首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The viral determinants that underlie human immunodeficiency virus type 1 (HIV-1) neurotropism are unknown, due in part to limited studies on viruses isolated from brain. Previous studies suggest that brain-derived viruses are macrophage tropic (M-tropic) and principally use CCR5 for virus entry. To better understand HIV-1 neurotropism, we isolated primary viruses from autopsy brain, cerebral spinal fluid, blood, spleen, and lymph node samples from AIDS patients with dementia and HIV-1 encephalitis. Isolates were characterized to determine coreceptor usage and replication capacity in peripheral blood mononuclear cells (PBMC), monocyte-derived macrophages (MDM), and microglia. Env V1/V2 and V3 heteroduplex tracking assay and sequence analyses were performed to characterize distinct variants in viral quasispecies. Viruses isolated from brain, which consisted of variants that were distinct from those in lymphoid tissues, used CCR5 (R5), CXCR4 (X4), or both coreceptors (R5X4). Minor usage of CCR2b, CCR3, CCR8, and Apj was also observed. Primary brain and lymphoid isolates that replicated to high levels in MDM showed a similar capacity to replicate in microglia. Six of 11 R5 isolates that replicated efficiently in PBMC could not replicate in MDM or microglia due to a block in virus entry. CD4 overexpression in microglia transduced with retroviral vectors had no effect on the restricted replication of these virus strains. Furthermore, infection of transfected cells expressing different amounts of CD4 or CCR5 with M-tropic and non-M-tropic R5 isolates revealed a similar dependence on CD4 and CCR5 levels for entry, suggesting that the entry block was not due to low levels of either receptor. Studies using TAK-779 and AMD3100 showed that two highly M-tropic isolates entered microglia primarily via CXCR4. These results suggest that HIV-1 tropism for macrophages and microglia is restricted at the entry level by a mechanism independent of coreceptor specificity. These findings provide evidence that M-tropism rather than CCR5 usage predicts HIV-1 neurotropism.  相似文献   

2.
The chemokine receptors CCR5 and CXCR4 are the major coreceptors for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). At least 12 other chemokine receptors or close relatives support infection by particular HIV and SIV strains on CD4(+) transformed indicator cell lines in vitro. However, the role of these alternative coreceptors in vivo is presently thought to be insignificant. Infection of cell lines expressing high levels of recombinant CD4 and coreceptors thus does not provide a true indication of coreceptor use in vivo. We therefore tested primary untransformed cell cultures that lack CCR5 and CXCR4, including astrocytes and brain microvascular endothelial cells (BMVECs), for naturally expressed alternative coreceptors functional for HIV and SIV infection. An adenovirus vector (Ad-CD4) was used to express CD4 in CD4(-) astrocytes and thus confer efficient infection if a functional coreceptor is present. Using a large panel of viruses with well-defined coreceptor usage, we identified a subset of HIV and SIV strains able to infect two astrocyte cultures derived from adult brain tissue. Astrocyte infection was partially inhibited by several chemokines, indicating a role for the chemokine receptor family in the observed infection. BMVECs were weakly positive for CD4 but negative for CCR5 and CXCR4 and were susceptible to infection by the same subset of isolates that infected astrocytes. BMVEC infection was efficiently inhibited by the chemokine vMIP-I, implicating one of its receptors as an alternative coreceptor for HIV and SIV infection. Furthermore, we tested whether the HIV type 1 and type 2 strains identified were able to infect peripheral blood mononuclear cells (PBMCs) via an alternative coreceptor. Several strains replicated in Delta32/Delta32 CCR5 PBMCs with CXCR4 blocked by AMD3100. This AMD3100-resistant replication was also sensitive to vMIP-I inhibition. The nature and potential role of this alternative coreceptor(s) in HIV infection in vivo is discussed.  相似文献   

3.
Several members of the chemokine receptor family have recently been identified as coreceptors, with CD4, for entry of human immunodeficiency virus type 1 (HIV-1) into target cells. In this report, we show that the envelope glycoproteins of several strains of HIV-2 and simian immunodeficiency virus (SIV) employ the same chemokine receptors for infection. Envelope glycoproteins from HIV-2 use CCR5 or CXCR4, while those from several strains of SIV use CCR5. Our data indicate also that some viral envelopes can use more than one coreceptor for entry and suggest that some of these coreceptors remain to be identified. To further understand how different envelope molecules use CCR5 as an entry cofactor, we show that soluble purified envelope glycoproteins (SU component) from CCR5-tropic HIV-1, HIV-2, and SIV can compete for binding of iodinated chemokine to CCR5. The competition is dependent on binding of the SU glycoprotein to cell surface CD4 and implies a direct interaction between envelope glycoproteins and CCR5. This interaction is specific since it is not observed with SU glycoprotein from a CXCR4-tropic virus or with a chemokine receptor that is not competent for viral entry (CCR1). For HIV-1, the interaction can be inhibited by antibodies specific for the V3 loop of SU. Soluble CD4 was found to potentiate binding of the HIV-2 ST and SIVmac239 envelope glycoproteins to CCR5, suggesting that a CD4-induced conformational change in SU is required for subsequent binding to CCR5. These data suggest a common fundamental mechanism by which structurally diverse HIV-1, HIV-2, and SIV envelope glycoproteins interact with CD4 and CCR5 to mediate viral entry.  相似文献   

4.
Human immunodeficiency virus type 1 (HIV-1) requires both CD4 and a coreceptor to infect cells. Macrophage-tropic (M-tropic) HIV-1 strains utilize the chemokine receptor CCR5 in conjunction with CD4 to infect cells, while T-cell-tropic (T-tropic) strains generally utilize CXCR4 as a coreceptor. Some viruses can use both CCR5 and CXCR4 for virus entry (i.e., are dual-tropic), while other chemokine receptors can be used by a subset of virus strains. Due to the genetic diversity of HIV-1, HIV-2, and simian immunodeficiency virus (SIV) and the potential for chemokine receptors other than CCR5 or CXCR4 to influence viral pathogenesis, we tested a panel of 28 HIV-1, HIV-2, and SIV envelope (Env) proteins for the ability to utilize chemokine receptors, orphan receptors, and herpesvirus-encoded chemokine receptor homologs by membrane fusion and virus infection assays. While all Env proteins used either CCR5 or CXCR4 or both, several also used CCR3. Use of CCR3 was strongly dependent on its surface expression levels, with a larger number of viral Env proteins being able to utilize this coreceptor at the higher levels of surface expression. ChemR1, an orphan receptor recently shown to bind the CC chemokine I309 (and therefore renamed CCR8), was expressed in monocyte and lymphocyte cell populations and functioned as a coreceptor for diverse HIV-1, HIV-2, and SIV Env proteins. Use of ChemR1/CCR8 by SIV strains was dependent in part on V3 loop sequences. The orphan receptor V28 supported Env-mediated cell-cell fusion by four T- or dual-tropic HIV-1 and HIV-2 strains. Three additional orphan receptors failed to function for any of the 28 Env proteins tested. Likewise, five of six seven-transmembrane-domain receptors encoded by herpesviruses did not support Env-mediated membrane fusion. However, the chemokine receptor US28, encoded by cytomegalovirus, did support inefficient infection by two HIV-1 strains. These findings indicate that additional chemokine receptors can function as HIV and SIV coreceptors and that surface expression levels can strongly influence coreceptor use.  相似文献   

5.
Like human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV), HIV-2 requires a coreceptor in addition to CD4 for entry into cells. HIV and SIV coreceptor molecules belong to a family of seven-transmembrane-domain G-protein-coupled receptors. Here we show that primary HIV-2 isolates can use a broad range of coreceptor molecules, including CCR1, CCR2b, CCR3, CCR4, CCR5, and CXCR4. Despite broad coreceptor use, the chemokine ligand SDF-1 substantially blocked HIV-2 infectivity of peripheral blood mononuclear cells, indicating that its receptor, CXCR4, was the predominant coreceptor for infection of these cells. However, expression of CXCR4 together with CD4 on some cell types did not confer susceptibility to infection by all CXCR4-using virus isolates. These data therefore indicate that another factor(s) influences the ability of HIV-2 to replicate in human cell types that express the appropriate receptors for virus entry.  相似文献   

6.
Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry   总被引:23,自引:0,他引:23  
Chemokine receptors and related seven-transmembrane-segment (7TMS) receptors serve as coreceptors for entry of human and simian immunodeficiency viruses (HIV-1, HIV-2, and SIV) into target cells. Each of these otherwise diverse coreceptors contains an N-terminal region that is acidic and tyrosine rich. Here, we show that the chemokine receptor CCR5, a principal HIV-1 coreceptor, is posttranslationally modified by O-linked glycosylation and by sulfation of its N-terminal tyrosines. Sulfated tyrosines contribute to the binding of CCR5 to MIP-1 alpha, MIP-1 beta, and HIV-1 gp120/CD4 complexes and to the ability of HIV-1 to enter cells expressing CCR5 and CD4. CXCR4, another important HIV-1 coreceptor, is also sulfated. Tyrosine sulfation may contribute to the natural function of many 7TMS receptors and may be a modification common to primate immunodeficiency virus coreceptors.  相似文献   

7.
Dual-tropic human immunodeficiency virus type 1 (HIV-1) strains infect both primary macrophages and transformed T-cell lines. Prototype T-cell line-tropic (T-tropic) strains use CXCR4 as their principal entry coreceptor (X4 strains), while macrophagetropic (M-tropic) strains use CCR5 (R5 strains). Prototype dual tropic strains use both coreceptors (R5X4 strains). Recently, CXCR4 expressed on macrophages was found to support infection by certain HIV-1 isolates, including the dual-tropic R5X4 strain 89.6, but not by T-tropic X4 prototypes like 3B. To better understand the cellular basis for dual tropism, we analyzed the macrophage coreceptors used for Env-mediated cell-cell fusion as well as infection by several dual-tropic HIV-1 isolates. Like 89.6, the R5X4 strain DH12 fused with and infected both wild-type and CCR5-negative macrophages. The CXCR4-specific inhibitor AMD3100 blocked DH12 fusion and infection in macrophages that lacked CCR5 but not in wild-type macrophages. This finding indicates two independent entry pathways in macrophages for DH12, CCR5 and CXCR4. Three primary isolates that use CXCR4 but not CCR5 (tybe, UG021, and UG024) replicated efficiently in macrophages regardless of whether CCR5 was present, and AMD3100 blocking of CXCR4 prevented infection in both CCR5 negative and wild-type macrophages. Fusion mediated by UG021 and UG024 Envs in both wild-type and CCR5-deficient macrophages was also blocked by AMD3100. Therefore, these isolates use CXCR4 exclusively for entry into macrophages. These results confirm that macrophage CXCR4 can be used for fusion and infection by primary HIV-1 isolates and indicate that CXCR4 may be the sole macrophage coreceptor for some strains. Thus, dual tropism can result from two distinct mechanisms: utilization of both CCR5 and CXCR4 on macrophages and T-cell lines, respectively (dual-tropic R5X4), or the ability to efficiently utilize CXCR4 on both macrophages and T-cell lines (dual-tropic X4).  相似文献   

8.
Human immunodeficiency virus type 1 (HIV-1) subtype C viruses with different coreceptor usage profiles were isolated from 29 South African patients with advanced AIDS. All 24 R5 isolates were inhibited by the CCR5-specific agents, PRO 140 and RANTES, while the two X4 viruses and the three R5X4 viruses were sensitive to the CXCR4-specific inhibitor, AMD3100. The five X4 or R5X4 viruses were all able to replicate in peripheral blood mononuclear cells that did not express CCR5. When tested using coreceptor-transfected cell lines, one R5 virus was also able to use CXCR6, and another R5X4 virus could use CCR3, BOB/GPR15, and CXCR6. The R5X4 and X4 viruses contained more-diverse V3 loop sequences, with a higher overall positive charge, than the R5 viruses. Hence, some HIV-1 subtype C viruses are able to use CCR5, CXCR4, or both CXCR4 and CCR5 for entry, and they are sensitive to specific inhibitors of entry via these coreceptors. These observations are relevant to understanding the rapid spread of HIV-1 subtype C in the developing world and to the design of intervention and treatment strategies.  相似文献   

9.
The infection of CD4-negative cells by variants of tissue culture-adapted human immunodeficiency virus type 1 (HIV-1) or HIV-2 strains has been shown to be mediated by the CXCR4 coreceptor. Here we show that two in vitro-established CD4(-)/CCR5(-)/CXCR4(+) human pre-T-cell lines (A3 and A5) can be productively infected by wild-type laboratory-adapted T-cell-tropic HIV-1 and HIV-2 strains in a CD4-independent, CXCR4-dependent fashion. Despite the absence of CCR5 expression, A3 and A5 cells were susceptible to infection by the simian immunodeficiency viruses SIVmac239 and SIVmac316. Thus, at least in A3 and A5 cells, one or more of the chemokine receptors can efficiently support the entry of HIV and SIV isolates in the absence of CD4. These findings suggest that to infect cells of different compartments, HIV and SIV could have evolved in vivo to bypass CD4 and to interact directly with an alternative receptor.  相似文献   

10.
Cell surface receptors exploited by human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) for infection are major determinants of tropism. HIV-1 usually requires two receptors to infect cells. Gp120 on HIV-1 virions binds CD4 on the cell surface, triggering conformational rearrangements that create or expose a binding site for a seven-transmembrane (7TM) coreceptor. Although HIV-2 and SIV strains also use CD4, several laboratory-adapted HIV-2 strains infect cells without CD4, via an interaction with the coreceptor CXCR4. Moreover, the envelope glycoproteins of SIV of macaques (SIV(MAC)) can bind to and initiate infection of CD4(-) cells via CCR5. Here, we show that most primary HIV-2 isolates can infect either CCR5(+) or CXCR4(+) cells without CD4. The efficiency of CD4-independent infection by HIV-2 was comparable to that of SIV, but markedly higher than that of HIV-1. CD4-independent HIV-2 strains that could use both CCR5 and CXCR4 to infect CD4(+) cells were only able to use one of these receptors in the absence of CD4. Our observations therefore indicate (i) that HIV-2 and SIV envelope glycoproteins form a distinct conformation that enables contact with a 7TM receptor without CD4, and (ii) the use of CD4 enables a wider range of 7TM receptors to be exploited for infection and may assist adaptation or switching to new coreceptors in vivo. Primary CD4(-) fetal astrocyte cultures expressed CXCR4 and supported replication by the T-cell-line-adapted ROD/B strain. Productive infection by primary X4 strains was only triggered upon treatment of virus with soluble CD4. Thus, many primary HIV-2 strains infect CCR5(+) or CXCR4(+) cell lines without CD4 in vitro. CD4(-) cells that express these coreceptors in vivo, however, may still resist HIV-2 entry due to insufficient coreceptor concentration on the cell surface to trigger fusion or their expression in a conformation nonfunctional as a coreceptor. Our study, however, emphasizes that primary HIV-2 strains carry the potential to infect CD4(-) cells expressing CCR5 or CXCR4 in vivo.  相似文献   

11.
The bicyclam AMD3100 is a potent and selective inhibitor of the replication of human immunodeficiency virus type 1 and type 2 (HIV-1 and HIV-2). It was recently demonstrated that the compound inhibited HIV entry through CXCR4 but not through CCR5. Selectivity of AMD3100 for CXCR4 was further indicated by its lack of effect on HIV-1 and HIV-2 infection mediated by the CCR5, CCR3, Bonzo, BOB, and US28, coreceptors. AMD3100 completely blocked HIV-1 infection mediated by a mutant CXCR4 bearing a deletion of most of the amino-terminal extracellular domain. In contrast, relative resistance to AMD3100 was conferred by different single amino acid substitutions in the second extracellular loop (ECL2) or in the adjacent membrane-spanning domain, TM4. Only substitutions of a neutral residue for aspartic acid and of a nonaromatic residue for phenylalanine (Phe) were associated with drug resistance. This suggests a direct interaction of AMD3100 with these amino acids rather than indirect effects of their mutation on the CXCR4 structure. The interaction of aspartic acids of ECL2 and TM4 with AMD3100 is consistent with the positive charge of bicyclams, which might block HIV-1 entry by preventing electrostatic interactions between CXCR4 and the HIV-1 envelope protein gp120. Other features of AMD3100 must account for its high antiviral activity, in particular the presence of an aromatic linker between the cyclam units. This aromatic group might engage in hydrophobic interactions with the Phe-X-Phe motifs of ECL2 or TM4. These results confirm the importance of ECL2 for the HIV coreceptor activity of CXCR4.  相似文献   

12.
The entry of primate immunodeficiency viruses into cells is dependent on the interaction of the viral envelope glycoproteins with receptors, CD4, and specific members of the chemokine receptor family. Although in many cases the tropism of these viruses is explained by the qualitative pattern of coreceptor expression, several instances have been observed where the expression of a coreceptor on the cell surface is not sufficient to allow infection by a virus that successfully utilizes the coreceptor in a different context. For example, both the T-tropic simian immunodeficiency virus (SIV) SIVmac239 and the macrophagetropic (M-tropic) SIVmac316 can utilize CD4 and CCR5 as coreceptors, and both viruses can infect primary T lymphocytes, yet only SIVmac316 can efficiently infect CCR5-expressing primary macrophages from rhesus monkeys. Likewise, M-tropic strains of human immunodeficiency virus type 1 (HIV-1) do not infect primary rhesus monkey macrophages efficiently. Here we show that the basis of this restriction is the low level of CD4 on the surface of these cells. Overexpression of human or rhesus monkey CD4 in primary rhesus monkey macrophages allowed infection by both T-tropic and M-tropic SIV and by primary M-tropic HIV-1. By contrast, CCR5 overexpression did not specifically compensate for the inefficient infection of primary monkey macrophages by T-tropic SIV or M-tropic HIV-1. Apparently, the limited ability of these viruses to utilize a low density of CD4 for target cell entry accounts for the restriction of these viruses in primary rhesus monkey macrophages.  相似文献   

13.
Here we report that the N-pyridinylmethyl cyclam analog AMD3451 has antiviral activity against a wide variety of R5, R5/X4, and X4 strains of human immunodeficiency virus type 1 (HIV-1) and HIV-2 (50% inhibitory concentration [IC(50)] ranging from 1.2 to 26.5 microM) in various T-cell lines, CCR5- or CXCR4-transfected cells, peripheral blood mononuclear cells (PBMCs), and monocytes/macrophages. AMD3451 also inhibited R5, R5/X4, and X4 HIV-1 primary clinical isolates in PBMCs (IC(50), 1.8 to 7.3 microM). A PCR-based viral entry assay revealed that AMD3451 blocks R5 and X4 HIV-1 infection at the virus entry stage. AMD3451 dose-dependently inhibited the intracellular Ca(2+) signaling induced by the CXCR4 ligand CXCL12 in T-lymphocytic cells and in CXCR4-transfected cells, as well as the Ca(2+) flux induced by the CCR5 ligands CCL5, CCL3, and CCL4 in CCR5-transfected cells. The compound did not interfere with chemokine-induced Ca(2+) signaling through CCR1, CCR2, CCR3, CCR4, CCR6, CCR9, or CXCR3 and did not induce intracellular Ca(2+) signaling by itself at concentrations up to 400 microM. In freshly isolated monocytes, AMD3451 inhibited the Ca(2+) flux induced by CXCL12 and CCL4 but not that induced by CCL2, CCL3, CCL5, and CCL7. The CXCL12- and CCL3-induced chemotaxis was also dose-dependently inhibited by AMD3451. Furthermore, AMD3451 inhibited CXCL12- and CCL3L1-induced endocytosis in CXCR4- and CCR5-transfected cells. AMD3451, in contrast to the specific CXCR4 antagonist AMD3100, did not inhibit but enhanced the binding of several anti-CXCR4 monoclonal antibodies (such as clone 12G5) at the cell surface, pointing to a different interaction with CXCR4. AMD3451 is the first low-molecular-weight anti-HIV agent with selective HIV coreceptor, CCR5 and CXCR4, interaction.  相似文献   

14.
We studied the evolution of human immunodeficiency virus type 1 (HIV-1) envelope function during the process of coreceptor switching from CCR5 to CXCR4. Site-directed mutagenesis was used to introduce most of the possible intermediate mutations in the envelope for four distinct coreceptor switch mutants, each with a unique pattern of CCR5 and CXCR4 utilization that extended from highly efficient use of both coreceptors to sole use of CXCR4. Mutated envelopes with some preservation of entry function on either CCR5- or CXCR4-expressing target cells were further characterized for their sensitivity to CCR5 or CXCR4 inhibitors, soluble CD4, and the neutralizing antibodies b12-IgG and 4E10. A subset of mutated envelopes was also studied in direct CD4 or CCR5 binding assays and in envelope-mediated fusion reactions. Coreceptor switch intermediates displayed increased sensitivity to CCR5 inhibitors (except for a few envelopes with mutations in V2 or C2) that correlated with a loss in CCR5 binding. As use of CXCR4 improved, infection mediated by the mutated envelopes became more resistant to soluble CD4 inhibition and direct binding to CD4 increased. These changes were accompanied by increasing resistance to the CXCR4 inhibitor AMD3100. Sensitivity to neutralizing antibody was more variable, although infection of CXCR4-expressing targets was generally more sensitive to neutralization by both b12-IgG and 4E10 than infection of CCR5-expressing target cells. These changes in envelope function were uniform in all four series of envelope mutations and thus were independent of the final use of CCR5 and CXCR4. Decreased CCR5 and increased CD4 binding appear to be common features of coreceptor switch intermediates.  相似文献   

15.
The biological phenotype of primary human immunodeficiency virus type 1 (HIV-1) isolates varies according to the severity of the HIV infection. Here we show that the two previously described groups of rapid/high, syncytium-inducing (SI) and slow/low, non-syncytium-inducing (NSI) isolates are distinguished by their ability to utilize different chemokine receptors for entry into target cells. Recent studies have identified the C-X-C chemokine receptor CXCR4 (also named fusin or Lestr) and the C-C chemokine receptor CCR5 as the principal entry cofactors for T-cell-line-tropic and non-T-cell-line-tropic HIV-1, respectively. Using U87.CD4 glioma cell lines, stably expressing the chemokine receptor CCR1, CCR2b, CCR3, CCR5, or CXCR4, we have tested chemokine receptor specificity for a panel of genetically diverse envelope glycoprotein genes cloned from primary HIV-1 isolates and have found that receptor usage was closely associated with the biological phenotype of the virus isolate but not the genetic subtype. We have also analyzed a panel of 36 well-characterized primary HIV-1 isolates for syncytium induction and replication in the same series of cell lines. Infection by slow/low viruses was restricted to cells expressing CCR5, whereas rapid/high viruses could use a variety of chemokine receptors. In addition to the regular use of CXCR4, many rapid/high viruses used CCR5 and some also used CCR3 and CCR2b. Progressive HIV-1 infection is characterized by the emergence of viruses resistant to inhibition by beta-chemokines, which corresponded to changes in coreceptor usage. The broadening of the host range may even enable the use of uncharacterized coreceptors, in that two isolates from immunodeficient patients infected the parental U87.CD4 cell line lacking any engineered coreceptor. Two primary isolates with multiple coreceptor usage were shown to consist of mixed populations, one with a narrow host range using CCR5 only and the other with a broad host range using CCR3, CCR5, or CXCR4, similar to the original population. The results show that all 36 primary HIV-1 isolates induce syncytia, provided that target cells carry the particular coreceptor required by the virus.  相似文献   

16.
Coreceptor usage of primary human immunodeficiency virus type 1 (HIV-1) isolates varies according to biological phenotype. The chemokine receptors CCR5 and CXCR4 are the major coreceptors that, together with CD4, govern HIV-1 entry into cells. Since CXCR4 usage determines the biological phenotype for HIV-1 isolates and is more frequent in patients with immunodeficiency, it may serve as a marker for viral virulence. This possibility prompted us to study coreceptor usage by HIV-2, known to be less pathogenic than HIV-1. We tested 11 primary HIV-2 isolates for coreceptor usage in human cell lines: U87 glioma cells, stably expressing CD4 and the chemokine receptor CCR1, CCR2b, CCR3, CCR5, or CXCR4, and GHOST(3) osteosarcoma cells, coexpressing CD4 and CCR5, CXCR4, or the orphan receptor Bonzo or BOB. The indicator cells were infected by cocultivation with virus-producing peripheral blood mononuclear cells and by cell-free virus. Our results show that 10 of 11 HIV-2 isolates were able to efficiently use CCR5. In contrast, only two isolates, both from patients with advanced disease, used CXCR4 efficiently. These two isolates also promptly induced syncytia in MT-2 cells, a pattern described for HIV-1 isolates that use CXCR4. Unlike HIV-1, many of the HIV-2 isolates were promiscuous in their coreceptor usage in that they were able to use, apart from CCR5, one or more of the CCR1, CCR2b, CCR3, and BOB coreceptors. Another difference between HIV-1 and HIV-2 was that the ability to replicate in MT-2 cells appeared to be a general property of HIV-2 isolates. Based on BOB mRNA expression in MT-2 cells and the ability of our panel of HIV-2 isolates to use BOB, we suggest that HIV-2 can use BOB when entering MT-2 cells. The results indicate no obvious link between viral virulence and the ability to use a multitude of coreceptors.  相似文献   

17.
CXCR4-using (X4) human immunodeficiency virus type 1 (HIV-1) variants evolve from CCR5-restricted (R5) HIV-1 variants. Early after their first appearance in vivo, X4 HIV-1 variants additionally use CCR5. The ability to use CCR5 in addition to CXCR4 is generally lost late in infection. Here we studied whether this evolution of the coreceptor repertoire is also reflected in a changing sensitivity of X4 variants to CXCR4 antagonists such as peptide T22 and the synthetic compound AMD3100. We observed differences in the concentrations of CXCR4 antagonists needed to suppress replication of X4 HIV variants from different patients. In general, late X4 HIV variants were less sensitive to AMD3100 than were early R5X4 HIV variants. The differences between early R5X4 HIV variants and late X4 variants were less pronounced for T22-mediated inhibition. These results suggest an ongoing evolution of X4 virus variants toward more efficient usage of the cellular entry complex.  相似文献   

18.
Primary simian immunodeficiency virus (SIV) isolated from sooty mangabey (SIVsm [n = 6]), stumptail (SIVstm [n = 1]), mandrill (SIVmnd [n = 1]), and African green (SIVagm [n = 1]) primates were examined for their ability to infect human cells and for their coreceptor requirements. All isolates infected human peripheral blood mononuclear cells (PBMCs) from a CCR5(+/+) donor, and seven of eight isolates tested also infected CCR5(-/-) PBMCs. Analysis of coreceptor utilization using GHOST and U87 cell lines revealed that all of the isolates tested used CCR5 and the orphan receptors STRL33 and GPR15. Coreceptors such as CCR2b, CCR3, CCR8, and CX3CR1 were also utilized by some primary SIV isolates. More importantly, we found that CXCR4 was used as a coreceptor by the SIVstm, the SIVagm, and four of the SIVsm isolates in GHOST and U87 cells. These data suggest that primary SIV isolates from diverse primate species can utilize CXCR4 for viral entry, similar to what has been described for human immunodeficiency viruses.  相似文献   

19.
We screened a panel of R5X4 and X4 human immunodeficiency virus type 1 (HIV-1) strains for their sensitivities to AMD3100, a small-molecule CXCR4 antagonist that blocks HIV-1 infection via this coreceptor. While no longer under clinical development, AMD3100 is a useful tool with which to probe interactions between the viral envelope (Env) protein and CXCR4 and to identify pathways by which HIV-1 may become resistant to this class of antiviral agents. While infection by most virus strains was completely blocked by AMD3100, we identified several R5X4 and X4 isolates that exhibited plateau effects: as the AMD3100 concentration was increased, virus infection and membrane fusion diminished to variable degrees. Once saturating concentrations of AMD3100 were achieved, further inhibition was not observed, indicating a noncompetitive mode of viral resistance to the drug. The magnitude of the plateau varied depending on the virus isolate, as well as the cell type used, with considerable variation observed when primary human T cells from different human donors were used. Structure-function studies indicated that the V1/V2 region of the R5X4 HIV-1 isolate DH12 was necessary for AMD3100 resistance and could confer this property on two heterologous Env proteins. We conclude that some R5X4 and X4 HIV-1 isolates can utilize the AMD3100-bound conformation of CXCR4, with the efficiency being influenced by both viral and host factors. Baseline resistance to this CXCR4 antagonist could influence the clinical use of such compounds.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) enters target cells by sequential binding to CD4 and specific seven-transmembrane-segment (7TMS) coreceptors. Viruses use the chemokine receptor CCR5 as a coreceptor in the early, asymptomatic stages of HIV-1 infection but can adapt to the use of other receptors such as CXCR4 and CCR3 as the infection proceeds. Here we identify one such coreceptor, Apj, which supported the efficient entry of several primary T-cell-line tropic (T-tropic) and dualtropic HIV-1 isolates and the simian immunodeficiency virus SIVmac316. Another 7TMS protein, CCR9, supported the less efficient entry of one primary T-tropic isolate. mRNAs for both receptors were present in phytohemagglutinin- and interleukin-2-activated peripheral blood mononuclear cells. Apj and CCR9 share with other coreceptors for HIV-1 and SIV an N-terminal region rich in aromatic and acidic residues. These results highlight properties common to 7TMS proteins that can function as HIV-1 coreceptors, and they may contribute to an understanding of viral evolution in infected individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号