首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Life-history theory is based on the assumption that evolution is constrained by trade-offs among different traits that contribute to fitness. Such trade-offs should be evident from negative genetic correlations among major life-history traits. However, this expectation is not always met. Here I report the results of a life-table experiment designed to measure the broad-sense heritabilities of life-history traits and their genetic correlations in 19 different clones of the aphid Myzus persicae from Victoria, Australia. Most individual traits, as well as fitness calculated as the finite rate of increase from the life table, exhibited highly significant heritabilities. The pattern of genetic correlations revealed absolutely no evidence for life-history trade-offs. Rather, life histories were arranged along an axis from better to worse. Clones with shorter development times tended to have larger body sizes, higher fecundities, and larger offspring. The fitness of clones estimated from the life table in the laboratory tended to be positively associated with their abundance in the field. Fitness also increased significantly with heterozygosity at the seven microsatellite loci that were used to distinguish clones and estimate their frequencies in the field. I discuss these findings in light of a recent proposition that positive genetic correlations among life-history traits for which trade-offs are expected can be explained by genetic variation for resource acquisition ability that is maintained in populations by a cost of acquisition, and I propose ways to test for such a cost in M. persicae.  相似文献   

2.
On the evolution of clonal plant life histories   总被引:2,自引:0,他引:2  
Clonal plant life histories are special in at least four respects: (1) Clonal plants can also reproduce vegetatively, (2) vegetative reproduction can be realised with short or long spacers, (3) and it may allow to plastically place vegetative offspring in benign patches. (4) Moreover, ramets of clonal plants may remain physically and physiologically integrated. Because of the apparent utility of such traits and because ecological patterns of distribution of clonal and non-clonal plants differ, adaptation is a tempting explanation of observed clonal life-history variation. However, adaptive evolution requires (1) heritable genetic variation and (2) a trait effect on fitness, and (3) it may be constrained if other evolutionary forces are overriding selection or by constraints, costs and trade-offs. (1) The few studies undertaken so far reported broad-sense heritability for clonal traits. Variation in selectively neutral genetic markers appears as pronounced in populations of clonal as non-clonal plants. However, neutral markers may not reflect heritable variation of life-history traits. Moreover, clonal plants may have been sampled at larger spatial scales. Empirical information on the contribution of somatic mutations to heritable variation is lacking. (2) Clonal life-history traits were found to affect fitness. However, much of this evidence stems from artificial rather than natural environments. (3) The relative importance of gene flow, inbreeding, and genetic drift, compared with selection, in the evolution of clonal life histories is hardly explored. Benefits of clonal life-history traits were frequently studied and found. However, there is also evidence for constraints, trade-offs, and costs. In conclusion, though it is very likely, that clonal life-history traits are adaptive, it is neither clear to which degree this is the case, nor which clonal life-history traits constitute adaptations to which environmental factors. Moreover, evolutionary interactions among clonal life-history traits and between clonal and non-clonal ones, such as the mating system, are not well explored. There remains much interesting work to be done in this field – which will be particularly interesting if it is done in the field.  相似文献   

3.
Fundamental, long-term genetic trade-offs constrain life-history evolution in wild crucifer populations. I studied patterns of genetic constraint in Brassica rapa by estimating genetic correlations among life-history components by quantitative genetic analyses among ten wild populations, and within four populations. Genetic correlations between age and size at first reproduction were always greater than +0.8 within and among all populations studied. Although quantitative genetics might provide insight about genetic constraints if genetic parameters remain approximately constant, little evidence has been available to determine the constancy of genetic correlations. I found strong and consistent estimates of genetic correlations between life-history components, which were very similar within four natural populations. Population differentiation also showed these same trade-offs, resulting from long-term genetic constraint. For some traits, evolutionary changes among populations were incompatible with a model of genetic drift. Historical patterns of natural selection were inferred from population differentiation, suggesting that correlated response to selection has caused some traits to evolve opposite to the direct forces of natural selection. Comparison with Arabidopsis suggests that these life-history trade-offs are caused by genes that regulate patterns of resource allocation to different components of fitness. Ecological and energetic models may correctly predict these trade-offs because there is little additive genetic variation for rates of resource acquisition, but resource allocation is genetically variable.  相似文献   

4.
Resource allocation within individuals may often be hierarchical, and this may have important effects on genetic correlations and on trait evolution. For example, organisms may divide energy between reproduction and somatic growth and then subdivide reproductive resources. Genetic variation in allocation to pathways early in such hierarchies (e.g., reproduction) can cause positive genetic correlations between traits that trade off (e.g., offspring size and number) because some individuals invest more resources in reproduction than others. We used quantitative-genetic models to explore the evolutionary implications of allocation hierarchies. Our results showed that when variation in allocation early in the hierarchy exceeds subsequent variation in allocation, genetic covariances and initial responses to selection do not reflect trade-offs occurring at later levels in the hierarchy. This general pattern was evident for many starting allocations and optima and for whether traits contributed multiplicatively or additively to fitness. Finally, artificial selection on a single trait revealed masked trade-offs when variation in early allocation was comparable to subsequent variation in allocation. This result confirms artificial selection as a powerful, but not foolproof, method of detecting trade-offs. Thus, allocation hierarchies can profoundly affect life-history evolution by causing traits to evolve in the opposite direction to that predicted by trade-offs.  相似文献   

5.
The genetic basis of host plant use by phytophagous insects can provide insight into the evolution of ecological niches, especially phenomena such as specialization and phylogenetic conservatism. We carried out a quantitative genetic analysis of multiple host use traits, estimated on five species of host plants, in the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Mean values of all characters varied among host plants, providing evidence that adaptation to plants may require evolution of both behavioral (preference) and post-ingestive physiological (performance) characteristics. Significant additive genetic variation was detected for several characters on several hosts, but not in the capacity to use the two major hosts, a pattern that might be caused by directional selection. No negative genetic correlations across hosts were detected for any 'performance' traits, i.e. we found no evidence of trade-offs in fitness on different plants. Larval consumption was positively genetically correlated across host plants, suggesting that diet generalization might evolve as a distinct trait, rather than by independent evolution of feeding responses to each plant species, but several other traits did not show this pattern. We explored genetic correlations among traits expressed on a given plant species, in a first effort to shed light on the number of independent traits that may evolve in response to selection for host-plant utilization. Most traits were not correlated with each other, implying that adaptation to a novel potential host could be a complex, multidimensional 'character' that might constrain adaptation and contribute to the pronounced ecological specialization and the phylogenetic niche conservatism that characterize many clades of phytophagous insects.  相似文献   

6.
Evolution during biological invasion may occur over contemporary timescales, but the rate of evolutionary change may be inhibited by a lack of standing genetic variation for ecologically relevant traits and by fitness trade-offs among them. The extent to which these genetic constraints limit the evolution of local adaptation during biological invasion has rarely been examined. To investigate genetic constraints on life-history traits, we measured standing genetic variance and covariance in 20 populations of the invasive plant purple loosestrife (Lythrum salicaria) sampled along a latitudinal climatic gradient in eastern North America and grown under uniform conditions in a glasshouse. Genetic variances within and among populations were significant for all traits; however, strong intercorrelations among measurements of seedling growth rate, time to reproductive maturity and adult size suggested that fitness trade-offs have constrained population divergence. Evidence to support this hypothesis was obtained from the genetic variance-covariance matrix (G) and the matrix of (co)variance among population means (D), which were 79.8% (95% C.I. 77.7-82.9%) similar. These results suggest that population divergence during invasive spread of L. salicaria in eastern North America has been constrained by strong genetic correlations among life-history traits, despite large amounts of standing genetic variation for individual traits.  相似文献   

7.
Parasitoids are an important mortality factor for insects. Susceptibility to parasitoids should thus be under strong negative selection. Nevertheless, ample genetic variation for susceptibility to parasitoids is commonly observed in natural populations, suggesting that trade-offs may constrain the evolution of reduced susceptibility. This can be studied by assessing genetic variation for susceptibility and its covariation with other components of fitness. In a set of 17 clones of the peach potato aphid, Myzus persicae, for which good estimates of heritable variation for life-history traits were available, we found significant clonal variation for susceptibility to two of their common parasitoids: Aphidius colemani and Diaeretiella rapae. One clone, the only one harbouring a facultative endosymbiotic bacterium, Regiella insecticola, was entirely resistant to both parasitoids. Susceptibilities to the two parasitoids exhibited a positive genetic correlation close to unity, implying a general mechanism of defence. However, the susceptibility to parasitoids was uncorrelated to the clones' fecundity or rate of increase, providing no evidence for costs of the ability to resist parasitoids.  相似文献   

8.
Trade-offs in larval performance on normal and novel hosts   总被引:3,自引:0,他引:3  
The evolution of host specialization in phytophagous insects is generally thought to involve genetic trade-offs that prevent individuals from maximizing fitness simultaneously on two or more hosts. Several hypotheses, however, have suggested that trade-offs may not be evident in experiments comparing larval performance on normal and novel hosts. Tests on survivorship, growth rate, and pupal mass among families of the swallowtail butterfly Papilio oregonius on its normal host and on a novel host provide support for these hypotheses, although they do not discriminate among them. Families differed in their relative performance on the hosts, but there was no evidence of a negative genetic correlation between hosts for any of the measures of performance. In addition, there were no correlations among the different measures, corroborating an earlier result suggesting that these different components of performance in the P. machaon species group are under at least partially separate genetic control. These results and similar results published for other insects have now produced a body of studies indicating that genetic trade-offs in individual components of larval performance may not be a major factor preventing shifts onto novel host plants. Trade-offs leading to the evolution of host specialization are more likely to involve coordination among the various components of performance together with ecological factors that allow higher fitness on one host than on others.  相似文献   

9.
Abstract.— Adaptive phenotypic plasticity in chemical defense is thought to play a major role in plant-herbivore interactions. We investigated genetic variation for inducibility of defensive traits in wild radish plants and asked if the evolution of induction is constrained by costs of phenotypic plasticity. In a greenhouse experiment using paternal half-sibling families, we show additive genetic variation for plasticity in glucosinolate concentration. Genetic variation for glucosinolates was not detected in undamaged plants, but was significant following herbivory by a specialist herbivore, Pieris rapae . On average, damaged plants had 55% higher concentrations of glucosinolates compared to controls. In addition, we found significant narrow-sense heritabilities for leaf size, trichome number, flowering phenology, and lifetime fruit production. In a second experiment, we found evidence of genetic variation in induced plant resistance to P. rapae . Although overall there was little evidence for genetic correlations between the defensive and life-history traits we measured, we show that more plastic families had lower fitness than less plastic families in the absence of herbivory (i.e., evidence for genetic costs of plasticity). Thus, there is genetic variation for induction of defense in wild radish, and the evolution of inducibility may be constrained by costs of plasticity.  相似文献   

10.
Parasite virulence, i.e. the damage done to the host, may be a by-product of the parasite's effort to maximize its fitness. Accordingly, several life-history trade-offs may explain interspecific differences in virulence, but such constraints remain little tested in an evolutionary context. In this phylogenetic study of primate malarias, I investigated the relationship between virulence and other parasite life-history traits. I used peak parasitaemia as a proxy for virulence, because it reflected parasite reproductive success and parasite-induced mortality. Peak parasitaemia was higher in specialist than in generalist species, even when confounding life-history traits were controlled. While there was a significant phylogenetic relationship between the number of competitors per host and host specialization, peak parasitaemia was unrelated to within-host competition. Therefore, the key evolutionary factor that favours virulence is host specialization, and the evolutionary success of virulent parasites, such as Plasmodium falciparum , may be better understood when the trade-off in virulence between different hosts is considered. Such phylogenetic results may help us design better protection programmes against malaria.  相似文献   

11.
The adaptive potential of pathogens in novel or heterogeneous environments underpins the risk of disease epidemics. Antagonistic pleiotropy or differential resource allocation among life-history traits can constrain pathogen adaptation. However, we lack understanding of how the genetic architecture of individual traits can generate trade-offs. Here, we report a large-scale study based on 145 global strains of the fungal wheat pathogen Zymoseptoria tritici from four continents. We measured 50 life-history traits, including virulence and reproduction on 12 different wheat hosts and growth responses to several abiotic stressors. To elucidate the genetic basis of adaptation, we used genome-wide association mapping coupled with genetic correlation analyses. We show that most traits are governed by polygenic architectures and are highly heritable suggesting that adaptation proceeds mainly through allele frequency shifts at many loci. We identified negative genetic correlations among traits related to host colonization and survival in stressful environments. Such genetic constraints indicate that pleiotropic effects could limit the pathogen’s ability to cause host damage. In contrast, adaptation to abiotic stress factors was likely facilitated by synergistic pleiotropy. Our study illustrates how comprehensive mapping of life-history trait architectures across diverse environments allows to predict evolutionary trajectories of pathogens confronted with environmental perturbations.Subject terms: Population genetics, Plant sciences, Molecular evolution, Fungi  相似文献   

12.
When variation in life-history characters is caused by many genes of small effect, then quantitative-genetic parameters may quantify constraints on rate and direction of microevolutionary change. I estimated heritabilities and genetic correlations for 16 life-history and morphological characters in two populations of Impatiens capensis, a partially self-pollinating herbaceous annual. The Madison population had little or no additive genetic variance for any of these characters, while the Milwaukee population had significant narrowsense heritabilities and genetic correlations for several traits, including adult size, which is highly correlated with fitness. All genetic correlations among fitness components were positive, hence there is no evidence for antagonistic pleiotropy among these traits. Dissimilarity of heritabilities in the two populations supports theoretical predictions that long-term changes in genetic variance-covariance patterns may occur when population sizes are small and selection is strong, as may occur in many plant species.  相似文献   

13.
The impact of parasitism on host populations will be modulated by both genetic variation for susceptibility, and phenotypically plastic-life-history traits that are altered to lessen the fitness consequences of infection. In this study we tested for life-history shifts in the crustacean Daphnia magna following exposure to the horizontally transmitted microsporidian, Glugoides intestinalis. In two separate experiments, we exposed hosts to parasite spores and measured their fecundity relative to controls. We show that host exposed G. intestinalis show fecundity compensation, i.e. hosts shift their life-history strategy towards early production. Our experiments included multiple host genotypes, and subtle differences among them indicated that fecundity compensation could be subject to parasite-mediated natural selection.  相似文献   

14.
Trade-offs among life-history traits are central to evolutionary theory. In quantitative genetic terms, trade-offs may be manifested as negative genetic covariances relative to the direction of selection on phenotypic traits. Although the expression and selection of ecologically important phenotypic variation are fundamentally multivariate phenomena, the in situ quantification of genetic covariances is challenging. Even for life-history traits, where well-developed theory exists with which to relate phenotypic variation to fitness variation, little evidence exists from in situ studies that negative genetic covariances are an important aspect of the genetic architecture of life-history traits. In fact, the majority of reported estimates of genetic covariances among life-history traits are positive. Here we apply theory of the genetics and selection of life histories in organisms with complex life cycles to provide a framework for quantifying the contribution of multivariate genetically based relationships among traits to evolutionary constraint. We use a Bayesian framework to link pedigree-based inference of the genetic basis of variation in life-history traits to evolutionary demography theory regarding how life histories are selected. Our results suggest that genetic covariances may be acting to constrain the evolution of female life-history traits in a wild population of red deer Cervus elaphus: genetic covariances are estimated to reduce the rate of adaptation by about 40%, relative to predicted evolutionary change in the absence of genetic covariances. Furthermore, multivariate phenotypic (rather than genetic) relationships among female life-history traits do not reveal this constraint.  相似文献   

15.
Evolutionary constraints on the ability of herbivores to efficiently use a set of phytochemically similar hosts, while maintaining a high performance on phytochemically different hosts, are central in explaining the predominance of host specialization in phytophagous insects. Such feeding trade-offs could be manifested within insect populations as negative genetic correlations in fitness on different host species. We tested the hypothesis that feeding trade-offs were present within a population of the obliquebanded leafroller,Choristoneura rosaceana (Harris). Components of fitness were measured in families originating from an apple orchard that were fed on four host-plant species in the laboratory. Under the conditions of this experiment, all across-host genetic correlations were strongly positive, suggesting that this population comprised true generalists. With the exception of diapausing propensity, the heritability of the fitness components tended to be lower in caterpillars fed on apple leaves than in insects fed other hosts. This suggests a constraint on the selective response of the fitness components in the orchard environment.  相似文献   

16.
Abstract.  1. This study first measured the effect of plant (radish, pepper, and wheat), aphid–plant combination (the green peach aphid Myzus persicae on pepper and radish, and the bird cherry-oat aphid Rhopalosiphum padi on wheat) and the host on which Aphidius colemani was reared (the cotton aphid Aphis gossypii on cucumber, M. persicae on radish and pepper, and R. padi on wheat) on host choice behaviour of the parasitoid and the performance of its offspring. Then, the effect of predator presence ( Coccinella undecimpunctata larvae) on host preference of the wasps was tested.
2. When reared on M. persicae on either radish or pepper , wasps preferred the aphid–plant combination from which they had emerged. Wasps reared on A. gossypii (naïve to all hosts offered) and R. padi preferred to parasitise M. persicae on radish and M. persicae on either radish or pepper, respectively. Rhopalosiphum padi on wheat was the least preferred and also the least suitable host, as determined by offspring body size.
3. Contrary to expectations, the presence of predators did not influence the host choice of A. colemani , even when predator-free plants were offered nearby. Results indicate that wasps are more likely to remain in some host systems but not in others, even when facing risk of predation.
4. Results are discussed in respect to field data and the relative importance of risk of predation and host preference to wasp fitness.  相似文献   

17.
Performance and genetic variability of clonal lineages derived from one Californian and one German population of grape phylloxera, Daktulosphaira vitifoliae Fitch were studied on their natal grape rootstock host and on three novel hosts over four generations in an aseptic dual culture system. The ability of D. vitifoliae to adapt to new hosts was measured by changes in fitness (rm) over four generations. The performance of a given clonal lineage changed over successive generations, depending upon the host plant and the phylloxera group. Analysis of amplified fragment length polymorphism-polymerase chain reaction (AFLP-PCR) banding patterns from 40 individual parthenogenetic D. vitifoliae revealed equal levels of genetic variation both among the four clonal lineages analysed and within the different generations of one lineage. Analysis of molecular variance (AMOVA) showed no significant differences between the D. vitifoliae lineages reared on different host plants, nor was a correlation between host performance and genotype found.  相似文献   

18.
ABSTRACT: BACKGROUND: Adaptation of pathogens to their hosts depends critically on factorsaffecting pathogen reproductive rate. While pathogen reproduction is the end result of an intricate interaction between host and pathogen, the relative contributions of host and pathogen genotype to variation in pathogen life history within the hostare not well understood. Untangling these contributions allows us to identify traits withsufficient genetic variation for selection to act and to identify mechanisms of coevolution between pathogens and their hosts. We investigated the effects of pathogen and host genotype on three life-history components of pathogen fitness; infection efficiency, latent period, and sporulation capacity, in the oat crown rust fungus, Puccinia coronata f.sp. avenae, as it infects oats (Avena sativa). RESULTS: We show that both pathogen and host genotype significantly affect total spore production butdo so through their effects on different life-history stages. Pathogen genotype has the strongest effect on the early stage of infection efficiency, while host genotype most strongly affects the later life-history stages of latent period and sporulation capacity.In addition, host genotype affected the relationship between pathogen density and the later life-history traits oflatent period and sporulation capacity. We did not find evidence of pathogen-by-host genotypic (GxG) interactions. CONCLUSION: Our results illustrate mechanisms by which variation in host populationswill affect the evolution of pathogen lifehistory. Results show that differentpathogen life-history stages have the potential to respond differently to selection by host or pathogen genotypeand suggest mechanisms of antagonistic coevolution. Pathogen populations may adapt tohost genotype through increased infection efficiency while their plant hosts may adapt by limiting the later stages ofpathogen growthand spore production within the host.  相似文献   

19.
Theoretical models of evolution in a temporally variable environment predict that genotypes with low variance in fitness across generations will be favored. When host use varies temporally and fitness trade-offs exist among hosts, such that an increase in performance on one host results in a correlated decrease on the other, selection for low variance in fitness across generations will favor genotypes which are generalists. Before predictions such as this can be extended to natural herbivore populations, however, it is necessary to understand the extent to which performance trade-offs limit simultaneous adaptation to multiple hosts. The experiment reported here compares two populations of the common milkweed bug, Lygaeus kalmii (Hemiptera: Lygaeidae) which differ in patterns of host usage. One population is largely restricted to milkweed (Asclepias spp.) when milkweed seeds are available, but becomes a scavenger on a large assortment of available seeds when milkweed seeds are unavailable. The second population is restricted largely to dandelion (Taraxacum officinale), without access to milkweed. We examine these populations to test for host-associated genetic trade-offs between specialization on dandelion (Taraxacum) and two species of milkweed, Asclepias fascicularis, which is low in cardiac glycoside content, and A. speciosa, which is high in cardiac glycoside content. Despite the difference in patterns of host use of the two L. kalmii populations, the populations did not differ in their performance on any of the host plants. Within each population, bugs performed nearly as well on each host, except that bugs had significantly lower survivorship on dandelion than on either milkweed species. Trade-offs in performance among hosts were not present in either population: estimated genetic correlations across hosts were strongly positive. The inability of this study to detect host-associated fitness trade-offs is consistent with most published data on this topic.  相似文献   

20.
Despite numerous adaptive scenarios concerning the evolution of plant life-history phenologies few studies have examined the heritable basis for and genetic correlations among these phenologies. Documentation of genetic variation for and covariation among reproductive phenologies is important because it is this variation/covariation that will determine the potential for response to evolutionary forces. To address this problem, I conducted a breeding experiment to determine narrow-sense heritabilities for and genetic correlations among the phenologies of life-history events and plant size in Chamaecristafasciculata, a temperate summer annual plant species. Paternal families showed no evidence of heritable variation for two estimates of plant size, six measures of reproductive phenology or two fitness components. Similarly, paternal estimates of genetic correlations among these traits were low or zero. In contrast, maternal estimates of heritability suggested the influence of maternal parent on one estimate of plant size and four phenological traits. Likewise, maternal effects influenced maternal estimates of genetic correlations. These maternal effects can arise from three sources: endosperm nuclear, cytoplasmic genetic and/or maternal phenotypic. The degree to which the phenology of one life-history trait acts as a constraint on the evolution of other phenological traits depends on the source of the maternal influence in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号