首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wnt signaling pathway plays a major role in the regulation of cell proliferation, migration, tissue homeostasis, tumor progression and cancer. This pathway can be antagonized by different proteins such as DKK proteins, which disrupt the initiatory complex (Frizzled–LRP6 complex). Therefore, interruption of its formation could be a promising strategy for the design of Low-density lipoprotein receptor-Related Protein 6 (LRP6) inhibitors. A computational study was conducted in order to assist in the design of inhibitory peptides against LRP6 as co-receptor of frizzled. Twelve fragments as peptide derivatives of natural ligand of LRP6 receptor (DKK1) were designed using the information from the analysis of the DKK1_C/LRP6 complex, hot spot residues and the secondary structure. These fragments were based on cys2 domain of DKK1. The designed peptides were energy minimized by molecular dynamics simulations in the presence and absence of LRP6 receptor and their binding affinities were investigated via molecular docking using ClusPro, HADDOCK and PRODIGY webservers. Finally, the stability and free energy of binding in peptides were calculated by FoldX software. The results showed that four designed peptides had the highest affinity (the interaction energy: ?10.2867, ?10.1388, ?7.94339 and ?7.57536 kcal/mol) to interact with the receptor which showed the most interacting residues and the lowest free energy of binding. Also, the RMSD, RMSF and RoG of the protein–peptide complex exhibited less structural fluctuations which can be linked to the stability of peptides associated to the receptor. These peptides may be considered as candidates for inhibiting Wnt signaling pathway through LRP6 receptor.  相似文献   

2.
Dengue infection is the most common arthropod‐borne disease caused by dengue viruses, predominantly affecting millions of human beings annually. To find out promising chemical entities for therapeutic application in Dengue, in the current research, a multi‐step virtual screening effort was conceived to screen out the entire “screening library” of the Asinex database. Initially, through “Lipinski rule of five” filtration criterion almost 0.6 million compounds were collected and docked with NS3‐NS2B protein. Thereby, the chemical space was reduced to about 3500 compounds through the analysis of binding affinity obtained from molecular docking study in AutoDock Vina. Further, the “Virtual Screening Workflow” (VSW) utility of Schrödinger suite was used, which follows a stepwise multiple docking programs such as ‐ high‐throughput virtual screening (HTVS), standard precision (SP), and extra precision (XP) docking, and in postprocessing analysis the MM‐GBSA based free binding energy calculation. Finally, five potent molecules were proposed as potential inhibitors for the dengue NS3‐NS2B protein based on the investigation of molecular interactions map and protein‐ligand fingerprint analyses. Different pharmacokinetics and drug‐likeness parameters were also checked, which favour the potentiality of selected molecules for being drug‐like candidates. The molecular dynamics (MD) simulation analyses of protein‐ligand complexes were explained that NS3‐NS2B bound with proposed molecules quite stable in dynamic states as observed from the root means square deviation (RMSD) and root means square fluctuation (RMSF) parameters. The binding free energy was calculated using MM‐GBSA method from the MD simulation trajectories revealed that all proposed molecules possess such a strong binding affinity towards the dengue NS3‐NS2B protein. Therefore, proposed molecules may be potential chemical components for effective inhibition of dengue NS3‐NS2B protein subjected to experimental validation.  相似文献   

3.
New arylhydrazone derivatives and a series of 1,5-diphenyl pyrazoles were designed and synthesized from 1-(4-chlorophenyl)-4,4,4-trifuorobutane-1,3-dione 1. The newly synthesized compounds were investigated in vivo for their anti-inflammatory activities using carrageenan-induced rat paw oedema model. Moreover, they were tested for their inhibitory activity against ovine COX-1 and COX-2 using an in vitro cyclooxygenase (COX) inhibition assay. Some of the new compounds (2f, 6a and 6d) showed a reasonable in vitro COX-2 inhibitory activity, with IC?? value of 0.45 μM and selectivity index of 111.1. A virtual screening was carried out through docking the designed compounds into the COX-2 binding site to predict if these compounds have analogous binding mode to the COX-2 inhibitors. Docking study of the synthesized compounds 2f, 6a and 6d into the active site of COX-2 revealed a similar binding mode to SC-558, a selective COX-2 inhibitor.  相似文献   

4.
Abstract

Diabetes is a foremost health problem globally susceptible to increased mortality and morbidity. The present therapies in the antidiabetic class have sound adverse effects and thus, emphasis on the further need to develop effective medication therapy. Peroxisome proliferator-activated receptor alpha-gamma dual approach represents an interesting target for developing novel anti-diabetic drug along with potential anti-hyperlipidimic activity. In the current study, the peroxisome proliferator-activated receptor alpha-gamma agonistic hits were screened by hierarchical virtual screening of drug like compounds followed by molecular dynamics simulation and knowledge-based structure-activity relation analysis. The key amino acid residues of binding pockets of both target proteins were acknowledged as essential and were found to be associated in the key interactions with the most potential dual hit. This dual targeted approach of structure based computational technique was undertaken to identify prevalent promising hits for both targets with binding energy and absorption distribution metabolism excretion prediction supported the analysis of their pharmacokinetic potential. In addition, stability analysis using molecular dynamics simulation of the target protein complexes was performed with the most promising dual targeted hit found in this study. Further, comparative analysis of binding site of both targets was done for the development of knowledge-based structure-activity relationship, which may useful for successful designing of dual agonistic candidates. Abbreviations ADME absorption distribution metabolism excretion

HTVS highthroughput virtual screening

MD molecular dynamics

MMGBSA molecular mechanics generalized bonn solvation accessible

PDB protein data bank

PPAR peroxisome proliferator-activated receptor

RMSD Root mean square deviation

RMSF Root mean square fluctuation

SAR structural activity relationship

SP simple precision

T2DM TypeII diabetes mellitus

XP Extra precision

Communicated by Ramaswamy H. Sarma  相似文献   

5.
6.
Background : Alpha-7-nicotinic acetylcholine receptor (α7nAChR), a ligand-gated ion channel is one of the important parts of the cholinergic pathway in the brain and has a remarkable role in Alzheimer's disease (AD). It has been documented that the modulation of α7nAChR with the help of phytoconstituent can be helpful in the treatment of AD. Method : The binding efficacy of fifty flavonoids was evaluated for human α7nAChR using molecular docking. The best two flavonoids shortlisted from docking analysis were then subjected to molecular dynamic simulations for 100 ns to analyze conformational binding stability with the target protein. Further, the druggability of the selected flavonoids was checked using in silico ADMET studies. Result : The top two flavonoids selected based on binding affinity toward the binding site of α7nAChR from molecular docking were amentoflavone (–9.1 kcal/mol) and gallocatechin (–8.8 kcal/mol). The molecular dynamics simulation revealed that amentoflavone and gallocatechin have a stable state during overall simulation time, lesser root mean deviation (RMSD) and root mean square fluctuation (RMSF), and complex of both compounds with protein is stable until 100 ns. Conclusion : The two flavonoids amentoflavone and gallocatechin are potential lead molecules that could be utilized as effective agonists of α7nAChR to combat Alzheimer's disease. Future in vitro and in vivo analyses are required to confirm their effectiveness.  相似文献   

7.
Protein–protein interactions (PPI) are a new emerging class of novel therapeutic targets. In order to probe these interactions, computational tools provide a convenient and quick method towards the development of therapeutics. Keeping this in view the present study was initiated to analyse interaction of tumour suppressor protein p53 (TP53) and breast cancer associated protein (BRCA1) as promising target against breast cancer. Using computational approaches such as protein–protein docking, hot spot analyses, molecular docking and molecular dynamics simulation (MDS), stepwise analyses of the interactions of the wild type and mutant TP53 with that of wild type BRCA1 and their modulation by alkaloids were done. Protein–protein docking method was used to generate both wild type and mutant complexes of TP53-BRCA1. Subsequently, the complexes were docked using sixteen different alkaloids, fulfilling ADMET and Lipinski’s rule of five criteria, and were compared with that of a well-known inhibitor of PPI, namely nutlin. The alkaloid dicentrine was found to be the best docked alkaloid among all the docked alklaloids as well as that of nutlin. Furthermore, MDS analyses of both wild type and mutant complexes with the best docked alkaloid i.e. dicentrine, revealed higher stability of mutant complex than that of the wild one, in terms of average RMSD, RMSF and binding free energy, corroborating the results of docking. Results suggested more pronounced interaction of BRCA1 with mutant TP53 leading to increased expression of mutated TP53 thus showing a dominant negative gain of function and hampering wild type TP53 function leading to tumour progression.  相似文献   

8.
Blind docking was introduced for the detection of possible binding sites and modes of peptide ligands by scanning the entire surface of protein targets. In the present study, the method is tested on a group of drug-sized compounds and proteins with up to a thousand amino acid residues. Both proteins from complex structures and ligand-free proteins were used as targets. Robustness, limitations and future perspectives of the method are discussed. It is concluded that blind docking can be used for unbiased mapping of the binding patterns of drug candidates.  相似文献   

9.
Abstract

Drug discovery for a vigorous and feasible lead candidate is a challenging scientific mission as it requires expertise, experience, and huge investment. Natural products and their derivatives having structural diversity are renowned source of therapeutic agents since many years. Tyrosol (a natural phenylethanoid) has been extracted from olive oil, and its structure was confirmed by elemental analysis, FT-IR, FT-NMR, and single crystal X-ray crystallography. The conformational analysis for tyrosol geometry was performed by Gaussian 09 in terms of density functional theory. Validation of bond lengths and bond angles obtained experimentally as well as theoretically were performed with the help of curve fitting analysis, and values of correlation coefficient (R) obtained as 0.988 and 0.984, respectively. The charge transfer within the tyrosol molecule was confirmed by analysis of HOMO→LUMO molecular orbitals. In molecular docking with COX-2 (PDB ID: 5F1A), tyrosol was found to possess satisfactory binding affinity as compared to other NSAIDs (Aspirin, Ibuprofen, and Naproxen) and a COX-2 selective drug (Celecoxib). ADMET prediction, drug-likeness and bioactivity score altogether confirm the lead/drug like potential of tyrosol. Further investigation of simulation quality plot, RMSD and RMSF plots, ligands behavior plot as well as post simulation analysis manifest the consistency of 5F1A-tyrosol complex throughout the 20?ns molecular simulation process that signifies its compactness and stability within the receptor pocket. Abbreviations ADMET Absorption, Distribution, Metabolism, Excretion and Toxicity

Å Angstrom

COX-2 Cyclooxygenase-2

DFT Density Functional Theory

DMF Dimethylformamide

FMO Frontier Molecular Orbital

FT-IR Fourier-transform Infrared Spectroscopy

FT-NMR Nuclear Magnetic Resonance Spectroscopy

HOMO Highest Occupied Molecular Orbital

LUMO Lowest Unoccupied Molecular Orbital

MD Molecular Dynamics

NS Nanosecond

NSAIDs Non-steroidal anti-inflammatory drugs

OPE Osiris Property Explorer

RMSD Root-Mean-Square Deviation

RMSF Root Sean Square Fluctuation

Communicated by Ramaswamy H. Sarma  相似文献   

10.
Tyrosine kinase receptor and protein kinases drawn much attention for the scientific fraternity in drug discovery due to its important role in different cancer, cardiovascular diseases and other hyper-proliferative disorders. Docking studies of pyrazole derivatives with tyrosine kinase and different serine/threonine protein kinases were employed by using flexible ligand docking approach of AutoDock 4.2. Among the molecules tested for docking study, 2-(4-chlorophenyl)-5-(3-(4-chlorophenyl)-5-methyl-1- phenyl-1H-pyrazol-4-yl)-1,3,4-thiadiazole (1b), 2-(4-methoxyphenyl)-5-(3-(4-methoxyphenyl)-5-methyl-1-phenyl-1H-pyrazol-4-yl)- 1,3,4-thiadiazole (1d) and 2-(4-chlorophenyl)-5-(3-(4-chlorophenyl)-5-methyl-1-phenyl-1H-pyrazol-4-yl)-1,3,4-thiadiazole (2b) revealed minimum binding energy of -10.09, -8.57 and -10.35 kJ/mol with VEGFR-2 (2QU5), Aurora A (2W1G) and CDK2 (2VTO) protein targets, respectively. These proteins are representatives of plausible models of interactions with different anticancer agents. All the ligands were docked deeply within the binding pocket region of all the three proteins, showing reasonable hydrogen bonds. The docking study results showed that these pyrazole derivatives are potential inhibitor of all the three protein targets; and also all these docked compounds have good inhibition constant, vdW + Hbond + desolv energy with best RMSD value.  相似文献   

11.
Abstract

The development of pathogenic microbial resistance toward antibiotics has become a global clinical concern. New Delhi metallo-β-lactmase-1 (NDM-1) and its variants have recently drawn immense attention for its biological ability to catalyze the hydrolysis of almost all of β-lactam antibiotics including the Carbapenems which are generally considered as the last-resort antibiotics. Also, the horizontal gene transfer is expediting the rapid spread of NDM-1 in bacteria. In the wake of this serious antibiotic resistance problem it becomes imperative to find inhibitors which can render the present antibiotics functional and useful. In the present study, we have used Molecular docking and Molecular Dynamics (MD) simulation approach to find out suitable inhibitors against NDM-1 from an array of different natural compounds. We have screened unique natural compounds from ZINC database and also a set of standard antibiotics and inhibitors. Based upon the highest binding affinity demonstrated by docking with NDM-1, the best binding antibiotic Meropenem and the top five natural compounds, viz., Withaferin A, Beta-Sitosterol, Aristolochic acid, Diosgenin and Guggulsterone E were selected and subjected to MD simulations study. The docked NDM-1 complex with withaferin A, beta-sitosterol and diosgenin were found to be more stable as compared to the one with meropenem throughout the MD simulation process with the relative RMSD and RMSF in acceptable range. In conclusion, these compounds can be readily tested in vitro and in vivo to fully establish and confirm their inhibition potentiality and can also serve as lead molecules for the development of future functional inhibitors.

Communicated by Ramaswamy H. Sarma  相似文献   

12.
Abstract

Dengue virus (DENV) is one of the most dangerous mosquito-borne human pathogens known to the mankind. Currently, no vaccines or standard therapy is avaliable to treate DENV infection. This makes the drug development against DENV more significant and challenging. The MTase domain of DENV RNA RdRp NS5 is a promising drug target, because this domain hosts the RNA capping process of DENV RNA to escape from human immune system. In the present study, we have analysed the RNA intervention mechanism exerted by flavoniod molecules against NS5 MTase RNA capping site by using molecular docking, molecular dynamics simulation and the binding free energy calculations. The results from the docking analysis confirmed that the RNA intervention mecanism is exerted by the quercetagetin (QGN) molecule with all necessary intermolecular interactions and high binding affinity. Notably, QGN forms strong hydrogen bonding interactions with Asn18, Leu20 and Ser150 residues and π???π stacking interaction with Phe25 residue. The apo and QGN bound NS5 MTase and QGN-NS5 MTase complex were used for MD simulation. The results of MD simulation reveal that the RMSD and RMSF values of QGN-MTase complex have increased on comparing the apo protein due to the effect of ligand binding. The binding free energy calulation includes prediction of total binding free energy of ligand-protein complex and per-residue free energy decomposition. The QGN binding to NS5 MTase affects it’s native motion, this result is found from Principal component analysis.

Communicated by Ramaswamy H. Sarma  相似文献   

13.
In the design of 1‐phenylbenzimidazoles as model cyclooxygenase (COX) inhibitors, docking to a series of crystallographic COX structures was performed to evaluate their potential for high‐affinity binding and to reproduce the interaction profile of well‐known COX inhibitors. The effect of ligand‐specific induced fit on the calculations was also studied. To quantitatively compare the pattern of interactions of model compounds to the profile of several cocrystallized COX inhibitors, a geometric parameter, denominated ligand‐receptor contact distance (LRCD), was developed. The interaction profile of several model complexes showed similarity to the profile of COX complexes with inhibitors such as iodosuprofen, iodoindomethacin, diclofenac, and flurbiprofen. Shaping of high‐affinity binding sites upon ligand‐specific induced fit mostly determined both the affinity and the binding mode of the ligands in the docking calculations. The results suggest potential of 1‐phenylbenzimidazole derivatives as COX inhibitors on the basis of their predicted affinity and interaction profile to COX enzymes. The analyses also provided insights into the role of induced fit in COX enzymes. While inhibitors produce different local structural changes at the COX ligand binding site, induced fit allows inhibitors in diverse chemical classes to share characteristic interaction patterns that ensure key contacts to be achieved. Different interaction patterns may also be associated with different inhibitory mechanisms.  相似文献   

14.
Protein kinases are important drug targets in human cancers, inflammation and metabolic diseases. Docking studies was performed for all the benzimidazopyrimidine and coumarin substituted benzimidazopyridimine derivatives with human Aurora A kinase target (3FDN) employing flexible ligand docking approach by using AutoDock 4.2. All the compounds were found to have minimum binding energy ranging from -6.26 to -9.29 kJ/mol. Among the molecules tested for docking study, 10-(6-Bromo-2-oxo- 2H-chromen-4-ylmethyl)-2-isopropyl-10H-benzo[4,5]imidazo[1,2-a]pyrimidin-4-one (2k) showed minimum binding energy (-9.29 kJ/mol) with ligand efficiency of -0.31. All the ligands were docked deeply within the binding pocket region of 3FDN showing hydrogen bonds with Ala 213 and Asn 261. The docking study results showed that these derivatives are excellent inhibitor of human Aurora A kinase target; and also all these docked compounds have good inhibition constant, vdW + Hbond + desolv energy with best RMSD value.  相似文献   

15.
Glioblastoma multiforme (GBM) is considered to be the most common and often deadly disorder which affects the brain. It is caused by the over expression of proteins such as ephrin type-A receptor 2 (EphA2), epidermal growth factor receptor (EGFR) and EGFRvIII. These 3 proteins are considered to be the potential therapeutic targets for GBM. Among these, EphA2 is reported to be over-expressed in ˜90% of GBM. Herein we selected 35 compounds from marine actinomycetes, 5 in vitro and in vivo studied drug candidates and 4 commercially available drugs for GBM which were identified from literature and analysed by using comparative docking studies. Based on the glide scores and other in silico parameters available in Schrödinger, two selected marine actinomycetes compounds which include Tetracenomycin D and Chartreusin exhibited better binding energy among all the compounds studied in comparative docking. In this study we have demonstrated the inhibition of the 3 selected targets by the two bioactive compounds from marine actinomycetes through in-silico docking studies. Furthermore molecular dynamics simulation were also been performed to check the stability and the amino acids interacted with the 3 molecular targets (EphA2 receptor, EGFR, EGFRvIII) for GBM. Our results suggest that Tetracinomycin D and Chartreusin are the novel and potential inhibitor for the treatment of GBM.  相似文献   

16.
Abstract

Owing to its negative regulatory role in insulin signaling, protein tyrosine phosphatase of leukocyte antigen-related protein (PTP-LAR) was widely thought as a potential drug target for diabetes. Now, it was urgent to search for potential LAR inhibitors targeting diabetes. Initially, the pharmacophore models of LAR inhibitors were established with the application of the HypoGen module. The cost analysis, test set validation, as well as Fischer’s test was used to verify the efficiency of pharmacophore model. Then, the best pharmacophore model (Hypo-1-LAR) was applied for the virtual screening of the ZINC database. And 30 compounds met the Lipinski’s rule of five. Among them, 10 compounds with better binding affinity than the known LAR inhibitor (BDBM50296375) were discovered by docking studies. Finally, molecular dynamics simulations and post-analysis experiments (RMSD, RMSF, PCA, DCCM and RIN) were conducted to explore the effect of ligands (ZINC97018474 and Compound 1) on LAR and preliminary understand why ZINC97018474 had better inhibitory activity than Compound 1 (BDBM50296375).

Communicated by Ramaswamy H. Sarma  相似文献   

17.
In this study fragment-based drug design is combined with molecular docking simulation technique, to design databases of virtual sialic acid (SA) analogues with new substitutions at C2, C5 and C6 positions of SA scaffold. Using spaces occupied by C2, C5 and C6 natural moieties of SA when bound to hemagglutinin (HA) crystallographic structure, new fragments that are commercially available were docked independently in all the pockets. The oriented fragments were then connected to the SA scaffold with or without incorporation of linker molecules. The completed analogues were docked to the whole SA binding site to estimate their binding conformations and affinities, generating three databases of HA-bound SA analogues. Selected new analogues showed higher estimated affinities than the natural SA when tested against H3N2, H5N1 and H1N1 subtypes of influenza A. An improvement in the binding energies indicates that fragment-based drug design when combined with molecular docking simulation is capable to produce virtual analogues that can become lead compound candidates for anti-flu drug discovery program.  相似文献   

18.
In this study fragment-based drug design is combined with molecular docking simulation technique, to design databases of virtual sialic acid (SA) analogues with new substitutions at C2, C5 and C6 positions of SA scaffold. Using spaces occupied by C2, C5 and C6 natural moieties of SA when bound to hemagglutinin (HA) crystallographic structure, new fragments that are commercially available were docked independently in all the pockets. The oriented fragments were then connected to the SA scaffold with or without incorporation of linker molecules. The completed analogues were docked to the whole SA binding site to estimate their binding conformations and affinities, generating three databases of HA-bound SA analogues. Selected new analogues showed higher estimated affinities than the natural SA when tested against H3N2, H5N1 and H1N1 subtypes of influenza A. An improvement in the binding energies indicates that fragment-based drug design when combined with molecular docking simulation is capable to produce virtual analogues that can become lead compound candidates for anti-flu drug discovery program.  相似文献   

19.
The widespread emergence of antimalarial drug resistance has created a major threat to public health. Malaria is a life-threatening infectious disease caused by Plasmodium spp., which includes Apicoplast DNA polymerase and Plasmodium falciparum cysteine protease falcipain-2. These components play a critical role in their life cycle and metabolic pathway, and are involved in the breakdown of erythrocyte hemoglobin in the host, making them promising targets for anti-malarial drug design. Our current study has been designed to explore the potential inhibitors from haplopine derivatives against these two targets using an in silico approach. A total of nine haplopine derivatives were used to perform molecular docking, and the results revealed that Ligands 03 and 05 showed strong binding affinity compared to the control compound atovaquone. Furthermore, these ligand-protein complexes underwent molecular dynamics simulations, and the results demonstrated that the complexes maintained strong stability in terms of RMSD (root mean square deviation), RMSF (root mean square fluctuation), and Rg (radius of gyration) over a 100 ns simulation period. Additionally, PCA (principal component analysis) analysis and the dynamic cross-correlation matrix showed positive outcomes for the protein-ligand complexes. Moreover, the compounds exhibited no violations of the Lipinski rule, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) predictions yielded positive results without indicating any toxicity. Finally, density functional theory (DFT) and molecular electrostatic potential calculations were conducted, revealing that the mentioned derivatives exhibited better stability and outstanding performance. Overall, this computational approach suggests that these haplopine derivatives could serve as a potential source for developing new, effective antimalarial drugs to combat malaria. However, further in vitro or in vivo studies might be conducted to determine their actual effectiveness.  相似文献   

20.
Abstract

Hispolon is a polyphenolic compound derived from black hoof mushroom (Phellinus linteus) or shaggy bracket mushroom (Inonotus hispidus) which induces the inhibition of cancer-promoting nuclear factor-kappa beta (NF-κβ) complex. To develop more potent lead molecules with enhanced anticancer efficiency, the mechanism of hispolon-mediated nuclear factor-κβ inhibition has been investigated by molecular modelling and docking. Ten derivatives of hispolon (DRG1-10) have been developed by pharmacophore-based design with a view to enhance the anticancer efficacy. Hispolon and its derivatives were further screened for different pharmacological parameters like binding free energy, drug likeliness, absorption–digestion–metabolism–excretion (ADME), permeability, mutagenicity, toxicity and inhibitory concentration 50 (IC50) to find a potent lead molecule. Based on pharmacological validation, comparative molecular dynamics (MD) simulations have been performed for three lead molecules: Hispolon, DRG2 and DRG7 complexed with human NF-κβ up to 50?ns. By analysing different factors like root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA) and principal component analysis (PCA), Gibb’s free energy plots DRG2 have more binding efficiency compared to hispolon and DRG7. In RMSD plot, hispolon-bound NF-κβ has the most deviation within a range between 0.125 and 0.45?nm, and DRG2-bound complex showed the range between 0.125 and 0.25?nm. The residues of NF-κβ responsible for hydrophobic interactions with ligand, e.g. Met469, Leu522 and Cys533, have the lowest fluctuation values in DRG2-bound complex. The average Rg fluctuation for DRG2-bound NF-κβ has been recorded under 2.025?nm for most of the simulation time which is much less compared to hispolon and DRG7. Gibb’s free energy plots also define the highest stability of DRG2-bound NF-κβ.

Communicated by Ramaswamy H. Sarma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号