首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brachypodium distachyon is a well‐established model monocot plant, and its small and compact genome has been used as an accurate reference for the much larger and often polyploid genomes of cereals such as Avena sativa (oats), Hordeum vulgare (barley) and Triticum aestivum (wheat). Centromeres are indispensable functional units of chromosomes and they play a core role in genome polyploidization events during evolution. As the Brachypodium genus contains about 20 species that differ significantly in terms of their basic chromosome numbers, genome size, ploidy levels and life strategies, studying their centromeres may provide important insight into the structure and evolution of the genome in this interesting and important genus. In this study, we isolated the centromeric DNA of the B. distachyon reference line Bd21 and characterized its composition via the chromatin immunoprecipitation of the nucleosomes that contain the centromere‐specific histone CENH3. We revealed that the centromeres of Bd21 have the features of typical multicellular eukaryotic centromeres. Strikingly, these centromeres contain relatively few centromeric satellite DNAs; in particular, the centromere of chromosome 5 (Bd5) consists of only ~40 kb. Moreover, the centromeric retrotransposons in B. distachyon (CRBds) are evolutionarily young. These transposable elements are located both within and adjacent to the CENH3 binding domains, and have similar compositions. Moreover, based on the presence of CRBds in the centromeres, the species in this study can be grouped into two distinct lineages. This may provide new evidence regarding the phylogenetic relationships within the Brachypodium genus.  相似文献   

2.
Wheat preharvest sprouting (PHS) occurs when seed germinates on the plant before harvest resulting in reduced grain quality. In wheat, PHS susceptibility is correlated with low levels of seed dormancy. A previous mapping of quantitative trait loci (QTL) revealed a major PHS/seed dormancy QTL, QPhs.cnl-2B.1, located on wheat chromosome 2B. A comparative genetic study with the related grass species rice (Oryza sativa L.) and Brachypodium distachyon at the homologous region to the QPhs.cnl-2B.1 interval was used to identify the candidate genes for marker development and subsequent fine mapping. Expressed sequence tags and a comparative mapping were used to design 278 primer pairs, of which 22 produced polymorphic amplicons that mapped to the group 2 chromosomes. Fourteen mapped to chromosome 2B, and ten were located in the QTL interval. A comparative analysis revealed good macrocollinearity between the PHS interval and 3 million base pair (mb) region on rice chromosomes 7 and 3, and a 2.7-mb region on Brachypodium Bd1. The comparative intervals in rice were found to contain three previously identified rice seed dormancy QTL. Further analyses of the interval in rice identified genes that are known to play a role in seed dormancy, including a homologue for the putative Arabidopsis ABA receptor ABAR/GUN5. Additional candidate genes involved in calcium signaling were identified and were placed in a functional protein association network that includes additional proteins critical for ABA signaling and germination. This study provides promising candidate genes for seed dormancy in both wheat and rice as well as excellent molecular markers for further comparative and fine mapping.  相似文献   

3.
Due in part to its small genome (~350 Mb), Brachypodium distachyon is emerging as a model system for temperate grasses, including important crops like wheat and barley. We present the analysis of 10.9% of the Brachypodium genome based on 64,696 bacterial artificial chromosome (BAC) end sequences (BES). Analysis of repeat DNA content in BES revealed that approximately 11.0% of the genome consists of known repetitive DNA. The vast majority of the Brachypodium repetitive elements are LTR retrotransposons. While Bare-1 retrotransposons are common to wheat and barley, Brachypodium repetitive element sequence-1 (BRES-1), closely related to Bare-1, is also abundant in Brachypodium. Moreover, unique Brachypodium repetitive element sequences identified constitute approximately 7.4% of its genome. Simple sequence repeats from BES were analyzed, and flanking primer sequences for SSR detection potentially useful for genetic mapping are available at . Sequence analyses of BES indicated that approximately 21.2% of the Brachypodium genome represents coding sequence. Furthermore, Brachypodium BES have more significant matches to ESTs from wheat than rice or maize, although these species have similar sizes of EST collections. A phylogenetic analysis based on 335 sequences shared among seven grass species further revealed a closer relationship between Brachypodium and Triticeae than Brachypodium and rice or maize. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. N. Huo and G.R. Lazo contributed equally to this work.  相似文献   

4.
5.
Vogel J  Hill T 《Plant cell reports》2008,27(3):471-478
Brachypodium distachyon (Brachypodium) is a small grass with biological attributes (rapid generation time, small genome, diploid accessions, small stature and simple growth requirements) that make it suitable for use as a model system. In addition, a growing list of genomic resources have been developed or are currently under development including: cDNA libraries, BAC libraries, EST sequences, BAC end sequences, a physical map, genetic markers, a linkage map and, most importantly, the complete genome sequence. To maximize the utility of Brachypodium as a model grass it is necessary to develop an efficient Agrobacterium-mediated transformation system. In this report we describe the identification of a transformable inbred diploid line, Bd21-3, and the development of a transformation method with transformation efficiencies as high as 41% of co-cultivated calluses producing transgenic plants. Conducting the co-cultivation step under desiccating conditions produced the greatest improvement in transformation efficiency.  相似文献   

6.
Liu Z  Yue W  Li D  Wang RR  Kong X  Lu K  Wang G  Dong Y  Jin W  Zhang X 《Chromosoma》2008,117(5):445-456
Little is known of the dynamics of centromeric DNA in polyploid plants. We report the sequences of two centromere-associated bacterial artificial chromosome clones from a Triticum boeoticum library. Both autonomous and non-autonomous wheat centromeric retrotransposons (CRWs) were identified, both being closely associated with the centromeres of wheat. Fiber-fluorescence in situ hybridization and chromatin immunoprecipitation analysis showed that wheat centromeric retrotransposons (CRWs) represent a dominant component of the wheat centromere and are associated with centromere function. CRW copy number showed variation among different genomes: the D genome chromosomes contained fewer copies than either the A or B genome chromosomes. The frequency of lengthy continuous CRW arrays was higher than that in either rice or maize. The dynamics of CRWs and other retrotransposons at centromeric and pericentromeric regions during diploid speciation and polyploidization of wheat and its related species are discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Zhao Liu and Wei Yue made an equal contribution to this work.  相似文献   

7.
The genome of bread wheat (Triticum aestivum) is predicted to be greater than 16 Gbp in size and consist predominantly of repetitive elements, making the sequencing and assembly of this genome a major challenge. We have reduced genome sequence complexity by isolating chromosome arm 7DS and applied second‐generation technology and appropriate algorithmic analysis to sequence and assemble low copy and genic regions of this chromosome arm. The assembly represents approximately 40% of the chromosome arm and all known 7DS genes. Comparison of the 7DS assembly with the sequenced genomes of rice (Oryza sativa) and Brachypodium distachyon identified large regions of conservation. The syntenic relationship between wheat, B. distachyon and O. sativa, along with available genetic mapping data, has been used to produce an annotated draft 7DS syntenic build, which is publicly available at http://www.wheatgenome.info . Our results suggest that the sequencing of isolated chromosome arms can provide valuable information of the gene content of wheat and is a step towards whole‐genome sequencing and variation discovery in this important crop.  相似文献   

8.
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is an important foliar disease of wheat worldwide. The dominant powdery mildew resistance gene PmAS846 was transferred to the hexaploid wheat lines N9134 and N9738 from wild emmer wheat (Triticum dicoccoides) in 1995, and it is still one of the most effective resistance genes in China. A high resolution genetic map for PmAS846 locus was constructed using two F2 populations and corresponding F2:3 families developed from the crosses of N9134/Shaanyou 225 and N9738/Huixianhong. Synteny between wheat and Brachypodium distachyon and rice was used to develop closely linked molecular markers to reduce the genetic interval around PmAS846. Twenty-six expressed sequence tag-derived markers were mapped to the PmAS846 locus. Five markers co-segregated with PmAS846 in the F2 population of N9134/Shaanyou 225. PmAS846 was physically located to wheat chromosome 5BL bin 0.75–0.76 within a gene-rich region. The markers order is conserved between wheat and Brachypodium distachyon, but rearrangements are present in rice. Two markers, BJ261635 and CJ840011 flanked PmAS846 and narrowed PmAS846 to a region that is collinear with 197 and 112 kb genomic regions on Brachypodium chromosome 4 and rice chromosome 9, respectively. The genes located on the corresponding homologous regions in Brachypodium, rice and barley could be considered for further marker saturation and identification of potential candidate genes for PmAS846. The markers co-segregating with PmAS846 provide a potential target site for positional cloning of PmAS846, and can be used for marker-assisted selection of this gene.  相似文献   

9.
A BAC library of 30,228 clones with an average insert size of 102 kb was constructed in the grass Brachypodium sylvaticum. Brachypodium has a simple genome, similar in size and repetitive DNA content to that of rice, and is more closely related than rice both to the major temperate cereals wheat and barley, and to the forage grasses. The library represents 6.6 genome equivalents, implying a 99.9% probability of recovering any specific sequence. The library was arrayed onto two high-density colony filters, which were screened with heterologous DNA probes from rice chromosome nine and from syntenous regions of wheat, barley, maize and oat. The construction of Brachypodium BAC contigs revealed that synteny between rice, wheat and Brachypodium was largely maintained over several regions of rice chromosome nine. This suggests that Brachypodium will be a useful tool in the elucidation of gene content in agronomically important cereal crops, complementing rice as a grass genome model.  相似文献   

10.
The temperate annual grass Brachypodium distachyon is a diploid species with a chromosome base number of 5. It is strikingly different from other Eurasian species of the genus, which are perennial and often polyploid, with the diploids typically having base numbers of 8 or 9. Previously, phylogenies indicated that B. distachyon split from the other species early in the evolution of the genus, while its genome sequence revealed that extensive synteny on a chromosomal scale had been maintained with rice, a tropical grass with a base number of 12. Here we show evidence that B. distachyon may have a homoploid origin, involving ancestral interspecific hybridisation, although it does not appear to be a component of any of the perennial Eurasian allopolyploids. Using a cytogenetic approach, we show that dysploidy in Brachypodium has not followed a simple progression.  相似文献   

11.
Although the centromeres of some plants have been investlgated prevlously, our knowledge of the wheat centromere Is still very llmlted. To understand the structure and functlon of the wheat centromere, we used two centromeric repeats (RCS1 and CCS1-5ab) to obtain some centromere-assoclated bacterial artificial chromosome (BAC) clones in 32 RCS1-related BAC clones that had been screened out from a diploid wheat (Triticum boeoticum Boiss.; 2n=2x=14) BAC library. Southern hybridization results indicated that, of the 32 candidates, there were 28 RCS1-positive clones. Based on gel blot patterns, the frequency of RCS1 was approximately one copy every 69.4 kb in these 28 RCS1-positive BAC clones. More bands were detected when the same filter was probed with CCS1-5ab. Furthermore, the CCS1 bands covered all the bands detected by RCS1, which suggests that some CCS1 repeats were distributed together with RCS1. The frequency of CCS1 families was once every 35.8 kb, nearly twice that of RCS1. Fluorescence in situ hybridization (FISH) analysis Indicated that the five BAC clones containing RCS1 and CCS1 sequences all detected signals at the centromerlc regions in hexaplold wheat, but the signal intensities on the A-genome chromosomes were stronger than those on the B- and/or Dgenome chromosomes. The FISH analysis among nine Triticeae cereals indicated that there were A-genomespecific (or rich) sequences dispersing on chromosome arms in the BAC clone TbBACS. In addition, at the interphase cells, the centromeres of diploid species usually clustered at one pole and formed a ring-like allocation In the period before metaphase.  相似文献   

12.
The genome sequences of rice (Oryza sativa L.) and Brachypodium distachyon and the comprehensive Triticeae EST (Expressed Sequence Tag) resources provide invaluable information for comparative genomics analysis. The powdery mildew resistance gene, Pm6, which was introgressed into common wheat from Triticum timopheevii, was previously mapped to the wheat chromosome bin of 2BL [fraction length (FL) 0.50–1.00] with limited DNA markers. In this study, we saturated the Pm6 locus in wheat using the collinearity-based markers by extensively exploiting these genomic resources. All wheat ESTs located in the bin 2BL FL 0.50–1.00 and their corresponding orthologous genes on rice chromosome 4 were firstly used to develop STS (Sequence Tagged Site) markers. Those identified markers that flanked the Pm6 locus were then used to identify the collinear regions in the genomes of rice and Brachypodium. Triticeae ESTs with orthologous genes in these collinear regions were further used to develop new conserved markers for the fine mapping of Pm6. Using two F2 populations derived from crosses of IGVI-465 × Prins and IGVI-466 × Prins, we mapped a total of 29 markers to the Pm6 locus. Among them, 14 markers were co-segregated with Pm6 in the IGVI-466/Prins population. Comparative genome analysis showed that the collinear region of the 29 linked markers covers a ~5.6-Mb region in chromosome 5L of Brachypodium and a ~6.0-Mb region in chromosome 4L of rice. The marker order is conserved between rice and Brachypodium, but re-arrangements are present in wheat. Comparative mapping in the two populations showed that two conserved markers (CINAU123 and CINAU127) flanked the Pm6 locus, and an LRR-receptor-like protein kinase cluster was identified in the collinear regions of Brachypodium and rice. This putative resistance gene cluster provides a potential target site for further fine mapping and cloning of Pm6. Moreover, the newly developed conserved markers closely linked to Pm6 can be used for the marker-assisted selection (MAS) of Pm6 in wheat breeding programs.  相似文献   

13.
Summary Stable dicentric chromosomes behave as monocentrics because one of the centromeres is inactive. The cause of centromere inactivation is unknown; changes in centromere chromatin conformation and loss of centromeric DNA elements have been proposed as possible mechanisms. We studied the phenomenon of inactivation in two Y centromeres, having as a control genetically identical active Y centromeres. The two cases have the following karyotypes: 45,X/46,X,i(Y)(q12) and 46,XY/ 47,XY,+t(X;Y)(p22.3;p11.3). The analysis of the behaviour of the active and inactive Y chromosome centromeres after Da-Dapi staining, CREST immunofluorescence, and in situ hybridization with centromeric probes leads us to conclude that, in the case of the isochromosome, a true deletion of centromeric chromatin is responsible for its stability, whereas in the second case, stability of the dicentric (X;Y) is the result of centromere chromatin modification.  相似文献   

14.
A chromosome with two functional centromeres is cytologically unstable and can only be stabilized when one of the two centromeres becomes inactivated via poorly understood mechanisms. Here, we report a transmissible chromosome with multiple centromeres in wheat. This chromosome encompassed one large and two small domains containing the centromeric histone CENH3. The two small centromeres are in a close vicinity and often fused as a single centromere on metaphase chromosomes. This fused centromere contained approximately 30% of the CENH3 compared to the large centromere. An intact tricentric chromosome was transmitted to about 70% of the progenies, which was likely a consequence of the dominating pulling capacity of the large centromere during anaphases of meiosis. The tricentric chromosome showed characteristics typical to dicentric chromosomes, including chromosome breaks and centromere inactivation. Remarkably, inactivation was always associated with the small centromeres, indicating that small centromeres are less likely to survive than large ones in dicentric chromosomes. The inactivation of the small centromeres also coincided with changes of specific histone modifications, including H3K27me2 and H3K27me3, of the pericentromeric chromatin.  相似文献   

15.
A de novo dicentric Y;21 (q11.23;p11) translocation chromosome with one of its two centromeres inactive has provided the opportunity to study the relationship between centromeric inactivation, the organization of alphoid satellite DNA and the distribution of CENP-C. The proband, a male with minor features of Down’s syndrome, had a major cell line with 45 chromosomes including a single copy of the translocation chromosome, and a minor one with 46 chromosomes including two copies of the translocation chromosome and hence effectively trisomic for the long arm of chromosome 21. Centromeric activity as defined by the primary constriction was variable: in most cells with a single copy of the Y;21 chromosome, the Y centromere was inactive. In the cells with two copies, one copy had an active Y centromere (chromosome 21 centromere inactive) and the other had an inactive Y centromere (chromosome 21 centromere active). Three different partial deletions of the Y alphoid array were found in skin fibroblasts and one of these was also present in blood. Clones of single cell origin from fibroblast cultures were analysed both for their primary constriction and to characterise their alphoid array. The results indicate that (1) each clone showed a fixed pattern of centromeric activity; (2) the alphoid array size was stable within a clone; and (3) inactivation of the Y centromere was associated with both full-sized and deleted alphoid arrays. Selected clones were analysed with antibodies to CENP-C, and staining was undetectable at both intact and deleted arrays of the inactive Y centromeres. Thus centromeric inactivation appears to be largely an epigenetic event. Received: 30 January 1997; in revised form: 3 April 1997 / Accepted: 8 May 1997  相似文献   

16.
Brachypodium distachyon (Brachypodium) is not only a monocot grass species, but also a promising model organism of crop research. In this study, the drought resistance of four Brachypodium varieties was identified including drought stress-tolerant Bd1-1 and Bd21, drought stress-susceptible Bd3-1 and Bd18-1. Physiological assay showed that drought-tolerant varieties (Bd1-1 and Bd21) were more effective in maintenance of leaf water content, activation of catalase and peroxidase activities and accumulation of reduced glutathione, resulting in alleviated cell damage and lower reactive oxygen species level than drought-susceptible varieties (Bd3-1 and Bd18-1) in response to drought stress. In addition, 54 primary metabolites were differentially regulated among Brachypodium varieties and after drought stress treatment, indicating the complexity of Brachypodium response to drought stress. We also identified several commonly regulated metabolites especially some compatible solutes including proline and soluble sugars, which exhibited higher concentrations in the drought-tolerant varieties. Taken together, this study suggested that natural variation of Brachypodium varieties in response to drought stress might be connected with higher leaf water, enhanced accumulation of osmolyte and more effective antioxidant system, as well as the modulation of metabolic profiles under drought stress conditions.  相似文献   

17.
Fu S  Gao Z  Birchler J  Han F 《遗传学报》2012,39(3):125-130
Plant centromeres are generally composed of tandem arrays of simple repeats that form a complex chromosome locus where the kinetochore forms and microtubules attach during mitosis and meiosis. Each chromosome has one centromere region, which is essential for accurate division of the genetic material. Recently, chromosomes containing two centromere regions (called dicentric chromosomes) have been found in maize and wheat. Interestingly, some dicentric chromosomes are stable because only one centromere is active and the other one is inactivated. Because such arrays maintain their typical structure for both active and inactive centromeres, the specification of centromere activity has an epigenetic component independent of the DNA sequence. Under some circumstances, the inactive centromeres may recover centromere function, which is called centromere reactivation. Recent studies have highlighted the important changes, such as DNA methylation and histone modification, that occur during centromere inactivation and reactivation.  相似文献   

18.
19.
20.
Dicentric chromosomes are rarely found, because they interfere with normal cell division causing chromosome instability. By in situ hybridization of region-specific heterochromatic yeast artificial chromosomes we have found that the artificially generated C(1)A chromosome of Drosophila melanogaster has two potential centromeres: one carries all the sequences of the centromere of the Y chromosome and the other carries only a part of the Y centromeric region that is rich in telomere-related sequences. Immunostaining with anti-Bub1 (a kinetochore-specific marker) shows that, in spite of the differences in sequence, both centromeres can be active although as a rule only one at a time. In a small fraction of the chromosomes centromere inactivation is incomplete, giving rise to true dicentric chromosomes. The centromere inactivation is clonally inherited, providing a new example of epigenetic chromosome imprinting and the possibility of genetically dissecting this process. The involvement of telomere-related sequences in centromere function is discussed. Received: 15 September 1999; in revised form: 21 November 1999 / Accepted: 24 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号