首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine fungi are severely understudied in the polar regions. We used molecularly identified cultures to study fungi inhabiting 50 intertidal and sea-floor logs along the North Norwegian coast. The aim was to explore the taxonomic and ecological diversity and to examine factors shaping the marine wood-inhabiting fungal communities. The 577 pure cultures analyzed clustered into 147 operational taxonomic units (OTUs) based on 97 % ITS sequence similarity. Ascomycota dominated, but OTUs belonging to Basidiomycota, Mucoromycotina and Chytridiomycota were also isolated. Nine OTUs could not be assigned to any fungal phylum. Almost half of the OTUs were considered non-marine. The western and eastern part of the Norwegian Barents Sea coast hosted different communities. Geography, substratum and site level variables contributed to shaping these communities. We characterized a previously overlooked fungal community in a poorly studied area, discovered high diversity and report many taxa for the first time from the marine environment.  相似文献   

2.
Interactions between plants and root‐associated fungi can affect the assembly, diversity, and relative abundances of tropical plant species. Host–symbiont compatibility and some degree of host specificity are prerequisites for these processes to occur, and these prerequisites may vary with host abundance. However, direct assessments of whether specificity of root‐associated fungi varies with host abundance are lacking. Here, in a diverse tropical forest in Los Tuxtlas, Mexico, we couple DNA metabarcoding with a sampling design that controls for host phylogeny, host age, and habitat variation, to characterize fungal communities associated with the roots of three confamilial pairs of host species that exhibit contrasting (high and low) relative abundances. We uncovered a functionally and phylogenetically diverse fungal community composed of 1,038 OTUs (operational taxonomic units with 97% genetic similarity), only 14 of which exhibited host specificity. Host species was a significant predictor of fungal community composition only for the subset of OTUs composed of putatively pathogenic fungi. We found no significant difference in the number of specialists associating with common versus rare trees, but we found that host abundance was negatively correlated with the diversity of root fungal communities. This latter result was significant for symbiotrophs (mostly arbuscular mycorrhizal fungi) and, to a lesser extent, for pathotrophs (mostly plant pathogens). Thus, root fungal communities differ between common and rare trees, which may impact the strength of conspecific negative density dependence. Further studies from other tropical sites and host lineages are warranted, given the role of root‐associated fungi in biodiversity maintenance.  相似文献   

3.
The fungal loop model of semiarid ecosystems integrates microtopographic structures and pulse dynamics with key microbial processes. However limited data exist about the composition and structure of fungal communities in these ecosystems. The goal of this study was to characterize diversity and structure of soil fungal communities in a semiarid grassland. The effect of long-term nitrogen fertilization on fungi also was evaluated. Samples of rhizosphere (soil surrounding plant roots) and biological soil crust (BSC) were collected in central New Mexico, USA. DNA was amplified from the samples with fungal specific primers. Twelve clone libraries were generated with a total of 307 (78 operational taxonomic units, OTUs) and 324 sequences (67 OTUs) for BSC and rhizosphere respectively. Approximately 40% of soil OTUs were considered novel (less than 97% identity when compared to other sequences in NCBI using BLAST). The dominant organisms were dark-septate (melanized fungi) ascomycetes belonging to Pleosporales. Effects of N enrichment on fungi were not evident at the community level; however the abundance of unique sequences, sampling intensity and temporal variations may be uncovering the effect of N in composition and diversity of fungal communities. The fungal communities of rhizosphere soil and BSC overlapped substantially in composition, with a Jaccard abundance similarity index of 0.75. Further analyses are required to explore possible functions of the dominant species colonizing zones of semiarid grassland soils.  相似文献   

4.
Fungi contribute substantially to biogeochemical cycles of terrestrial and marine habitats by decomposing matter and recycling nutrients. Yet, the diversity of their planktonic forms in the open ocean is poorly described. In this study, culture-independent and molecular approaches were applied to investigate fungal diversity and abundance derived from samples collected from a broad swath of the Pacific Warm Pool across major environmental gradients Our results revealed that planktonic fungi were molecularly diverse and their diversity patterns were related to major phytoplankton taxa and various nutrients including nitrate, nitrite, orthophosphate and silicic acid. Over 400 fungal phylotypes were recovered across this region and nearly half of them grouped into two major fungal lineages of Ascomycota and Basidiomycota, whose abundance varied among stations. These results suggest that planktonic fungi are a diverse and integral component of the marine microbial community and should be included in future marine microbial ecosystem models.  相似文献   

5.
Fungi are the principal degraders of biomass in most terrestrial ecosystems. In contrast to surface environments, deep-sea environmental gene libraries have suggested that fungi are rare and non-diverse in high-pressure marine environments. Here, we report the diversity of fungi from 11 deep-sea samples from around the world representing depths from 1,500 to 4,000 m (146-388 atm) and two shallower water column samples (250 and 500m). We sequenced 239 clones from 10 fungal-specific 18S rRNA gene libraries constructed from these samples, from which we detected only 18 fungal 18S-types in deep-sea samples. Our phylogenetic analyses show that a total of only 32 fungal 18S-types have so far been recovered from deep-sea habitats, and our results suggest that fungi, in general, are relatively rare in the deep-sea habitats we sampled. The fungal diversity detected suggests that deep-sea environments host an evolutionarily diverse array of fungi dominated by groups of distantly related yeasts, although four putative filamentous fungal 18S-types were detected. The majority of our new sequences branch close to known fungi found in surface environments. This pattern contradicts the proposal that deep-sea and hydrothermal vent habitats represent ancient ecosystems, and demonstrates a history of frequent dispersal between terrestrial and deep-sea habitats.  相似文献   

6.
Fungi in the phylum Cryptomycota have been recovered in numerous environmental DNA (eDNA) surveys but are only known from five described genera of intracellular parasites. These fungi are common in aquatic and soil habitats, but little is known about their relative diversity and specificity among particular habitats. We surveyed Cryptomycota from 80 eDNA samples including freshwater, soil, and marine habitats using Cryptomycota-preferential primers coupled with long-amplicon PacBio sequencing (1.2 kb of the 18S rRNA gene region). We found that freshwater samples were the most diverse, comprising 175 operational taxonomic units (OTUs) of Cryptomycota and also showed a high abundance of the related algae-parasitic group Aphelidiomycota, while marine samples were the least diverse with 25 OTUs. The composition of Cryptomycota communities was influenced by habitat, with freshwater and soil showing statistically distinct communities. Phylogenetic analyses showed that the present survey recovered most previously sampled major clades of Cryptomycota, but most (61%) OTUs were novel to this study, indicative of an extensive diversity of the group that remains largely uncharacterized.  相似文献   

7.
Vertical distribution of fungal communities in tallgrass prairie soil   总被引:1,自引:0,他引:1  
Jumpponen A  Jones KL  Blair J 《Mycologia》2010,102(5):1027-1041
We used 454 sequencing of the internal transcribed spacer region to characterize fungal communities in tallgrass prairie soils subdivided into strata 0-10, 10-20, 30-40 and 50-60 cm deep. The dataset included more than 14000 fungal sequences distributed across Basidiomycota, Ascomycota, basal fungal lineages and Glomeromycota in order of decreasing frequency. As expected the community richness and diversity estimators tended to decrease with increasing depth. Although species richness was significantly reduced for samples from the deeper profiles, even the deepest stratum sampled contained richness of more than a third of that in the topmost stratum. More importantly, nonparametric multidimensional scaling (NMS) ordination analyses indicated that the fungal communities differed across vertical profiles, although only the topmost and deepest strata were significantly different when the NMS axis scores were compared by ANOVA. These results emphasize the importance of considering the fungal communities across the vertical strata because the deeper soil horizons might maintain a distinct community composition and thus contribute greatly to overall richness. The majority of operational taxonomic units (OTUs) declined in frequency with increasing depth, although a linear regression analysis indicated that some increased with increasing depth. The OTUs and BLAST-assigned taxa that showed increasing frequencies were mainly unculturable fungi, but some showed likely affinities to families Nectriaceae and Venturiaceae or to genus Pachnocybe. Although the ecological roles of the fungi in the deeper strata remain uncertain, we hypothesize that the fungi with preferences for deeper soil have adequate access to substrates and possess environmental tolerances that enable their persistence in those environments.  相似文献   

8.
为了揭示南海长茎葡萄蕨藻Caulerpa lentillifera共附生真菌的群落结构,并分析自来水清洗对真菌群落多样性的影响,本研究以收集于深圳南海各月份长茎葡萄蕨藻为材料,利用Illumina MiSeq 2500测序平台进行真菌ITS1扩增子测序,分析自来水清洗前后真菌类群组成和多样性的差异。研究发现,从所有18个样品中总共获得914个OTUs,检测出真菌3门12纲32目50科74属106种,其中优势属为曲霉属Aspergillus、单胞瓶霉属Phialemonium、枝孢属Cladosporium、链座菌属Catenulostroma和茎点霉属Phoma;不同月份真菌Alpha多样性指数显示南海长茎葡萄蕨藻共附生真菌丰度和多样性均随着温度降低而降低;自来水清洗前后南海长茎葡萄蕨藻共附生真菌的多样性及群落结构存在一定差异,清洗后真菌OTUs和Alpha多样性指数均有所降低,其中Chao1和Ace指数为显著性下降,表明自来水清洗对真菌群落组成丰度及多样性影响显著,这对长茎葡萄蕨藻的食品安全具有积极意义。  相似文献   

9.
Although the commonly used internal transcribed spacer region of rDNA (ITS) is well suited for taxonomic identification of fungi, the information on the relative abundance of taxa and diversity is negatively affected by the multicopy nature of rDNA and the existence of ITS paralogues. Moreover, due to high variability, ITS sequences cannot be used for phylogenetic analyses of unrelated taxa. The part of single‐copy gene encoding the second largest subunit of RNA polymerase II (rpb2) was thus compared with first spacer of ITS as an alternative marker for the analysis of fungal communities in spruce forest topsoil, and their applicability was tested on a comprehensive mock community. In soil, rpb2 exhibited broad taxonomic coverage of the entire fungal tree of life including basal fungal lineages. The gene exhibited sufficient variation for the use in phylogenetic analyses and taxonomic assignments, although it amplifies also paralogues. The fungal taxon spectra obtained with rbp2 region and ITS1 corresponded, but sequence abundance differed widely, especially in the basal lineages. The proportions of OTU counts and read counts of major fungal groups were close to the reality when rpb2 was used as a molecular marker while they were strongly biased towards the Basidiomycota when using the ITS primers ITS1/ITS4. Although the taxonomic placement of rbp2 sequences is currently more difficult than that of the ITS sequences, its discriminative power, quantitative representation of community composition and suitability for phylogenetic analyses represent significant advantages.  相似文献   

10.
The opisthokonts are one of the major super groups of eukaryotes. It comprises two major clades: (i) the Metazoa and their unicellular relatives and (ii) the Fungi and their unicellular relatives. There is, however, little knowledge of the role of opisthokont microbes in many natural environments, especially among non‐metazoan and non‐fungal opisthokonts. Here, we begin to address this gap by analysing high‐throughput 18S rDNA and 18S rRNA sequencing data from different European coastal sites, sampled at different size fractions and depths. In particular, we analyse the diversity and abundance of choanoflagellates, filastereans, ichthyosporeans, nucleariids, corallochytreans and their related lineages. Our results show the great diversity of choanoflagellates in coastal waters as well as a relevant representation of the ichthyosporeans and the uncultured marine opisthokonts (MAOP). Furthermore, we describe a new lineage of marine fonticulids (MAFO) that appears to be abundant in sediments. Taken together, our work points to a greater potential ecological role for unicellular opisthokonts than previously appreciated in marine environments, both in water column and sediments, and also provides evidence of novel opisthokont phylogenetic lineages. This study highlights the importance of high‐throughput sequencing approaches to unravel the diversity and distribution of both known and novel eukaryotic lineages.  相似文献   

11.
The taxonomic and ecological diversity of ancient fungal communities was assessed by combining next generation sequencing and metabarcoding of DNA preserved in permafrost. Twenty‐six sediment samples dated 16 000–32 000 radiocarbon years old from two localities in Siberia were analysed for fungal ITS. We detected 75 fungal OTUs from 21 orders representing three phyla, although rarefaction analyses suggested that the full diversity was not recovered despite generating an average of 6677 ± 3811 (mean ± SD) sequences per sample and that preservation bias likely has considerable effect on the recovered DNA. Most OTUs (75.4%) represented ascomycetes. Due to insufficient sequencing depth, DNA degradation and putative preservation biases in our samples, the recovered taxa probably do not represent the complete historic fungal community, and it is difficult to determine whether the fungal communities varied geographically or experienced a composition shift within the period of 16 000–32 000 bp . However, annotation of OTUs to functional ecological groups provided a wealth of information on the historic communities. About one‐third of the OTUs are presumed plant‐associates (pathogens, saprotrophs and endophytes) typical of graminoid‐ and forb‐rich habitats. We also detected putative insect pathogens, coprophiles and keratinophiles likely associated with ancient insect and herbivore faunas. The detection of putative insect pathogens, mycoparasites, aquatic fungi and endophytes broadens our previous knowledge of the diversity of fungi present in Beringian palaeoecosystems. A large group of putatively psychrophilic/psychrotolerant fungi was also detected, most likely representing a modern, metabolically active fungal community.  相似文献   

12.
The arbuscular mycorrhizal (AM) fungal resources present in wheat fields of the Canadian Prairie were explored using 454 pyrosequencing. Of the 33 dominant AM fungal operational taxonomic units (OTUs) found in the 76 wheat fields surveyed at anthesis in 2009, 14 clustered as Funneliformis - Rhizophagus, 16 as Claroideoglomus, and 3 as Diversisporales. An OTU of Funneliformis mosseae and one OTU of Diversisporales each accounted for approximately 16% of all AM fungal OTUs. The former was ubiquitous, and the latter was mainly restricted to the Black and Dark Brown Chernozems. AM fungal OTU community composition was better explained by the Chernozem great groups (P = 0.044) than by measured soil properties. Fifty-two percent of the AM fungal OTUs were unrelated to measured soil properties. Black Chernozems hosted the largest AM fungal OTU diversity and almost twice the number of AM fungal sequences seen in Dark Brown Chernozems, the great group ranking second for AM fungal sequence abundance. Brown Chernozems hosted the lowest AM fungal abundance and an AM fungal diversity as low as that seen in Gray soils. We concluded that Black Chernozems are most conducive to AM fungal proliferation. AM fungi are generally distributed according to Chernozem great groups in the Canadian Prairie, although some taxa are evenly distributed in all soil groups.  相似文献   

13.
Drying soil samples before DNA extraction is commonly used for specific fungal DNA quantification and metabarcoding studies, but the impact of different drying procedures on both the specific fungal DNA quantity and the fungal community composition has not been analyzed. We tested three different drying procedures (freeze-drying, oven-drying, and room temperature) on 12 different soil samples to determine (a) the soil mycelium biomass of the ectomycorrhizal species Lactarius vinosus using qPCR with a specifically designed TaqMan® probe and (b) the fungal community composition and diversity using the PacBio® RS II sequencing platform. Mycelium biomass of L. vinosus was significantly greater in the freeze-dried soil samples than in samples dried at oven and room temperature. However, drying procedures had no effect on fungal community composition or on fungal diversity. In addition, there were no significant differences in the proportions of fungi according to their functional roles (moulds vs. mycorrhizal species) in response to drying procedures. Only six out of 1139 operational taxonomic units (OTUs) had increased their relative proportions after soil drying at room temperature, with five of these OTUs classified as mould or yeast species. However, the magnitude of these changes was small, with an overall increase in relative abundance of these OTUs of approximately 2 %. These results suggest that DNA degradation may occur especially after drying soil samples at room temperature, but affecting equally nearly all fungi and therefore causing no significant differences in diversity and community composition. Despite the minimal effects caused by the drying procedures at the fungal community composition, freeze-drying resulted in higher concentrations of L. vinosus DNA and prevented potential colonization from opportunistic species.  相似文献   

14.
Many species of fungi are closely allied with bark beetles, including many tree pathogens, but their species richness and patterns of distribution remain largely unknown. We established a protocol for metabarcoding of fungal communities directly from total genomic DNA extracted from individual beetles, showing that the ITS3/4 primer pair selectively amplifies the fungal ITS. Using three specimens of bark beetle from different species, we assess the fungal diversity associated with these specimens and the repeatability of these estimates in PCRs conducted with different primer tags. The combined replicates produced 727 fungal Operational Taxonomic Units (OTUs) for the specimen of Hylastes ater, 435 OTUs for Tomicus piniperda, and 294 OTUs for Trypodendron lineatum, while individual PCR reactions produced on average only 229, 54, and 31 OTUs for the three specimens, respectively. Yet, communities from PCR replicates were very similar in pairwise comparisons, in particular when considering species abundance, but differed greatly among the three beetle specimens. Different primer tags or the inclusion of amplicons in separate libraries did not impact the species composition. The ITS2 sequences were identified with the Lowest Common Ancestor approach and correspond to diverse lineages of fungi, including Ophiostomaceae and Leotiomycetes widely found to be tree pathogens. We conclude that Illumina MiSeq metabarcoding reliably captures fungal diversity associated with bark beetles, although numerous PCR replicates are recommended for an exhaustive sample. Direct PCR from beetle DNA extractions provides a rapid method for future surveys of fungal species diversity and their associations with bark beetles and environmental variables.  相似文献   

15.
枯草芽胞杆菌菌肥对有机冬瓜根区土壤微生态的影响   总被引:4,自引:0,他引:4  
【背景】微生物肥料已广泛应用于我国有机作物的种植,其对有机种植土壤微生态的影响尚需科学评测。【目的】高通量测序技术可用于精确分析土壤微生物群落,从细菌、真菌群落结构和多样性的角度阐释枯草芽胞杆菌菌肥对有机农田根区土壤微生物群落的影响。【方法】在有机农田轮作种植条件下,施用枯草芽胞杆菌菌肥后提取冬瓜根区土壤基因组DNA,通过PCR扩增建立文库,利用IlluminaMiSeq高通量测序技术,并结合相关生物信息学方法分析土壤细菌16SrRNA基因V3-V4区和真菌ITS1区的多样性指数及群落结构;测定根区土壤化学性质及酶活性,分析有机冬瓜果实品质,并作相关分析。【结果】从6个有机冬瓜根区土壤样本中获得14199个细菌操作分类单元(OTU)和3378个真菌OTU,细菌和真菌文库测序覆盖率分别在98%、99%以上。枯草芽胞杆菌菌肥会在一定程度上提高土壤细菌种群多样性而降低真菌种群多样性,丰富了细菌群落结构,但显著降低了真菌群落丰富度(P0.05);并减少了根区土壤特有细菌和真菌物种。变形菌门、厚壁菌门和放线菌门是优势细菌,子囊菌门是优势真菌;枯草芽胞杆菌菌肥会提高绿弯菌门和子囊菌门的相对丰度,比例分别为46.23%、10.01%;降低变形菌门和担子菌门的相对丰度,比例分别为11.14%、74.72%。枯草芽胞杆菌菌肥显著降低了土壤pH,显著提高了有机冬瓜果实总氨基酸、可溶性固形物等营养成分含量(P0.05)。【结论】施用枯草芽胞杆菌菌肥改变有机冬瓜根区土壤细菌和真菌的丰富度和多样性,降低了土壤pH,提高了有机冬瓜果实品质。  相似文献   

16.
Fungi from marine environments have been significantly less studied than terrestrial fungi. This study describes distribution patterns and associated habitat characteristics of the mycobiota of deep-sea sediments collected from the Mexican exclusive economic zone (EEZ) of the Gulf of Mexico (GoM), ranging between 1000 and > 3500 m depth. Internal Transcribed Spacer 1 (ITS1) amplicons were sequenced by Illumina MiSeq. From 29 stations sampled across three annual campaigns, a total of 4421 operational taxonomic units (OTUs) were obtained, indicating a high fungal richness. Most OTUs assignments corresponded to Ascomycota, unidentified fungi and Basidiomycota. The majority of the stations shared a mere 31 OTUs, including the worldwide reported genera Penicillium, Rhodotorula and Cladosporium. Both a transient and a conserved community were identified, suggesting their dependence on or adaptation to the habitat dynamics, respectively. The differences found in fungal richness and taxonomic compositions were correlated principally with latitude, carbon and carbonates content, and terrigenous content, which could be the potential drivers that delimit fungal distribution. This study represents an expansion of our current knowledge on the biogeography of the fungal community from deep-sea sediments, and identifies the geographic and physicochemical properties that delimit fungal composition and distribution in the GoM.  相似文献   

17.
为探讨黑老虎(Kadsura coccinea)根际土壤和组织内生真菌菌群的组成及其生态功能,该研究采用ITS高通量测序技术对成熟黑老虎(根、茎、叶)内生真菌及根际土壤真菌群落结构、多样性和生态功能进行了分析。结果表明:(1)从12个样品中共获得2 241个可操作分类单元(OTU),涉及10门、41纲、95目、212科、367属,内生真菌(根、茎、叶)和根际土壤真菌OTU数分别为386、536、258、1 435个,其中共有的OTU为18个。在门水平上,黑老虎内生真菌及根际土壤真菌优势群落均为子囊菌门和担子菌门,其中子囊菌门在叶和茎中占比分别高达96.99%和95.37%;在属水平上,黑老虎根际土壤真菌中腐生真菌被孢霉属占比较高(为13.5%),叶和茎等生长旺盛的组织中子囊菌门未分类属和痂囊腔菌属占比较高。(2)α多样性分析结果显示,黑老虎根际土壤真菌群落的丰度和多样性明显高于内生真菌,茎中内生真菌丰度显著高于根和叶,而根、茎和叶组织间内生真菌多样性差异不显著;PCoA分析结果显示,叶和茎的真菌群落结构相似性更高。(3)利用FUNGuild数据库进行的功能预测分析结果显示,黑老虎根际土...  相似文献   

18.
Fungal DNA was selectively amplified, and the ITS region sequenced, from fecal samples taken from 45 healthy human volunteers at one (21 volunteers) or two (24 volunteers) time points. Seventy-two operational taxonomic units, representing two phyla and ten classes of fungi, were recovered. Candida yeasts, notably Candida tropicalis (present in 51 samples), and yeasts in the Dipodascaceae (39 samples), dominated, while 38 OTUs were detected in a single sample each. Fungi included known human symbionts (Candida, Cryptococcus, Malassezia and Trichosporon spp.), common airborne fungi (Cladosporium sp.) and fungi known to be associated with food (Debaryomyces hansenii and high salt fermented foods; Penicillium roqueforti and blue cheese). In contrast with gut-associated bacteria, fungi occurred in much lower abundance and diversity, and fungal composition appeared unstable over time.  相似文献   

19.
The study of fungal species diversity from marine algae is in its infancy; as now no studies have been carried out on the distribution and diversity of fungi on the surfaces of marine macroalgae where all fungal–algal interactions tend to begin. The aim of this study was to isolate and describe the culturable part of mycobiota associated with the surface of benthic marine macroalgae (epiphytic or epibiotic fungi). This is an important step in understanding their abundance, diversity and factors influencing their variability and composition. The fungal community was dominated by Ascomycetes (89%) with Eurotiales as the most abundant fungal order followed by Capnodiales, Pleosporales, and Hypocreales, while Zygomycetes was less frequent. The nature of occurrence of fungal genera on different macroalgal hosts suggests that a mix of generalists’ framework applies to fungal epiphytes of seaweeds, but the abundance of fungal taxa varied among ecological functional groups of algae, as well as macroalgal taxonomic groups, which imply host filtering. The fungal assemblages were also characterized by temporal variation with variation in temperature, pH, and salinity as the most important abiotic factors. The structure of fungal assemblages showed high beta diversity and low similarity between hosts.  相似文献   

20.
Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are important for nitrogen cycling in marine ecosystems. Little is known about the diversity and abundance of these organisms on the surface of marine macroalgae, despite the algae's potential importance to create surfaces and local oxygen-rich environments supporting ammonia oxidation at depths with low dissolved oxygen levels. We determined the abundance and composition of the epiphytic bacterial and archaeal ammonia-oxidizing communities on three species of macroalgae, Osmundaria volubilis, Phyllophora crispa, and Laminaria rodriguezii, from the Balearic Islands (western Mediterranean Sea). Quantitative PCR of bacterial and archaeal 16S rRNA and amoA genes was performed. In contrast to what has been shown for most other marine environments, the macroalgae's surfaces were dominated by bacterial amoA genes rather than those from the archaeal counterpart. On the basis of the sequences retrieved from AOB and AOA amoA gene clone libraries from each algal species, the bacterial ammonia-oxidizing communities were related to Nitrosospira spp. and to Nitrosomonas europaea and only 6 out of 15 operational taxonomic units (OTUs) were specific for the host species. Conversely, the AOA diversity was higher (43 OTUs) and algal species specific, with 17 OTUs specific for L. rodriguezii, 3 for O. volubilis, and 9 for P. crispa. Altogether, the results suggest that marine macroalgae may exert an ecological niche for AOB in marine environments, potentially through specific microbe-host interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号