首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
The aim of this study was to examine the effects of chlorogenic acid (CGA) on glucose and lipid metabolism in late diabetic db/db mice, as well as on adiponectin receptors and their signaling molecules, to provide evidence for CGA in the prevention of type 2 diabetes. We randomly divided 16 female db/db mice into db/db-CGA and db/db-control (CON) groups equally; db/m mice were used as control mice. The mice in both the db/db-CGA and db/m-CGA groups were administered 80 mg/kg/d CGA by lavage for 12 weeks, whereas the mice in both CON groups were given equal volumes of phosphate-buffered saline (PBS) by lavage. At the end of the intervention, we assessed body fat and the parameters of glucose and lipid metabolism in the plasma, liver and skeletal muscle tissues as well as the levels of aldose reductase (AR) and transforming growth factor-β1 (TGF-β1) in the kidneys and measured adiponectin receptors and the protein expression of their signaling molecules in liver and muscle tissues. After 12 weeks of intervention, compared with the db/db-CON group, the percentage of body fat, fasting plasma glucose (FPG) and glycosylated hemoglobin (HbA1c) in the db/db-CGA group were all significantly decreased; TGF-β1 protein expression and AR activity in the kidney were both decreased; and the adiponectin level in visceral adipose was increased. The protein expression of adiponectin receptors (ADPNRs), the phosphorylation of AMP-activated protein kinase (AMPK) in the liver and muscle, and the mRNA and protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) in the liver were all significantly greater. CGA could lower the levels of fasting plasma glucose and HbA1c during late diabetes and improve kidney fibrosis to some extent through the modulation of adiponectin receptor signaling pathways in db/db mice.  相似文献   

12.
13.
14.
15.
16.

Background

Using fatty acids (FAs) exclusively for ATP generation was reported to contribute to the development of diabetic cardiomyopathy. We studied the role of substrate metabolism related genes in the heart of the diabetes to find out a novel therapeutic target for diabetic cardiomyopathy.

Methods and Results

By microarray analysis of metabolic gene expression, acyl-CoA thioesterase 1 (acot1) was clearly upregulated in the myocardia of db/db mice, compared with normal control C57BL/Ks. Therefore, gain-of-function and loss-of-function approaches were employed in db/db mice to investigate the functions of ACOT1 in oxidative stress, mitochondrial dysfunction and heart function. We found that in the hearts of db/db mice which overexpressed ACOT1, H2O2 and malondialdehyde (MDA) were reduced, the activities of ATPases in mitochondria associated with mitochondrial function were promoted, the expression of uncoupling protein 3 (UCP3) contributing to oxygen wastage for noncontractile purposes was decreased, and cardiac dysfunction was attenuated, as determined by both hemodynamic and echocardiographic detections. Consistently, ACOT1 deficiency had opposite effects, which accelerated the cardiac damage induced by diabetes. Notably, by real-time PCR, we found that overexpression of ACOT1 in diabetic heart repressed the peroxisome proliferator-activated receptor alpha/PPARγ coactivator 1α (PPARα/PGC1α) signaling, as shown by decreased expression of PGC1α and the downstream genes involved in FAs use.

Conclusion

Our results demonstrated that ACOT1 played a crucial protective role in diabetic heart via PPARα/PGC1α signaling.  相似文献   

17.
Hepatic steatosis is the accumulation of excess fat in the liver. Recently, hepatic steatosis has become more important because it occurs in the patients with obesity, type 2 diabetes, and hyperlipidemia and is associated with endoplasmic reticulum (ER) stress and insulin resistance. C-C chemokine receptor 2 (CCR2) inhibitor has been reported to improve inflammation and glucose intolerance in diabetes, but its mechanisms remained unknown in hepatic steatosis. We examined whether CCR2 inhibitor improves ER stress-induced hepatic steatosis in type 2 diabetic mice. In this study, db/db and db/m (n = 9) mice were fed CCR2 inhibitor (2 mg/kg/day) for 9 weeks. In diabetic mice, CCR2 inhibitor decreased plasma and hepatic triglycerides levels and improved insulin sensitivity. Moreover, CCR2 inhibitor treatment decreased ER stress markers (e.g., BiP, ATF4, CHOP, and XBP-1) and inflammatory cytokines (e.g., TNFα, IL-6, and MCP-1) while increasing markers of mitochondrial biogenesis (e.g., PGC-1α, Tfam, and COX1) in the liver. We suggest that CCR2 inhibitor may ameliorate hepatic steatosis by reducing ER stress and inflammation in type 2 diabetes mellitus.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号