity. Based on these results we elaborate on a model of LCR chromatin architecture which accommodates the distinct phenotypes of the 5'HS3 and HS3 core deletions.  相似文献   

16.
17.
18.
Molete JM  Petrykowska H  Sigg M  Miller W  Hardison R 《Gene》2002,283(1-2):185-197
The distal locus control region (LCR) is required for high-level expression of the complex of genes (HBBC) encoding the beta-like globins of mammals in erythroid cells. Several major DNase hypersensitive sites (HSs 1-5) mark the LCR. Sequence conservation and direct experimental evidence have implicated sequences within and between the HS cores in function of the LCR. In this report we confirm the mapping of a minor HS between HS3 and HS4, called HS3.2, and show that sequences including it increase the number of random integration sites at which a drug resistance gene is expressed. We also show that nuclear proteins including GATA1 and Oct1 bind specifically to sequences within HS3.2. However, the protein Pbx1, whose binding site is the best match to one highly conserved sequence, does not bind strongly. GATA1 and Oct1 also bind in the HS cores of the LCR and to promoters in HBBC. Their binding to this minor HS suggests that they may be used in assembly of a large complex containing multiple regulatory sequences.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号