首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Stimulation through the interleukin-1 receptor (IL-1R) and some Toll-like receptors (TLRs) induces ubiquitination of TRAF6 and IRAK-1, signaling components required for NF-kappaB and mitogen-activated protein kinase activation. Here we show that although TRAF6 and IRAK-1 acquired Lys63 (K63)-linked polyubiquitin chains upon IL-1 stimulation, only ubiquitinated IRAK-1 bound NEMO, the regulatory subunit of IkappaB kinase (IKK). The sites of IRAK-1 ubiquitination were mapped to Lys134 and Lys180, and arginine substitution of these residues impaired IL-1R/TLR-mediated IRAK-1 ubiquitination, NEMO binding, and NF-kappaB activation. K63-linked ubiquitination of IRAK-1 required enzymatically active TRAF6, indicating that it is the physiologically relevant E3. Thus, K63-linked polyubiquitination of proximal signaling proteins is a common mechanism used by diverse innate immune receptors for recruiting IKK and activating NF-kappaB.  相似文献   

2.
3.
Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates multiple mitogen-activated protein kinase (MAPK) pathways in response to growth factors, stresses and the pro-inflammatory cytokine, tumor necrosis factor (TNF). MLK3 is required for optimal activation of stress activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling by TNF, however, the mechanism by which MLK3 is recruited and activated by the TNF receptor remains poorly understood. Here we report that both TNF and interleukin-1β (IL-1β) stimulation rapidly activate MLK3 kinase activity. We observed that TNF stimulates an interaction between MLK3 and TNF receptor associated factor (TRAF) 2 and IL-1β stimulates an interaction between MLK3 and TRAF6. RNA interference (RNAi) of traf2 or traf6 dramatically impairs MLK3 activation by TNF indicating that TRAF2 and TRAF6 are critically required for MLK3 activation. We show that TNF also stimulates ubiquitination of MLK3 and MLK3 can be conjugated with lysine 48 (K48)- and lysine 63 (K63)-linked polyubiquitin chains. Our results suggest that K48-linked ubiquitination directs MLK3 for proteosomal degradation while K63-linked ubiquitination is important for MLK3 kinase activity. These results reveal a novel mechanism for MLK3 activation by the pro-inflammatory cytokines TNF and IL-1β.  相似文献   

4.
Triggering of antigen receptors on lymphocytes is critical for initiating adaptive immune response against pathogens. T-cell receptor (TCR) engagement induces the formation of the Carma1-Bcl10-Malt1 (CBM) complex that is essential for activation of the IkappaB kinase (IKK)/NF-kappaB pathway. However, the molecular mechanisms that link CBM complex formation to IKK activation remain unclear. Here we report that Malt1 is polyubiquitinated upon T-cell activation. Ubiquitin chains on Malt1 provide a docking surface for the recruitment of the IKK regulatory subunit NEMO/IKKgamma. TRAF6 associates with Malt1 in response to T-cell activation and can function as an E3 ligase for Malt1 in vitro and in vivo, mediating lysine 63-linked ubiquitination of Malt1. Multiple lysine residues in the C-terminus of Malt1 serve as acceptor sites for the assembly of polyubiquitin chains. Malt1 mutants that lack C-terminal ubiquitin acceptor lysines are impaired in rescuing NF-kappaB signaling and IL-2 production in Malt1-/- T cells. Thus, our data demonstrate that induced Malt1 ubiquitination is critical for the engagement of CBM and IKK complexes, thereby directing TCR signals to the canonical NF-kappaB pathway.  相似文献   

5.
TRAF6 plays a crucial role in signal transduction of the Toll-like receptor (TLR). It has been reported that TRAF6 catalyzes the formation of unique Lys63-linked polyubiquitin chains, which do not lead to proteasome-mediated degradation. Here we found that stimulation of J774.1 cells with various TLR ligands led to decreases in TRAF6 protein levels that occurred at a slower rate than IκBα degradation. The decrease in TRAF6 was inhibited by proteasome inhibitors MG-132, lactacystin and N-acetyl-leucyl-leucyl-norleucinal. Among intracellular TLR signaling molecules MyD88, IRAK-4, IRAK-1, TRAF6, and IKKβ, only IRAK-1 expression downregulated TRAF6 in HEK293 cells. The amount of TRAF6 expressed either transiently or stably was also reduced by co-expression of IRAK-1 and no TRAF6 cleavage products were detected. The levels of either a TRAF6 N-terminal deletion mutant or a ubiquitin ligase-defective mutant were not affected by IRAK-1 expression. Downregulation of TRAF6 required the TRAF6-binding site (Glu544, Glu587, Glu706) of IRAK-1 but not its catalytic site (Asp340). Upon IRAK-1 transfection, no significant TRAF6 ubiquitination was detected. Instead, TRAF6-associated IRAK-1 was ubiquitinated with both Lys48- and Lys63-linked polyubiquitin chains. TRAF6 downregulation was inhibited by co-expression of the E3 ubiquitin ligase Pellino 3, whose Lys63-linked polyubiquitination on IRAK-1 is reported to compete with Lys48-linked IRAK-1 polyubiquitination. Expression of IRAK-1 inhibited IκBα phosphorylation in response to TLR2 stimulation. These results indicate that stimulation of TLRs induces proteasome-dependent downregulation of TRAF6. We conclude that TRAF6 associated with ubiquitinated IRAK-1 is degraded together by the proteasome and that IRAK-1 possesses a negative regulatory role on TLR signaling.  相似文献   

6.
7.
Deng L  Wang C  Spencer E  Yang L  Braun A  You J  Slaughter C  Pickart C  Chen ZJ 《Cell》2000,103(2):351-361
TRAF6 is a signal transducer in the NF-kappaB pathway that activates IkappaB kinase (IKK) in response to proinflammatory cytokines. We have purified a heterodimeric protein complex that links TRAF6 to IKK activation. Peptide mass fingerprinting analysis reveals that this complex is composed of the ubiquitin conjugating enzyme Ubc13 and the Ubc-like protein Uev1A. We find that TRAF6, a RING domain protein, functions together with Ubc13/Uev1A to catalyze the synthesis of unique polyubiquitin chains linked through lysine-63 (K63) of ubiquitin. Blockade of this polyubiquitin chain synthesis, but not inhibition of the proteasome, prevents the activation of IKK by TRAF6. These results unveil a new regulatory function for ubiquitin, in which IKK is activated through the assembly of K63-linked polyubiquitin chains.  相似文献   

8.
Zhu G  Wu CJ  Zhao Y  Ashwell JD 《Current biology : CB》2007,17(16):1438-1443
NF-kappaB essential modulator (NEMO), the regulatory subunit of the IkappaB kinase (IKK) that activates NF-kappaB, is essential for NF-kappaB activation. NEMO was recently found to contain a region that preferentially binds Lys (K)63-linked but not K48-linked polyubiquitin (polyUb) chains, and the ability of NEMO to bind to K63-linked polyUb RIP (receptor-interacting protein) is necessary for efficient tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. Optineurin is a homolog of NEMO, and mutations in the optineurin gene are found in a subset of patients with glaucoma, a neurodegenerative disease involving the loss of retinal ganglion cells. Although optineurin shares considerable homology with NEMO, in resting cells, it is not present in the high-molecular-weight complex containing IKKalpha and IKKbeta, and optineurin cannot substitute for NEMO in lipopolysaccharide (LPS)-induced NF-kappaB activation. On the other hand, the overexpression of optineurin blocks the protective effect of E3-14.7K on cell death caused by the overexpression of TNFalpha receptor 1 (TNFR1). Here we show that optineurin has a K63-linked polyUb-binding region similar to that of NEMO, and like NEMO, it bound K63- but not K48-linked polyUb. Optineurin competitively antagonized NEMO's binding to polyUb RIP, and its overexpression inhibited TNFalpha-induced NF-kappaB activation. This competition occurs at physiologic protein levels because microRNA silencing of optineurin resulted in markedly enhanced TNFalpha-induced NF-kappaB activity. These results reveal a physiologic role for optineurin in dampening TNFalpha signaling, and this role might provide an explanation for its association with glaucoma.  相似文献   

9.
The activation of NF-kappaB and IKK requires an upstream kinase complex consisting of TAK1 and adaptor proteins such as TAB1, TAB2, or TAB3. TAK1 is in turn activated by TRAF6, a RING domain ubiquitin ligase that facilitates the synthesis of lysine 63-linked polyubiquitin chains. Here we present evidence that TAB2 and TAB3 are receptors that bind preferentially to lysine 63-linked polyubiquitin chains through a highly conserved zinc finger (ZnF) domain. Mutations of the ZnF domain abolish the ability of TAB2 and TAB3 to bind polyubiquitin chains, as well as their ability to activate TAK1 and IKK. Significantly, replacement of the ZnF domain with a heterologous ubiquitin binding domain restored the ability of TAB2 and TAB3 to activate TAK1 and IKK. We also show that TAB2 binds to polyubiquitinated RIP following TNFalpha stimulation. These results indicate that polyubiquitin binding domains represent a new class of signaling domains that regulate protein kinase activity through a nonproteolytic mechanism.  相似文献   

10.
《Autophagy》2013,9(7):986-987
Toll-like receptor 4 (TLR4) signaling triggers autophagy, which has been linked to both adaptive and innate immunity. Engagement of TLR4 recruits to the receptor complex Beclin 1, a key component of a class III phosphatidylinositol 3-kinase complex (PI3KC3) that initiates autophagosome formation. Recently, we found that tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6)-mediates Lys63 (K63)-linked ubiquitination of Beclin 1 is crucial for TLR4-triggered autophagy in macrophages. We identified two TRAF6-binding motifs in Beclin 1 that facilitate the binding of TRAF6 and the ubiquitination of Beclin 1. A lysine located in the Bcl-2 homology 3 (BH3) domain of Beclin 1 serves as a major site for K63-linked ubiquitination. Opposing TRAF6, the deubiquitinating enzyme A20 reduces the extent of K63-linked ubiquitination of Beclin 1 and limits the induction of autophagy in response to TLR4 signaling. Furthermore, treatment of macrophages with either interferon- or interleukin-1 triggers the K63-linked ubiquitination of Beclin 1 and the formation of autophagosomes. These results indicate that the status of K63-linked ubiquitination of Beclin 1 plays a key role in regulating autophagy during inflammatory responses.  相似文献   

11.
The adapter protein TRAF6 is critical for mediating signal transduction from members of the IL-1R/TLR and TNFR superfamilies. The TRAF6 RING finger domain functions as an ubiquitin E3 ligase capable of generating non-degradative K63-linked ubiquitin chains. It is believed that these chains serve as docking sites for formation of signaling complexes, and that K63-linked autoubiquitination of TRAF6 is essential for formation and activation of a complex involving the kinase TAK1 and its adapters, TAB1 and TAB2. In order to assess independently the E3 ligase and ubiquitin substrate functions of TRAF6, we generated, respectively, RING domain and complete lysine-deficient TRAF6 mutants. We found that while the TRAF6 RING domain is required for activation of TAK1, it is dispensable for interaction between TRAF6 and the TAK1-TAB1-TAB2 complex. Likewise, lysine-deficient TRAF6 was found to interact with the TAK1-TAB1-TAB2 complex, but surprisingly was also found to be fully competent to activate TAK1, as well as NFκB and AP-1 reporters. Furthermore, lysine-deficient TRAF6 rescued IL-1-mediated NFκB and MAPK activation, as well as IL-6 elaboration in retrovirally-rescued TRAF6-deficient fibroblasts. Lysine-deficient TRAF6 also rescued RANKL-mediated NFκB and MAPK activation, and osteoclastogenesis in retrovirally-rescued TRAF6-deficient bone marrow macrophages. While incapable of being ubiquitinated itself, we demonstrate that lysine-deficient TRAF6 remains competent to induce ubiquitination of IKKγ/NEMO. Further, this NEMO modification contributes to TRAF6-mediated activation of NFκB. Collectively, our results suggest that while TRAF6 autoubiquitination may serve as a marker of activation, it is unlikely to underpin RING finger-dependent TRAF6 function.  相似文献   

12.
The Epstein-Barr virus (EBV) encoded oncoprotein Latent Membrane Protein 1 (LMP1) signals through two C-terminal tail domains to drive cell growth, survival and transformation. The LMP1 membrane-proximal TES1/CTAR1 domain recruits TRAFs to activate MAP kinase, non-canonical and canonical NF-kB pathways, and is critical for EBV-mediated B-cell transformation. TRAF1 is amongst the most highly TES1-induced target genes and is abundantly expressed in EBV-associated lymphoproliferative disorders. We found that TRAF1 expression enhanced LMP1 TES1 domain-mediated activation of the p38, JNK, ERK and canonical NF-kB pathways, but not non-canonical NF-kB pathway activity. To gain insights into how TRAF1 amplifies LMP1 TES1 MAP kinase and canonical NF-kB pathways, we performed proteomic analysis of TRAF1 complexes immuno-purified from cells uninduced or induced for LMP1 TES1 signaling. Unexpectedly, we found that LMP1 TES1 domain signaling induced an association between TRAF1 and the linear ubiquitin chain assembly complex (LUBAC), and stimulated linear (M1)-linked polyubiquitin chain attachment to TRAF1 complexes. LMP1 or TRAF1 complexes isolated from EBV-transformed lymphoblastoid B cell lines (LCLs) were highly modified by M1-linked polyubiqutin chains. The M1-ubiquitin binding proteins IKK-gamma/NEMO, A20 and ABIN1 each associate with TRAF1 in cells that express LMP1. TRAF2, but not the cIAP1 or cIAP2 ubiquitin ligases, plays a key role in LUBAC recruitment and M1-chain attachment to TRAF1 complexes, implicating the TRAF1:TRAF2 heterotrimer in LMP1 TES1-dependent LUBAC activation. Depletion of either TRAF1, or the LUBAC ubiquitin E3 ligase subunit HOIP, markedly impaired LCL growth. Likewise, LMP1 or TRAF1 complexes purified from LCLs were decorated by lysine 63 (K63)-linked polyubiqutin chains. LMP1 TES1 signaling induced K63-polyubiquitin chain attachment to TRAF1 complexes, and TRAF2 was identified as K63-Ub chain target. Co-localization of M1- and K63-linked polyubiquitin chains on LMP1 complexes may facilitate downstream canonical NF-kB pathway activation. Our results highlight LUBAC as a novel potential therapeutic target in EBV-associated lymphoproliferative disorders.  相似文献   

13.
BACKGROUND: Crohn's disease is an autoimmune inflammatory disorder of the gastrointestinal tract and is characterized clinically by dysregulation of both pro-inflammatory and anti-inflammatory cytokine signaling networks. The function of the Crohn's disease protein, NOD2, highlights the biphasic nature of the pathology of Crohn's disease. NOD2 can both strongly activate and negatively attenuate NF-kB signaling. The biochemical mechanism for this dual function of NOD2 is unknown. RESULTS: We demonstrate that NOD2 activation leads to ubiquitinylation of NEMO, a key component of the NF-kB signaling complex. This ubiquitinylation is agonist dependant, and it does not regulate proteosomal destruction of NEMO. We show the NOD2-dependent ubiquitinylation of NEMO is dependent on the scaffolding protein kinase RIP2. Crohn's disease-associated polymorphisms of NOD2 show a decreased ability to bind RIP2, and this decreased ability to bind RIP2 correlates with a decreased ability to ubiquitinylate NEMO. We map the site of NEMO ubiquitinylation to a novel NEMO ubiquitinylation site (Lysine 285) and show that this ubiquityinylation occurs in vivo. Lastly, we show functionally that RIP2-induced ubiquitinylation of NEMO is at least in part responsible for RIP2-mediated NF-kB activation. CONCLUSIONS: These data suggest that this novel mode of regulation of the NF-kB signaling pathway could be a factor underlying the pathogenesis of Crohn's disease.  相似文献   

14.
15.
Posttranslational modification of proteins with polyubiquitin occurs in diverse signaling pathways and is tightly regulated to ensure cellular homeostasis. Studies employing ubiquitin mutants suggest that the fate of polyubiquitinated proteins is determined by which lysine within ubiquitin is linked to the C terminus of an adjacent ubiquitin. We have developed linkage-specific antibodies that recognize polyubiquitin chains joined through lysine 63 (K63) or 48 (K48). A cocrystal structure of an anti-K63 linkage Fab bound to K63-linked diubiquitin provides insight into the molecular basis for specificity. We use these antibodies to demonstrate that RIP1, which is essential for tumor necrosis factor-induced NF-kappaB activation, and IRAK1, which participates in signaling by interleukin-1beta and Toll-like receptors, both undergo polyubiquitin editing in stimulated cells. Both kinase adaptors initially acquire K63-linked polyubiquitin, while at later times K48-linked polyubiquitin targets them for proteasomal degradation. Polyubiquitin editing may therefore be a general mechanism for attenuating innate immune signaling.  相似文献   

16.
17.
Nod1 and Nod2 are intracellular proteins that are involved in host recognition of specific bacterial molecules and are genetically associated with several inflammatory diseases. Nod1 and Nod2 stimulation activates NF-kappaB through RICK, a caspase-recruitment domain-containing kinase. However, the mechanism by which RICK activates NF-kappaB in response to Nod1 and Nod2 stimulation is unknown. Here we show that RICK is conjugated with lysine-63-linked polyubiquitin chains at lysine 209 (K209) located in its kinase domain upon Nod1 or Nod2 stimulation and by induced oligomerization of RICK. Polyubiquitination of RICK at K209 was essential for RICK-mediated IKK activation and cytokine/chemokine secretion. However, RICK polyubiquitination did not require the kinase activity of RICK or alter the interaction of RICK with NEMO, a regulatory subunit of IkappaB kinase (IKK). Instead, polyubiquitination of RICK was found to mediate the recruitment of TAK1, a kinase that was found to be essential for Nod1-induced signaling. Thus, RICK polyubiquitination links TAK1 to IKK complexes, a critical step in Nod1/Nod2-mediated NF-kappaB activation.  相似文献   

18.
NFκB signaling plays a significant role in human disease, including breast and ovarian carcinoma, insulin resistance, embryonic lethality and liver degeneration, rheumatoid arthritis, aging and Multiple Myeloma (MM). Inhibitor of κB (IκB) kinase β (IKKβ) regulates canonical Nuclear Factor κB (NFκB) signaling in response to inflammation and cellular stresses. NFκB activation requires Lys63-linked (K63-linked) ubiquitination of upstream proteins such as NEMO or TAK1, forming molecular complexes with membrane-bound receptors. We demonstrate that IKKβ itself undergoes K63-linked ubiquitination. Mutations in IKKβ at Lys171, identified in Multiple Myeloma and other cancers, lead to a dramatic increase in kinase activation and K63-linked ubiquitination. These mutations also result in persistent activation of STAT3 signaling. Liquid chromatography (LC)-high mass accuracy tandem mass spectrometry (MS/MS) analysis identified Lys147, Lys418, Lys555 and Lys703 as predominant ubiquitination sites in IKKβ. Specific inhibition of the UBC13-UEV1A complex responsible for K63-linked ubiquitination establishes Lys147 as the predominant site of K63-ubiquitin conjugation and responsible for STAT3 activation. Thus, IKKβ activation leads to ubiquitination within the kinase domain and assemblage of a K63-ubiquitin conjugated signaling platform. These results are discussed with respect to the importance of upregulated NFκB signaling known to occur frequently in MM and other cancers.  相似文献   

19.
20.
TLRs, which form an interface between mammalian host and microbe, play a key role in pathogen recognition and initiation of proinflammatory response thus stimulating antimicrobial activity and host survival. However, certain intracellular pathogens such as Leishmania can successfully manipulate the TLR signaling, thus hijacking the defensive strategies of the host. Despite the presence of lipophosphoglycan, a TLR2 ligand capable of eliciting host-defensive cytokine response, on the surface of Leishmania, the strategies adopted by the parasite to silence the TLR2-mediated proinflammatory response is not understood. In this study, we showed that Leishmania donovani modulates the TLR2-mediated pathway in macrophages through inhibition of the IKK-NF-κB cascade and suppression of IL-12 and TNF-α production. This may be due to impairment of the association of TRAF6 with the TAK-TAB complex, thus inhibiting the recruitment of TRAF6 in TLR2 signaling. L. donovani infection drastically reduced Lys 63-linked ubiquitination of TRAF6, and the deubiquitinating enzyme A20 was found to be significantly upregulated in infected macrophages. Small interfering RNA-mediated silencing of A20 restored the Lys 63-linked ubiquitination of TRAF6 as well as IL-12 and TNF-α levels with a concomitant decrease in IL-10 and TGF-β synthesis in infected macrophages. Knockdown of A20 led to lower parasite survival within macrophages. Moreover, in vivo silencing of A20 by short hairpin RNA in BALB/c mice led to increased NF-κB DNA binding and host-protective proinflammatory cytokine response resulting in effective parasite clearance. These results suggest that L. donovani might exploit host A20 to inhibit the TLR2-mediated proinflammatory gene expression, thus escaping the immune responses of the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号