首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical composition of isolated endodermal cell walls from the roots of the five monocotyledoneous species Monstera deliciosa Liebm., Iris germanica L., Allium cepa L., Aspidistra elatior Bl. and Agapanthus africanus (L.) Hoffmgg. was determined. Endodermal cell walls isolated from aerial roots of M. deliciosa were in their primary developmental state (Casparian bands). They contained large amounts of lignin (6.5% w/w) and only traces of suberin (0.5% w/w). Endodermal cell walls isolated from the other four species were in their tertiary developmental state. Lignin was still the more abundant cell wall polymer with amounts ranging from 3.8% (w/w, A. cepa) to 4.5% (w/w, I. germanica). However, compared to endodermal cell walls in their primary state of development (Casparian bands), tertiary endodermal cell walls contained significantly higher amounts of suberin, ranging from 1.8% (w/w, I. germanica) to 3.0% (w/w, A. africanus). Thus, chemical characterization of endodermal cell walls from five different species revealed that lignin was the dominant cell wall polymer in the Casparian band of M. deliciosa, whereas tertiary endodermal cell walls contained, in addition to lignin, increasing amounts of suberin (I. germanica, A. cepa, A. elatior and A. africanus). Besides the two biopolymers lignin and suberin, cell wall carbohydrates in the range of between 40 and 60% were also quantified. The sum of all cell wall compounds investigated by gas chromatography resulted in a recovery of 50–80% of the dry weight of the isolated cell wall material. Quantitative chromatographic results in combination with microscopic studies are consistent with the existence of a distinct suberin lamella and lignified tertiary wall deposits. From these data it can be concluded that the barrier properties of the endodermis towards the apoplastic transport of ions and water will increase from primary to tertiary endodermal cell walls due to their increasing amounts of suberin. Received: 23 August 1997 / Accepted: 28 January 1998  相似文献   

2.
The root endodermis of Clivia miniata Reg. was successfully isolated using the cell wall degrading enzymes cellulase and pectinase. The enzymes did not depolymerize those regions of the primary cell walls of anticlinal endodermal root cells where the Casparian strips were located. Since the endodermis of C. miniata roots remained in its primary developmental state over the whole root length, endodermal isolates essentially represented Casparian strips. Thus, sufficient amounts of isolated Casparian strips could be obtained to allow further detailed investigations of the isolates by microscopic, histochemical and analytical methods. Scanning electron microscopy revealed the reticular structure of the Casparian strips completely surrounding the central cylinder of the roots. Whereas in younger parts of the root only the anticlinal cell walls of the endodermis remained intact in the isolates, in older parts of the root the periclinal walls also restricted enzymatic degradation due to the deposition of lignin. Extracts of the isolates with organic solvents did not reveal any wax-like substances which might have been deposited within the cell wall forming a transport barrier, as is the case with cutin and suberin. However, several histochemical and analytical methods (elemental analysis and FTIR spectroscopy) showed that the chemical nature of the Casparian strips of C. miniata roots can definitely be a lignified cell wall. These findings are in complete agreement with studies carried out at the beginning of this century on the chemical nature of the Casparian strips of several other plant species. The implications of these results concerning apoplasmatic transport of solutes and water across Casparian strips are discussed.  相似文献   

3.
Ultrastructure and development of apoplastic barriers within indeterminate root nodules formed by Vicia faba L. were examined by light and electron microscopy. The nodule outer cortex is separated from the inner cortex by a heavily suberized nodule endodermis, which matures in submeristematic regions and possesses suberin lamellae. Unsuberized passage cells are present near vascular strands, which are surrounded by a vascular endodermis attached on the inner side of the nodule endodermal cell walls. The vascular endodermis appears immediately below the meristematic apex in developmental state I (Casparian bands), gradually develops suberin lamellae, and attains developmental state II at the base of the nodule. For chemical analysis apoplastic barrier tissues were dissected after enzymatic digestion of non-impregnated tissues. Root epidermal and endodermal cell walls as well as nodule outer cortex could be isolated as pure fractions; nodule endodermal cell walls could not be separated from vascular endodermal cell walls and enclosed xylem vessels. Gas chromatography-flame ionization detection and gas chromatography-mass spectrometry were applied for quantitative and qualitative analysis of suberin and lignin in isolated cell walls of these tissues. The suberin content of isolated endodermal cell walls of nodules was approximately twice that of the root endodermal cell walls. The suberin content of the nodule outer cortex and root epidermal cell walls was less than one-tenth of that of the nodule endodermal cell wall. Substantial amounts of lignin could only be found in the nodule endodermal cell wall fraction. Organic solvent extracts of the isolated tissues revealed long-chain aliphatic acids, steroids, and triterpenoid structures of the lupeol type. Surprisingly, extract from the outer cortex consisted of 89% triterpenoids whereas extracts from all other cell wall isolates contained not more than 16% total triterpenoids. The results of ultrastructural and chemical composition are in good correspondence and underline the important role of the examined tissues as apoplastic barriers.  相似文献   

4.

CWM, isolated cell wall material
ECW, isolated endodermal cell walls
G, guaiacyl monomer
H, p-hydroxyphenyl monomer
HCW, isolated hypodermal cell walls
RHCW, isolated rhizodermal and hypodermal cell walls
S, syringyl monomer
XV, isolated xylem vessels

Endodermal cell walls of the three dicotyledoneous species Pisum sativum L., Cicer arietinum L. and Ricinus communis L. were isolated enzymatically and analysed for the occurrence of the biopolymers lignin and suberin. From P. sativum, endodermal cell walls in their primary state of development (Casparian strips) were isolated. Related to the dry weight, these isolates contained equal amounts of suberin (2·5%) and lignin (2·7%). In contrast, the endodermal cell walls of C. arietinum and R. communis, which were nearly exclusively in their secondary state of development, contained significantly higher proportions of suberin (10–20%) and only traces of lignin (1–2%). The results of the chemical analyses were supported by a microscopic investigation of Sudan III-stained root cross-sections, showing a Casparian strip restricted to the radial walls of the endodermis of P. sativum and well-pronounced red suberin lamellae in C. arietinum and R. communis roots. Compared with recently investigated monocotyledoneous species, higher amounts of suberin by one order of magnitude were detected with the secondary state of development of dicotyledoneous species. Furthermore, the carbohydrate and protein contents of primary (Clivia miniata Reg. and Monstera deliciosa Liebm.), secondary (C. arietinum and R. communis) and tertiary endodermal cell walls (Allium cepa L. and Iris germanica L.) were determined. The relative carbohydrate content of secondary endodermal cell walls was low (14–20%) compared with the content of primary (42–50%) and tertiary endodermal cell walls (60%), whereas the protein content of isolated endodermal cell walls was high in primary (13%) and secondary (8%) and low in tertiary endodermal cell walls (0·9–2%). The results presented here indicate that the quantitative chemical composition of primary, secondary, and tertiary endodermal cell walls varies significantly. Finally, cell wall proteins are described as an additional important constituent of endodermal cell walls, with the highest concentrations occurring in primary (Casparian strips) and secondary endodermal cell walls.  相似文献   

5.
The composition of suberin and lignin in endodermal cell walls (ECWs) and in rhizodermal/hypodermal cell walls (RHCWs) of developing primary maize (Zea mays L.) roots was analysed after depolymerisation of enzymatically isolated cell wall material. Absolute suberin amounts related to root length significantly increased from primary ECWs (Casparian strips) to secondary ECWs (suberin lamella). During further maturation of the endodermis, reaching the final tertiary developmental state characterised by the deposition of lignified secondary cell walls (u-shaped cell wall deposits), suberin amounts remained constant. Absolute amounts of lignin related to root length constantly increased throughout the change from primary to tertiary ECWs. The suberin of Casparian strips contained high amounts of carboxylic and 2-hydroxy acids, and differed substantially from the suberin of secondary and tertiary ECWs, which was dominated by high contents of ω-hydroxycarboxylic and 1,ω-dicarboxylic acids. Furthermore, the chain-length distribution of suberin monomers in primary ECWs ranged from C16 to C24, whereas in secondary and tertiary ECWs a shift towards higher chain lengths (C16 to C28) was observed. The lignin composition of Casparian strips (primary ECWs) showed a high syringyl content and was similar to lignin in secondary cell walls of the tertiary ECWs, whereas lignin in secondary ECWs contained higher amounts of p-hydroxyphenyl units. The suberin and lignin compositions of RHCWs rarely changed with increasing root age. However, compared to the suberin in ECWs, where C16 and C18 were the most prominent chain lengths, the suberin of RHCWs was dominated by the higher chain lengths (C24 and C26). The composition of RHCW lignin was similar to that of secondary-ECW lignin. Using lignin-specific antibodies, lignin epitopes were indeed found to be located in the Casparian strip. Surprisingly, the mature suberin layers of tertiary ECWs contained comparable amounts of lignin-like epitopes. Received: 19 August 1998 / Accepted: 3 February 1999  相似文献   

6.
Adventitious roots of Primula acaulis Jacq. are characterized by broad cortex and narrow stele during the primary development. Secondary thickening of roots occurs through limited cambial growth together with secondary dilatation growth of the persisting cortex. Close to the root tip, at a distance of ca. 4 mm from the apex, Casparian bands (state I of endodermal development) within endodermal cells develop synchronously. During late, asynchronous deposition of suberin lamellae (state II of endodermal development), a positional effect is clearly expressed - suberization starts in the cells opposite to the phloem sectors of the vascular cylinder at a distance of 30 – 40 mm from the root tip. The formation of secondary walls in endodermis (state III of endodermal development) correlates with the beginning of secondary growth of the root at a distance of ca. 60 mm. Endodermis is the only cortical layer of primrose, where not only cell enlargement but also renewed cell division participate in the secondary dilatation growth. The original endodermal cells additionally divide anticlinally only once. Newly-formed radial walls acquire a typical endodermal character by forming Casparian bands and deposition of suberin lamellae. A network of endodermal Casparian bands of equal density develops during the root thickening by the tangential expansion of cells and by the formation of new radial walls with characteristic wall modifications. These data are important since little attention has been paid up till now to the density of endodermal network as a generally significant structural and functional trait of the root. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Summary Suberin lamellae and a tertiary cellulose wall in endodermal cells are deposited much closer to the tip of apple roots than of annual roots. Casparian strips and lignified thickenings differentiate in the anticlinal walls of all endodermal andphi layer cells respectively, 4–5 mm from the root tip. 16 mm from the root tip and only in the endodermis opposite the phloem poles, suberin lamellae are laid down on the inner surface of the cell walls, followed 35 mm from the root tip by an additional cellulosic layer. Coincidentally with this last development, the suberin and cellulose layers detach from the outer tangential walls and the cytoplasm fragments. 85 mm from the root tip the xylem pole endodermis (50% of the endodermis) develops similarly, but does not collapse. 100–150 mm from the root tip, the surface colour of the root changes from white to brown, a phellogen develops from the pericycle and sloughing of the cortex begins. A few secondary xylem elements are visible at this stage.Plasmodesmata traverse the suberin and cellulose layers of the endodermis, but their greater frequency in the outer tangential and radial walls of thephi layer when compared with the endodermis suggests that this layer may regulate the inflow of water and nutrients to the stele.  相似文献   

8.
Apoplastic transport barriers in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix) were isolated enzymatically. Following chemical degradation (monomerization, derivatization), the amounts of aliphatic and aromatic suberin monomers were analysed quantitatively by gas chromatography and mass spectrometry. In corn, suberin was determined for isolated endodermal (ECW) and rhizo-hypodermal (RHCW) cell walls. In rice, the strong lignification of the central cylinder (CC), did not allow the isolation of endodermal cell walls. Similarly, exodermal walls could not be separated from the rhizodermal and sclerenchyma cell layers. Suberin analyses of ECW and RHCW of rice, thus, refer to either the entire CC or to the entire outer part of the root (OPR), the latter lacking the inner cortical cell layer. In both species, aromatic suberin was mainly composed of coumaric and ferulic acids. Aliphatic suberin monomers released from rice and corn belonged to five substance classes: primary fatty acids, primary alcohols, diacids, omega-hydroxy fatty acids, and 2-hydroxy fatty acids, with omega-hydroxy fatty acids being the most prominent substance class. Qualitative composition of aliphatic suberin of rice was different from that of corn; (i) it was much less diverse, and (ii) besides monomers with chain lengths of C(16), a second maximum of C(28) was evident. In corn, C(24) monomers represented the most prominent class of chain lengths. When suberin quantities were related to surface areas of the respective tissues of interest (hypodermis and/or exodermis and endodermis), exodermal cell walls of rice contained, on average, six-times more aliphatic suberin than those of corn. In endodermal cell walls, amounts were 34 times greater in rice than in corn. Significantly higher amounts of suberin detected in the apoplastic barriers of rice corresponded with a substantially lower root hydraulic conductivity (Lp(r)) compared with corn, when water flow was driven by hydrostatic pressure gradients across the apoplast. As the OPR of rice is highly porous and permeable to water, it is argued that this holds true only for the endodermis. The results imply that some caution is required when discussing the role of suberin in terms of an efficient transport barrier for water. The simple view that only the quantity of suberin present is important, may not hold. A more detailed consideration of both the chemical nature of suberins and of the microstructure of deposits is required, i.e. how suberins impregnate wall pores.  相似文献   

9.
Wu X  Lin J  Lin Q  Wang J  Schreiber L 《Plant & cell physiology》2005,46(11):1799-1808
The structure and development of endodermal Casparian strips in Pinus bungeana needles and roots were studied by scanning electron microscopy and fluorescence microscopy. Primary pit fields (PFs) frequently occurred in radial walls of Casparian strips isolated from needles, whereas PFs were never detected in Casparian strips from roots. Formation of Casparian strips in needles as well as roots started at the outer parts of the radial walls and they finally occupied the entire radial walls of the endodermis. Fourier transform infrared (FTIR) spectroscopy of Casparian strips isolated from roots revealed significant absorption bands characteristic for suberin. However, in Casparian strips of needles, evidence for suberin was rarely detected by FTIR spectroscopy. The apoplastic permeability of Casparian strips in needles and roots was probed by the apoplastic tracers calcofluor and berberine. Casparian strips in roots efficiently blocked the apoplastic transport (AT) of calcofluor and berberine. Casparian strips in needles blocked the AT of calcofluor, but diffusion of berberine was not inhibited and berberine thiocyanate crystals were detectable in the vascular tissue of the needles. From the data presented, it must be concluded that Casparian strips in needles, which are characterized by the absence of suberin, are more solute permeable compared with Casparian strips in roots.  相似文献   

10.
Based on the characterization of the chemical composition of endodermal and hypodermal cell walls isolated from seven monocotyledonous and three dicotyledonous plant species, a model of the composition of apoplastic barriers in roots is proposed. Depending on the species, endodermal and hypodermal cell walls of roots contained varying amounts of the biopolymers suberin, lignin, cell wall proteins, and carbohydrates. Although analysis of the chemical composition of these apoplastic barriers of roots is now possible, it is pointed out that conclusions from these data concerning the functional properties of these cell walls can not easily be drawn. However, in analogy to suberized periderms it is argued that the suberin should play a role in establishing an apoplastic transport barrier in roots, albeit not a perfect barrier. Furthermore, due to the combined occurrence of suberin, lignin and cell wall proteins it is argued that endodermal and hypodermal cell walls also have an important function as barriers towards pathogens. Finally, it is pointed out that additional experimental approaches combining the investigation of transport properties and of the chemical composition of apoplastic transport barriers in roots are necessary before the function of endodermal and hypodermal cell walls in roots can be fully understood.  相似文献   

11.
应用荧光显微技术、傅里叶变换显微红外光谱分析(FTIR)、扫描电镜及X-射线能谱微区分析等手段,对白皮松(Pinus bungeana)子叶、初生叶及2a生针叶内皮层细胞径向壁的显微结构特征、化学成分,以及在叶子横切面上Na和Cl的微区分布进行分析。通过荧光显微观察发现,白皮松子叶内皮层不具凯氏带,而初生叶及2a生针叶均存在凯氏带加厚现象。根据FTIR的检测结果显示:子叶内皮层细胞径向壁不含木栓质或极少,2a生针叶内皮层细胞径向壁木栓质含量高于初生叶。对相应区域的X射线微区分析表明,子叶内皮层对Na和Cl在质外体运输中不起障碍作用,而初生叶与2a生针叶内皮层阻碍Na和Cl以质外体途径进入维管组织。研究结果表明:具凯氏带加厚的内皮层细胞壁中木栓质含量决定其在质外体运输过程中的生理功能。  相似文献   

12.
A municipal solid-waste bottom slag was used to grow maize plants under various abiotic stresses (high pH, high salt and high heavy metal content) and to analyse the structural and chemical adaptations of the cell walls of various root tissues. When compared with roots of control plants, more intensive wall thickenings were detected in the inner tangential wall of the endodermis. In addition, phi thickenings in the rhizodermis in the oldest part of the seminal root were induced when plants were grown in the slag. The role of the phi thickenings may not be a barrier for solutes as an apoplastic dye could freely diffuse through them. The chemical composition of cell walls from endodermis and hypodermis was analysed. Slag-grown plants had higher amounts of lignin in endodermal cell walls when compared to control plants and a higher proportion of H-type lignin in the cell walls of the hypodermis. Finally, the amount of aliphatic suberin in both endo- and hypodermal cell walls was not affected by growing the plants on slag. The role of these changes in relation to the increase in mechanical strengthening of the root is discussed.  相似文献   

13.
14.
A survey of chemical modifications in the cells of the epidermis,hypodermis, cortical parenchyma and endodermis in roots of 27plant species was performed. Cortical parenchyma walls weregenerally free of modifying substances whereas the walls ofthe epidermis, hypodermis and endodermis were usually modifiedby the presence of lipids, phenols, suberin or lignin. In mostcases, wall-modifying components could be detected within 5mm of the root apex. lipids, phenols, suberin, lignin, ferulic acid, root, epidermis, hypodermis, cortex, endodermis, cell wall  相似文献   

15.
应用冰冻切片、酶解分离、荧光显微技术和傅里叶红外光谱分析(FTIR)等手段,对华山松初生根和针叶内皮层凯氏带进行了分离、显微结构特征和化学成分的比较。研究结果表明:针叶凯氏带的“网格”结构比较整齐,大小较一致,排列也较规则,同时在“网格”的纵向壁上具有明显的初生纹孔场。而初生根凯氏带网状结构的大小、排列均不规则,在其“网格”的纵向壁上的初生纹孔场不明显。根据FTIR的检测结果显示:初生根凯氏带中木栓质和木质素的含量均高于针叶,而纤维素的含量则明显低于针叶;两者细胞壁蛋白的含量基本相同。本文的研究结果为深入探讨植物地下部分和地上部分凯氏带的生理功能提供新的佐证。  相似文献   

16.
Soybean (Glycine max L. Merr.) is a versatile and important agronomic crop grown worldwide. Each year millions of dollars of potential yield revenues are lost due to a root rot disease caused by the oomycete Phytophthora sojae (Kaufmann & Gerdemann). Since the root is the primary site of infection by this organism, we undertook an examination of the physicochemical barriers in soybean root, namely, the suberized walls of the epidermis and endodermis, to establish whether or not preformed suberin (i.e. naturally present in noninfected plants) could have a role in partial resistance to P. sojae. Herein we describe the anatomical distribution and chemical composition of soybean root suberin as well as its relationship to partial resistance to P. sojae. Soybean roots contain a state I endodermis (Casparian bands only) within the first 80 mm of the root tip, and a state II endodermis (Casparian bands and some cells with suberin lamellae) in more proximal regions. A state III endodermis (with thick, cellulosic, tertiary walls) was not present within the 200-mm-long roots examined. An exodermis was also absent, but some walls of the epidermal and neighboring cortical cells were suberized. Chemically, soybean root suberin resembles a typical suberin, and consists of waxes, fatty acids, omega-hydroxy acids, alpha,omega-diacids, primary alcohols, and guaiacyl- and syringyl-substituted phenolics. Total suberin analysis of isolated soybean epidermis/outer cortex and endodermis tissues demonstrated (1) significantly higher amounts in the endodermis compared to the epidermis/outer cortex, (2) increased amounts in the endodermis as the root matured from state I to state II, (3) increased amounts in the epidermis/outer cortex along the axis of the root, and (4) significantly higher amounts in tissues isolated from a cultivar ('Conrad') with a high degree of partial resistance to P. sojae compared with a susceptible line (OX760-6). This latter correlation was extended by an analysis of nine independent and 32 recombinant inbred lines (derived from a 'Conrad' x OX760-6 cross) ranging in partial resistance to P. sojae: Strong negative correlations (-0.89 and -0.72, respectively) were observed between the amount of the aliphatic component of root suberin and plant mortality in P. sojae-infested fields.  相似文献   

17.
Lukas Schreiber 《Planta》1996,199(4):596-601
Endodermal cell walls and xylem vessels were isolated enzymatically from Clivia miniata Reg. roots. Transmission-electron-microscopic investigation of cross-sections of intact C. miniata roots and scanning-electron-microscopic investigation of isolated endodermal cell walls indicated that the root endodermis of C. miniata is essentially in its primary state of development. Isolated Casparian strips and xylem vessels were subjected to two different degradation methods usually applied to prove the existence of lignin, namely, cupric oxide oxidation and thioacidolysis. The reaction products obtained were typical aromatic derivatives of the natural lignin precursors coniferyl and sinapyl alcohols, and, in traces, of p-coumaryl alcohol, indicating the occurrence of lignin in the polymers from both Casparian strips and xylem vessels. The qualitative chemical compositions of the polymers from the two sources were similar, whereas the quantitative compositions were different, indicating that the molecular structure of the lignin polymer in the Casparian strips was different from that in the xylem vessels. Thus, for the first time, direct chemical evidence has been obtained that Casparian strips of C. miniata roots contain lignin as a major cell wall polymer.The author is indebted to Prof. Dr. G. Krohne (Zentrale Abteilung für Elektronenmikroskopie, Universität Würzburg, Germany) and to Prof. Dr. R. Guggenheim (Labor für Rasterelektronenmikroskopie, Universität Basel, Schweiz) for offering the opportunity for transmission-electron-microscopic and low-temperature scanning-electron-microscopic investigations, respectively. Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.  相似文献   

18.
The unicellular green alga Chlamydomonas monoica Strehlow is known to produce zygospores with a cell wall that is resistant against microbial and chemical attack. This resistance is thought to be due to the presence of a sporopollenin-like material. However, the resistant nature of sporopollenin-like materials seriously hampers their structural analysis. With complementary techniques such as 13C-nuclear magnetic resonance spectroscopy, Curie-point pyrolysis-gas chromatography/mass spectroscopy and RuO4 chemical degradation, the chemical composition of resistant biopolymer in the isolated cell walls of C. monoica zygospores was determined. This material is composed of C22–C30 linear alcohols and carboxylic acids, intermolecularly linked via ester and ether-linkages similar to the resistant aliphatic biopolymers encountered in the walls of the vegetative cells of the algae Tetraedron minimum, Scenedesmus communis and Pediastrum boryanum. Received: 29 April 1998 / Accepted: 2 October 1998  相似文献   

19.
Martinka M  Dolan L  Pernas M  Abe J  Lux A 《Annals of botany》2012,110(2):361-371

Background and Aims

Apoplasmic barriers in plants fulfil important roles such as the control of apoplasmic movement of substances and the protection against invasion of pathogens. The aim of this study was to describe the development of apoplasmic barriers (Casparian bands and suberin lamellae) in endodermal cells of Arabidopsis thaliana primary root and during lateral root initiation.

Methods

Modifications of the endodermal cell walls in roots of wild-type Landsberg erecta (Ler) and mutants with defective endodermal development – scarecrow-3 (scr-3) and shortroot (shr) – of A. thaliana plants were characterized by light, fluorescent, confocal laser scanning, transmission and cryo-scanning electron microscopy.

Key Results

In wild-type plant roots Casparian bands initiate at approx. 1600 µm from the root cap junction and suberin lamellae first appear on the inner primary cell walls at approx. 7000–8000 µm from the root apex in the region of developing lateral root primordia. When a single cell replaces a pair of endodermal and cortical cells in the scr-3 mutant, Casparian band-like material is deposited ectopically at the junction between this ‘cortical’ cell and adjacent pericycle cells. Shr mutant roots with an undeveloped endodermis deposit Casparian band-like material in patches in the middle lamellae of cells of the vascular cylinder. Endodermal cells in the vicinity of developing lateral root primordia develop suberin lamellae earlier, and these are thicker, compared wih the neighbouring endodermal cells. Protruding primordia are protected by an endodermal pocket covered by suberin lamellae.

Conclusions

The data suggest that endodermal cell–cell contact is required for the spatial control of Casparian band development. Additionally, the endodermal cells form a collet (collar) of short cells covered by a thick suberin layer at the base of lateral root, which may serve as a barrier constituting a ‘safety zone’ protecting the vascular cylinder against uncontrolled movement of water, solutes or various pathogens.  相似文献   

20.
The composition of the aliphatic components of suberin in the stele and cortex of young corn (Zea mays L.) roots was determined by combined gas-liquid chromatography/mass spectrometry of the LiAlD4 depolymerization products. ω-Hydroxy acids were shown to be the major class of the aliphatic components of both the hypodermal (35%) and endodermal (28%) polymeric materials with the dominant chain length being C24 in the former and C16 in the latter. Nitrobenzene oxidation of the roots generated p-hydroxybenzaldehyde and vanillin with much less syringaldehyde. Electron microscopic examination of the hypodermal and endodermal cell walls from roots of corn plants grown in a Mg2+ -deficient (0.03 millimolar) nutrient solution showed that these walls were more heavily suberized than the analogous walls of roots from plants grown in normal (2 millimolar) Mg2+ levels. Analysis of the LiAlD4 depolymerization products of the suberin polymers from these roots showed that the roots grown in low Mg2+ had 3.5 times as much aliphatic suberin monomers on a weight basis as the roots from plants grown in nutrient with normal Mg2+ levels. Roots from plants grown in Mg2+ -deficient nutrient solution released 3.8 times the amount of aromatic aldehydes upon nitrobenzene oxidation as that released from normal roots. As the degree of Mg2+ deficiency of the nutrient solution was increased, there was an increase in the aliphatic and aromatic components characteristic of suberin. Thus, both ultrastructural and chemical evidence strongly suggested that Mg2+ deficiency resulted in increased suberization of the cell walls of both hypodermis and endodermis of Zea mays roots. The roots from Mg2+ -deficient plants also had a higher amount of peroxidase activity when compared to control roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号