首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Geomicrobiology journal》2013,30(4):305-318
Coprecipitation in carbonate minerals offers a means of slowing the transport of divalent radionuclides and contaminant metals (e.g.,90Sr2+, UO2+, Co2+) in the subsurface. It may be possible to accelerate this process by stimulating the native microbial community to generate chemical conditions favoring carbonate precipitation. In a preliminary evaluation of this approach, we investigated the ability of ureolytic subsurface bacteria to produce alkaline conditions conducive to calcium carbonate precipitation. Groundwater samples from the Eastern Snake River Plain (ESRP) aquifer in Idaho were screened for urea-hydrolyzing microorganisms; three isolates were selected for further evaluation. Analysis of 16S rRNA gene sequences indicated that two of the ESRP isolates were of the genus Pseudomonas , and the other was a Variovorax sp. The specific urease activities of the ESRP isolates appeared to be similar to each other but less than that of Bacillus pasteurii , a known urease-positive organism. However, calcium carbonate was rapidly precipitated in all cultures that were supplied with urea and calcium, and X-ray diffraction analyses indicated that calcite was always the predominant carbonate polymorph produced. The correspondence between measured calcium concentrations and equilibrium predictions suggested that the rate of calcite precipitation was directly linked to the rate of urea hydrolysis. These results are promising with respect to the potential utility of this approach for in situ remediation and indicate that further evaluation of this approach under conditions more closely simulating environmental conditions is warranted.  相似文献   

2.
Microbial aerobic methane oxidation (MOx) is intrinsically coupled to the production of carbon dioxide, favoring carbonate dissolution. Recently, microbial organic polymers were shown to be able to induce carbonate dissolution. To discriminate between different mechanisms causing calcite dissolution, experiments were conducted in the presence of solid calcite with (1) actively growing cells (2) starving cells, and (3) dead cells of the methanotrophic bacterium Methylosinus trichosporium under brackish conditions (salinity 10) near calcite saturation (saturation state (Ω) 1.76 to 2.22). Total alkalinity and the amount of dissolved calcium markedly increased in all experiments containing M. trichosporium cells. After initial system equilibration, similar calcite dissolution rates, ranging between 20.16 (dead cells) and 25.68 μmol L?1 d?1 (actively growing cells), were observed. Although concentrations of transparent exopolymer particles declined with time in the presence of actively growing and starving cells, they increased in experiments with dead cells. Scanning electron microscopy images of calcite crystals revealed visible surface corrosion after exposure to live and dead M. trichosporium cells. The results of this study indicate a strong potential for microbial MOx to affect calcite stability negatively, facilitating calcite dissolution. In addition to CO2 production by methanotrophically active cells, we suggest that the release of acidic or Ca2+-chelating organic carbon compounds from dead cells could also enhance calcite dissolution.  相似文献   

3.
The underwater environment of Grotta Giusti (Monsummano Terme, Italy) is a suggestive setting with different types of speleothems including “leafy” and “cauliflower” concretions along the walls and roof, and conical pseudo-stalagmites on the floor. Very high calcium and dissolved CO2 levels, and massive calcium carbonate precipitation characterize this cave environment. Yet, life thrives on the leafy concretion surfaces with loads of cultivable heterotrophic microorganisms around 105 colony-forming units per cm2. Bacillus licheniformis appeared to be the prevalent cultivable microorganism on a low-nutrient medium that was used for screening. 16S rRNA gene-based polymerase chain reaction–single strand conformation polymorphism profiling indicated that Group VI Bacillaceae species was well represented in the bacterial community of underwater speleothems. Interpretation of X-ray diffraction spectra and Raman spectroscopy data indicated that the B. licheniformis isolate produced in vitro abundant calcite microcrystals that were also characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. Production of calcite microcrystals was analyzed in different media (Christensen’s urea agar and B4 calcium carbonate precipitation medium) and incubation conditions, and it was found to be enhanced by nitrate supplement in B4 medium under low-oxygen conditions. B4 and B4-nitrate media also stimulated antibiotic production by the B. licheniformis isolate, which was analyzed by microbiological assays.  相似文献   

4.
为探讨洞穴微生物沉积碳酸钙作用对洞穴沉积物的影响,利用传统生物学方法,采集贵州中西部地区石将军洞洞穴沉积物表面的微生物样品,结合洞穴监测数据和理化背景资料,利用B-4培养基和B-4C培养基对洞穴细菌进行筛选和纯化,分离出能沉积碳酸钙的菌种,观察和了解洞穴细菌形成的CaCO3晶体,应用X射线衍射分析仪(XRD)分析细菌形成的CaCO3晶体成分,并利用扫描电子显微镜(SEM)观察晶体结构特征。结果表明:1)在B-4培养基下微生物产生的碳酸钙晶体主要为方解石、球霰石和方解石混合物、球霰石,这种变化与培养基pH值的增幅相关;同时,在添加Mg离子的B-4C培养基下形成的碳酸钙晶体主要为方解石,此外,研究中并未检测到文石晶体。2)通过SEM扫描,发现微生物作用形成的碳酸钙晶体存在不规则六方体、柱状体、四方体层状、半球状等,这些晶体形态在化学作用系统下少见,多见于微生物作用形成的方解石。此外,晶体中微生物作用痕迹明显,微生物作用贯穿于整个沉积过程。  相似文献   

5.
In this study, SrGe4O9:Mn4+ red phosphors for plant illumination were prepared using a high-temperature solid-phase method. The samples were characterized and analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), fluorescence spectroscopy, and other techniques. The phase structure, apparent morphology, and luminescence properties of the SrGe4O9:Mn4+ red phosphors were investigated. The results indicated that the dopant Mn4+ was incorporated into the matrix structure by substituting some Ge4+ ions without any changes in the crystal structure of the SrGe4O9 matrix. The samples comprised micron-scale particles and exhibited high purity and uniform distribution of elements. The SrGe4O9:Mn4+ phosphors exhibited relatively strong red light emission at 660 nm under the excitation of a 430-nm blue light, and the luminescence intensity was the highest when the Mn4+ doping amount was 1%. Proper doping of Ti4+ or Sn4+ could effectively improve the luminescence intensity of the SrGe4O9:Mn4+ phosphors. The light-emitting diode (LED) device packaging showed that the SrGe4O9:Mn4+ red phosphors could be used for plant growth illumination.  相似文献   

6.
Present investigation entails carbonic anhydrase (CA) immobilization and its influence on transformation of CO2 to calcite. CA enzyme was immobilized in alginate beads, subsequently maintained its catalytic efficiency after sequential operational cycles. The immobilized beads showed better operational stability by retaining nearly 67% of its initial activity even after six cycles. Batch scale studies with free and immobilized enzyme revealed that the entrapped CA hydrates CO2 to bicarbonate and/or carbonate which was then made to react with Ca2+ ions to transform into calcite. Calcite was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The entrapped CA was employed for the performance evaluation with respect to several operational parameters including the influence of enzyme concentration in free and immobilized condition. It was concluded that immobilized CA in alginate beads would have the potential for CO2 sequestration by biomimetic route.  相似文献   

7.
To provide further evidences on the role of bacterial soil species in the development of calcium carbonate deposits in soil, we isolated 36 heterotrophic bacterial strains from three soils of L'Aquila basin characterized by different CaCO3 content and tested their ability to precipitate CaCO3 when cultured on a Ca-rich medium. We found that the majority (63.89%) of these isolates could precipitate CaCO3 minerals at 27°C. The aptitude to calcification (time and crystal amount) of each calcifying strains, morphology (SEM) and mineralogy of the formed bioliths were also investigated. X-ray diffraction confirmed the production of calcite. Crystal formation was not observed in the controls. Organic matter, total N and assimilable P, cation exchange capacity and exchangeable Ca2+, Mg2+, K+, Na+, pH, total and active calcium carbonate content, electric conductivity, skeleton, sand, silt and clay fractions of each soil sample were determined and related with its microbiological parameters. We found that the CaCO3 content of soil was significatively related, in particular, to the percentage of calcifying bacterial strains (r = 0.95) and to the heterotrophic bacterial density (r = 0.98), which was found significatively related also with Ca2+ content of soil (r = ?0.97) and its CEC (r = ?0.97).  相似文献   

8.
This research studies the crystalline compounds present in nopal (Opuntia ficus-indica) cladodes. The identification of the crystalline structures was performed using X-ray diffraction, scanning electron microscopy, mass spectrometry, and Fourier transform infrared spectroscopy. The crystalline structures identified were calcium carbonate (calcite) [CaCO3], calcium-magnesium bicarbonate [CaMg(CO3)2], magnesium oxide [MgO], calcium oxalate monohydrate [Ca(C2O4)•(H2O)], potassium peroxydiphosphate [K4P2O8] and potassium chloride [KCl]. The SEM images indicate that calcite crystals grow to dipyramidal, octahedral-like, prismatic, and flower-like structures; meanwhile, calcium-magnesium bicarbonate structures show rhombohedral exfoliation and calcium oxalate monohydrate is present in a drusenoid morphology. These calcium carbonate compounds have a great importance for humans because their bioavailability. This is the first report about the identification and structural analysis of calcium carbonate and calcium-magnesium bicarbonate in nopal cladodes, as well as the presence of magnesium oxide, potassium peroxydiphosphate and potassium chloride in these plants. The significance of the study of the inorganic components of these cactus plants is related with the increasing interest in the potential use of Opuntia as a raw material of products for the food, pharmaceutical, and cosmetic industries.  相似文献   

9.
Microbial mineralization of carbonate is a research subject widely studied in the past decades. The magnesium ions (Mg2+), present in water systems, are a key determinant in biomineralization process of carbonate and they are widely found in calcium-based biominerals as an accessory component. However, the crystallization mechanism and morphological change of carbonate polymorphs in the presence of Mg2+ ions has not been clarified sufficiently. In this report, a series of culture experiments were performed for 50 days using the Arthrobacter sp. strain MF-2 in a M2 culture medium using Mg/Ca molar ratios (R) of 0, 1.5, 3, 6, 9, and 12 in solution. And the roles of Mg2+ ions on the crystal growth and morphological change of biogenic carbonate were investigated. Experimental results show: (1) MF-2 could induce aragonite, high-Mg calcite, and Ca-dolomite formation in M2 culture media with different R values. The increased stability of amorphous calcium carbonate suggests Mg2+ ions inhibit carbonate crystallization. (2) The mineral morphologies were varied (rod-shaped, dumbbell-shaped, cauliflower-like, spherical, etc.) in the medium with R = 1.5, but they became simple (spherical and lamellar) in high Mg2+ concentrations (Mg > 0.15 M, R > 3). (3) The increased ionic strength of Mg2+ ions in the environment has an influence on the polymorphs and morphologies of carbonate formed by controlling the metabolism of strain MF-2 and the activity of carbonic anhydrase.  相似文献   

10.
Termites and soil calcium carbonate are major factors in the global carbon cycle: termites by their role in decomposition of organic matter and methane production, and soil calcium carbonate by its storage of atmospheric carbon dioxide. In arid and semiarid soils, these two factors potentially come together by means of biomineralization of calcium carbonate by termites. In this study, we evaluated this possibility by testing two hypotheses. Hypothesis 1 states that termites biomineralize calcium carbonate internally and use it as a cementing agent for building aboveground galleries. Hypothesis 2 states that termites transport calcium carbonate particles from subsoil horizons to aboveground termite galleries where the carbonate detritus becomes part of the gallery construction. These hypotheses were tested by using (1) field documentation that determined if carbonate-containing galleries only occurred on soils containing calcic horizons, (2) 13C/12C ratios, (3) X-ray diffraction, (4) petrographic thin sections, (5) scanning electron microscopy, and (6) X-ray mapping. Four study sites were evaluated: a C4-grassland site with no calcic horizons in the underlying soil, a C4-grassland site with calcic horizons, a C3-shrubland site with no calcic horizons, and a C3-shrubland site with calcic horizons. The results revealed that carbonate is not ubiquitously present in termite galleries. It only occurs in galleries if subsoil carbonate exists within a depth of 100 cm. 13C/12C ratios of carbonate in termite galleries typically matched 13C/12C ratios of subsoil carbonate. X-ray diffraction revealed that the carbonate mineralogy is calcite in all galleries, in all soils, and in the termites themselves. Thin sections, scanning electron microscopy, and X-ray mapping revealed that carbonate exists in the termite gut along with other soil particles and plant opal. Each test argued against the biomineralization hypothesis and for the upward-transport hypothesis. We conclude, therefore, that the gallery carbonate originated from upward transport and that this CaCO3 plays a less active role in short-term carbon sequestration than it would have otherwise played if it had been biomineralized directly by the termites.  相似文献   

11.
The total calcium (tCa) in blood serum comprises free Ca2+ ions (fCa), protein-bound calcium (prCa), and complexed calcium by small anions (cCa). The cCa fraction, in addition to fCa, has been indicated to have some physiological activity. However, there is little evidence for the structure of its constituents. Here we report an ex vivo detection of the cCa constituents by synchrotron X-ray absorption near-edge structure spectroscopy. We collected the data directly on rat blood serum and, by making use of the reference samples, derived a spectrum that exhibits the features of cCa constituents. Among the features are those of the complexes of calcium phosphate and calcium carbonate. The detected complexes in the cCa fraction are mainly Ca(η2-HPO4)(H2O)4 and Ca(η1-HCO3)(H2O)5+, in which HPO42? and HCO3? serve as bidentate and unidentate ligands, respectively. The remained H2O molecules on the coordination sphere of Ca2+ enable these complexes to behave partially like aquated Ca2+ ions in protein-binding. Besides, as the dominant part of prCa, albumin-bound calcium (albCa) exhibits a spectrum that closely resembles that of fCa, indicating weak interactions between the protein carboxyl groups and calcium. The weak-bound cCa and albCa, along with fCa and the relevant anions, compose a local chemical system that could play a role in maintaining the calcium level in blood.  相似文献   

12.
Summary Manganese accumulation was studied by room-temperature electron spin resonance (ESR) spectroscopy inSaccharomyces cerevisiae grown in the presence of increasing amounts of MnSO4. Mn2+ retention was nearly linear in intact cells for fractions related to both low-molecular-mass and macromolecular complexes (free and bound Mn2+, respectively). A deviation from linearity was observed in cell extracts between the control value and 0.1 mM Mn2+, indicating more efficient accumulation at low Mn2+ concentrations. The difference in slopes between the two straight lines describing Mn2+ retention at concentrations lower and higher than 0.1 mM, respectively, was quite large for the free Mn2+ fraction. Furthermore it was unaffected by subsequent dialyses of the extracts, showing stable retention in the form of low-molecular-mass complexes. In contrast, the slope of the line describing retention of bound Mn2+ at concentrations higher than 0.1 mM became less steep after subsequent dialyses of the cell extracts. This result indicates that the macromolecule-bound Mn2+ was essentially associated with particulate structures. In contrast to Cu2+, Mn2+ had no effect on the major enzyme activities involved in oxygen metabolism except for a slight increase of cyanide-resistant Mn-superoxide dismutase activity, due to dialyzable Mn2+ complexes.  相似文献   

13.
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide test and alkaline phosphatase activity assay were employed to assess the effects of mixed trace elements including Zn2+, Ca2+, and Mn2+ plus total flavonoids or icariin from Epimedium koreanum on the proliferation and differentiation of primary osteoblasts in vitro. The results indicated that icariin (0.1, 1, and 10 μmol/L) and total flavonoids (0.06, 0.6, and 6 μg/mL) inhibited the proliferation and promoted the differentiation of primary osteoblasts. Mixed trace elements including Zn2+, Ca2+, and Mn2+ (0.1, 1, and 10 μmol/L) inhibited the proliferation and promoted the differentiation at 0.1 and 1 μmol/L, but inhibited the differentiation at 10 μmol/L. The effects of mixed trace elements including Zn2+, Ca2+, and Mn2+ plus total flavonoids or icariin from E. koreanum on the proliferation and differentiation of primary osteoblasts in vitro are complicated, and both synergistic and antagonistic effects are generated. The results suggest that there may be a potential cooperative action between flavonoids and trace metal elements on the proliferation and differentiation of primary osteoblasts by forming metal complexes. The combination model between flavonoids and trace metal elements is a pivotal factor for switching the biological effects from toxicity to activity, from damage to protection.  相似文献   

14.
During mineral growth in rat bone-marrow stromal cell cultures, gallium follows calcium pathways. The dominant phase of the cell culture mineral constitutes the poorly crystalline hydroxyapatite (HAP). This model system mimics bone mineralization in vivo. The structural characterization of the Ga environment was performed by X-ray absorption spectroscopy at the Ga K-edge. These data were compared with Ga-doped synthetic compounds (poorly crystalline hydroxyapatite, amorphous calcium phosphate and brushite) and with strontium-treated bone tissue, obtained from the same culture model. It was found that Sr2+ substitutes for Ca2+ in the HAP crystal lattice. In contrast, the replacement by Ga3+ yielded a much more disordered local environment of the probe atom in all investigated cell culture samples. The coordination of Ga ions in the cell culture minerals was similar to that of Ga3+, substituted for Ca2+, in the Ga-doped synthetic brushite (Ga-DCPD). The Ga atoms in the Ga-DCPD were coordinated by four oxygen atoms (1.90 Å) of the four phosphate groups and two oxygen atoms at 2.02 Å. Interestingly, the local environment of Ga in the cell culture minerals was not dependent on the onset of Ga treatment, the Ga concentration in the medium or the age of the mineral. Thus, it was concluded that Ga ions were incorporated into the precursor phase to the HAP mineral. Substitution for Ca2+ with Ga3+ distorted locally this brushite-like environment, which prevented the transformation of the initially deposited phase into the poorly crystalline HAP.Electronic Supplementary Material Supplementary material is available in the online version of this article at Abbreviations ACP amorphous calcium phosphate - DCPD dicalcium phosphate dihydrate (brushite) - HAP hydroxyapatite - ED-XRF energy dispersive X-ray fluorescence - EXAFS extended X-ray absorption fine structure - Ga-ACP gallium-doped amorphous calcium phosphate - Ga-DCPD gallium-doped brushite - Ga-HAP gallium-doped hydroxyapatite - XANES X-ray absorption near edge structure - XAS X-ray absorption spectroscopy - XRD X-ray diffraction  相似文献   

15.
Different chemical methods have been developed to evaluate the bioavailable fraction of the trace metals. Due to the lack of a universal method for analysis of the bioavailable metal fractions, due to the differences in sediment characteristics, it is necessary to validate an appropriate chemical method for assessing the available fraction of trace metals. For this propose, in this study, different chemical extraction methods including extraction with HCl and desorption test as a single reagent leaching test as well as geochemical fractions method have been evaluated. Bushehr coastal sediments in the Persian Gulf coasts have been selected for this purpose. To validate the efficacy of these methods, a gastropod species (Trochus erithreus), as a bioindicator, has been selected and monitored for trace metals of Fe2+, Pb2+, Cu2+, Zn2+, Mn2+, and Ni2+. According to the one-way ANOVA results, all partial extraction methods for all the trace metals (except for Mn2+) showed no significant variation, but linear correlation coefficients were between the results of the selective chemical extraction methods and concentrations of trace metals in organism tissues. It offered that selective extraction with HCl can be used as a simple method for measuring the bioavailable fraction of the metals in the sediments.  相似文献   

16.
Mithramycin (MTR), an aureolic acid group of antitumor antibiotic is used for the treatment of several types of tumors. We have reported here the association of MTR with an essential micronutrient, manganese (Mn2+). Spectroscopic methods have been used to characterize and understand the kinetics and mechanism of complex formation between them. MTR forms a single type of complex with Mn2+ in the mole ratio of 2:1 [MTR: Mn2+] via a two step kinetic process. Circular dichroism (CD) spectroscopic study indicates that the complex [(MTR)2 Mn2+] has a right-handed twist conformation similar in structure with the complexes reported for Mg2+ and Zn2+. This conformation allows binding via minor groove of DNA with (G, C) base preference during the interaction with double-stranded B-DNA. Using absorbance, fluorescence, and CD spectroscopy we have shown that [(MTR)2 Mn2+] complex binds to double-stranded DNA with an apparent dissociation constant of 32?μM and binding site size of 0.2 (drug/nucleotide). It binds to chicken liver chromatin with apparent dissociation constant value 298?μM. Presence of histone proteins in chromatin inhibits the accessibility of the complex for chromosomal DNA. We have also shown that MTR binds to Mn2+ containing metalloenzyme manganese superoxide dismutase from Escherichia coli.  相似文献   

17.
《Process Biochemistry》2010,45(6):1017-1021
The effect of microbial carbonic anhydrase (CA) on the calcium carbonate (CaCO3) precipitation was systematically investigated comparing to other biological factors (bovine CA, bovine serum albumin, carboxymethyl chitosan and glutamic acid). The results showed that the precipitation rate of Ca2+ in the presence of either microbial CA or bovine CA was faster than that in the presence of 1% bovine serum albumin, 1% carboxymethyl chitosan or 1% glutamic acid, respectively. In addition, XRD analysis indicated that the dominant CaCO3 crystal phase was calcite. The CaCO3 crystal morphologies mainly showed cubic and polyhedral shapes induced by microbial CA, and became multiformity induced by other factors from FE-SEM analysis. These results suggested a novel approach for biomimetic synthesis of CaCO3 materials by microbial CA.  相似文献   

18.
An increase in urban population and the reduced number of suitable lands for construction projects have necessitated the need for ground improvement methods with no environmentally detrimental effects. Microbial-induced calcite precipitation (MICP) is a relatively environmentally friendly method for soil regeneration. In the present paper, X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were performed to investigate the type and method of cement formation in loose quartz sand with different densities stabilized using bacteria. The results showed that the highest content of calcium carbonate cement was produced in the sample with the lowest density. Moreover, after microbial stabilization, the shear strength measured in the direct shear test was increased in the specimen with a lower density. We observed an increase in shear strength from 0.63 kg/cm2 before injection for loose sand (γ = 1.5 g/cm3) to 3.92 kg/cm2 after injection. In addition, the effect of injection time was investigated and found that shear strength in the two-stage injection per day is greater than that in one- and three-stage injections per day. With prolonging the injection time from one to five days, shear strength was significantly increased from 2.07 to 4.54 kg/cm2. Furthermore, prolonging the bacterial treatment period led to a significant increase in the produced carbonate cement and, consequently, enhanced soil shear strength.  相似文献   

19.
In inside-out red cell membrane vesicles ATP-dependent calcium transport is activated by the divalent metal ions Mg2+, Mn2+, Co2+, Ni2+ and Fe2+. This activation is based on the formation of Me2+-ATP complexes which can serve as energy-donor substrates for the calcium pump, and probably, satisfy the requirement for free Me2+ in this transport process. Higher Me2+ concentrations inhibit calcium transport with various efficiencies. Mn2+ directly competes with Ca2+ at the transport site, while other divalent metal ions investigated have no such effect. The formation of the hydroxylamine-sensitive phosphorylated intermediate (EP) of the red cell membrane calcium pump from [γ-32P]ATP is induced by Ca2+ while rapid dephosphorylation requires the presence of Mg2+. At higher concentrations Mn2+ and Ni2+ inhibit predominantly the formation of EP, while Co2+ and Fe2+ block dephosphorylation. The possible sites and nature of the divalent metal interactions with the red cell calcium pump are discussed. Hydroxylamine-insensitive membrane phosphorylation in inside-out vesicles from [γ-32P]ATP is significantly stimulated by Mn2+ and Co2+, as compared to that produced by Mg2+, Fe2+ and Ni2+. Part of this labelling is found in phospholipids, especially in phosphatidylinositol. The results presented for the metal dependency of protein and lipid phosphorylation in red cell membranes may help in the characterization of ATP consumptions directly related to the calcium pump and those involved in various regulatory processes.  相似文献   

20.
This article discusses aspects of biofouling and corrosion in the thermo-fluid heat exchanger (TFHX) and in the cooling water system of a nuclear test reactor. During inspection, it was observed that >90% of the TFHX tube bundle was clogged with thick fouling deposits. Both X-ray diffraction and Mössbauer analyses of the fouling deposit demonstrated iron corrosion products. The exterior of the tubercle showed the presence of a calcium and magnesium carbonate mixture along with iron oxides. Raman spectroscopy analysis confirmed the presence of calcium carbonate scale in the calcite phase. The interior of the tubercle contained significant iron sulphide, magnetite and iron-oxy-hydroxide. A microbiological assay showed a considerable population of iron oxidizing bacteria and sulphate reducing bacteria (105 to 106 cfu g?1 of deposit). As the temperature of the TFHX is in the range of 45–50°C, the microbiota isolated/assayed from the fouling deposit are designated as thermo-tolerant bacteria. The mean corrosion rate of the CS coupons exposed online was ~2.0 mpy and the microbial counts of various corrosion causing bacteria were in the range 103 to 105 cfu ml?1 in the cooling water and 106 to 108 cfu ml?1 in the biofilm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号