首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Summary Amino acid analyses were undertaken on single cell protein (SCP) produced by thermotolerant strains ofKluyveromyces marxianus var.marxianus grown on sugar cane molasses at 40°C. The maximum conversion of available sugars to biomass at 45°C was only 10.8% (g dry wt.·g–1 total sugars). The amino acid composition of the SCP did not differ markedly from that reported for other yeast species.  相似文献   

2.
Summary Cyclic fed-batch plus batch polygalacturonase production by Aureobasidium pullulans in slurry fermentation systems using raw orange peel as substrate was studied in a 3-dm3 stirred fermentor by setting the main operating variables (T=297°K; pH0=3.2; OP0=3% w/v; n=700 rpm) to optimal values determined previously. In this way, it was possible to stabilize enzyme excretion at 130–140 VU cm–3. The time course of this fermentation process in terms of cell growth, substrate consumption and enzyme synthesis was reconstructed with a mean standard error less than 10%, by applying an unstructured model set up in a batch run and further refined in a series of cyclic fed-batch plus batch operations. In particular, the enzyme formation rate was related to the effect of reducing sugars as inhibitors at higher concentrations and as activators at lower levels by using an exponential equation. Moreover, the consumption rate of reducing sugars was found to be linearly related to the cell growth rate, its specific date being of pseudo-first order with respect to the reducing sugar concentration.Offprint requests to: M. Moresi  相似文献   

3.
Summary Thirty-nine fungal cultures belonging to the genera of Aspergillus, Podospora, Sordaria, Cbaetomium, Iodophanus, Scleotinia, Coniella, Pellicularia and others, were examined for the production of enzymes which macerate the mandarin orange peel using a wheat bran as substrate. An isolated strain of Aspergillus niger was an excellent producer of macerating enzymes compared to other organisms tested. The peel of the mandarin orange could be macerated by the crude enzymes produced by isolated A. niger. The maceration of 1 g of peel/24 h yielded 0.57 g of reducing sugars. Expressed differently, 83% of solid peel materials were released from the peel into the water/24 h under the following conditions: a peel concentration of 8 g peel/l, a crude enzyme concentration of 1 g protein/l, a temperature of 40°C, a pH of 5, a 24 h incubation time and 120 rpm reciprocal shaking. The test of the macerating activity of commercially available hydrolases on the orange peel showed that the two samples of pectinase originating from A. niger had about the same activity as isolated A. niger whereas the two samples of cellulase originating from Trichoderma viride had remarkably lower activities than A. niger.  相似文献   

4.
Nine cellulolytic bacterial strains were isolated from soil sample taken in southern Taiwan. Through 16S rRNA sequence matching; eight of those isolates belong to Cellulomonas sp., while the other one belongs to Cellulosimicrobium cellulans. The activity of cellulolytic enzymes (cellulases and xylanase) produced from those strains was mainly present extracellularly and the enzyme production was dependent on cellulosic substrates (xylan, rice husk and rice straw) used for growth. HPLC analysis confirmed the bacterial hydrolysis of these cellulosic substrates for soluble sugars production. The efficiency of fermentative H2 production from the enzymatically hydrolyzed rice husk was examined with seven H2-producing pure bacterial isolates. With an initial reducing sugar concentration of 0.36 g l−1, only Clostridium butyricum CGS5 exhibited efficient H2 production from the rice husk hydrolysates with a cumulative H2 production and H2 yield of 88.1 ml l−1 and 19.15 mmol H2 (g reducing sugar)−1 (or 17.24 mmol H2 (g cellulose)−1), respectively.  相似文献   

5.
It has been well established that sugars can be used to stabilize liposomes during drying by a mechanism that involves the formation of a glassy state by the sugars as well as by a direct interaction between the sugar and the phospholipid head groups. We have investigated the protective effect of phosphate on solute retention and storage stability of egg phosphatidylcholine (egg PC) liposomes that were dried (air-dried and freeze-dried) in the presence of sugars and phosphate. The protective effect of phosphate was tested using both glucose (low Tg) and sucrose (high Tg) by measuring leakage of carboxyfluorescein (CF), which was incorporated inside the vesicles. Liposomes that were dried with glucose or phosphate alone showed complete leakage after rehydration. However, approximately 30% CF-retention was obtained using mixtures of phosphate and glucose. Approximately 75% CF-retention was observed with liposomes that were dried with sucrose. The solute retention further increased to 85% using mixtures of phosphate and sucrose. The pH of the phosphate buffer prior to drying was found to have a strong effect on the solute retention. Fourier transform infrared spectroscopy studies showed that phosphate and sugars form a strong hydrogen bonding network, which dramatically increased the Tg. The HPO42− form of phosphate was found to interact stronger with sugars than the H2PO4 form. The increased solute retention of liposomes dried in the sugar phosphate mixtures did not coincide with improved storage stability. At temperatures below 60 °C the rate of solute-leakage was found to be strikingly higher in the presence of phosphate, indicating that phosphate impairs storage stability of dried liposomes.  相似文献   

6.
The thermoregulatory characteristics of three species of Cryptomys from Zambia and Angola are examined and, together with published data on four other species of Cryptomys from southern Africa, used to determine whether scaling occurs in this genus of subterranean rodents. The thermoregulatory properties of acclimated giant Zambian mole-rats, Cryptomys mechowi ( =267 g), Angolan mole-rats, Cryptomys bocagei ( =94 g) and Zambian common mole-rats Cryptomys hottentotus amatus ( =77 g) are as follows. Mean resting metabolic rates (RMRs) within the respective thermoneutral zones were 0.60±0.08 cm3 O2 g-1 h-1 (n=12) for C. mechowi; 0.74±0.06 cm3 O2 g-1 h-1 (n=8) for C. bocagei and 0.63±0.06 cm3O2 g-1 h-1 (n=21) for C. h. amatus. The thermoneutral zones (TNZs) of all three species are narrow: 29–30°C for C. mechowi; 31.5–32.5°C for C. bocagei and 28–32° C for C. h. amatus. The increase in mean RMR at the lowest temperatures tested (15° C for C. mechowi, 18° C for C. bocagei and C. h. amatus) was 2.35, 2.2 and 3.82 times their RMR in the TNZ respectively. Body temperatures are low, 34±0.53° C (n=24) for C. mechowi, 33.7±0.32° C (n=20) for C. bocagei and 33.8±0.43° C (n=40) for C. h amatus. At the lower limit of thermoneutrality, conductances are 0.09±0.01 cm3 O2 g-1 h-1 °C-1 (n=30) in C. mechowi; 0.12±0.01 cm3 O2 g-1 h-1 °C-1 (n=20) in C. bocagei and 0.12±0.03 cm3 O2 g-1 h-1 °C-1 (n=32) in C. h. amatus. The range in mean body mass among the seven species of Cryptomys examined for scaling was 60 g (C. darlingi) to 267 g (C. mechowi). There is no clear relationship between RMR within the TNZ and body mass. The resultant relationship is represented by the power curve RMR=2.45 mass-0.259.  相似文献   

7.
Candida shehatae NCL-3501 utilized glucose and xylose efficiently in batch cultures. The specific rate of ethanol production was higher with mixtures of glucose and xylose (0.64–0.83 g g–1 cells d–1) compared to that with individual sugars (0.38–0.58 g g–1 cells d–1). Although the optimum temperature for growth was 30°C, this strain grew and produced appreciable levels of ethanol at 45°C. A stable ethanol yield (0.40–0.43 g g–1 substrate utilized) was obtained between 10 g L–1 and 80 g L–1 of initial xylose concentration. Conversion efficiency was further improved by immobilization of the cells in calcium alginate beads. Free or immobilized cells ofC. shehatae NCL-3501 efficiently utilized sugars present in rice straw hemicellulose hydrolysate, prepared by two different methods, within 48 h. Ethanol yields of 0.45 g g–1 and 0.5 g g–1 from autohydrolysate, and 0.37 g g–1 from acid hydrolysate were produced by free and immobilized cells, respectively.  相似文献   

8.
The ability of live cells (LC), freeze dried cells (FDC) and oven dried cells (ODC) of the yeast Rhodotorula glutinis to remove lead from aqueous solution has been studied. Discernible differences were found between the biosorption properties of LC and the other two types of cell preparation. The LC preparation exhibited an uptake level of about 12 mg g−1 in a batch contactor with a biomass dosage of 2 g l−1 and an initial lead concentration of 100 mg l−1. This compared with, respectively, about 26 and 30 mg g−1 for the FDC and ODC biosorbents under the same experimental conditions. It is seen that the level of lead uptake by the two latter biosorbents was increased to, respectively, 2.2- and 2.5-fold of the level observed for the LC preparation. The superior performance of the FDC and ODC biosorbents in the lead binding process was attributed to the presence of additional binding sites on their cell wall surfaces as indicated by potentiometric titration data. These binding sites were ascribed to carboxylic and phosphoric groups, which are the primary sites of divalent metal complexation. Modeling of the titration data revealed that subjecting R. glutinis biomass to freeze drying or oven drying increased its proton binding site concentration by a factor of 3. It appears that the two simple physical treatments were able to compromise the R. glutinis cell wall structure in such a way as to make sites normally inaccessible to become active in proton and lead binding.  相似文献   

9.
Body temperature and oxygen consumption were measured in the eastern hedgehog,Erinaceus concolor Martin 1838, during summer at ambient temperatures (T a) between-6.0 and 35.6°C.E. concolor has a relatively low basal metabolic rate (0.422 ml O2·g-1·h-1), amounting to 80% of that predicted from its body mass (822.7 g). Between 26.5 and 1.2°C, the resting metabolic rate increases with decreasing ambient temperature according to the equation: RMR=1.980-0.057T a. The minimal heat transfer coefficient (0.057 ml O2·g-1·h-1·°C-1) is higher than expected in other eutherian mammals, which may result from partial conversion of hair into spines. At lower ambient temperature (from-4.6 to-6.0° C) there is a drop in body temperature (from 35.2 to 31.4° C) and a decrease in oxygen consumption (1.530 ml O2·g-1·h-1) even though the potential thermoregulation capabilities of this species are significantly higher. This is evidenced by the high maximum noradrenaline-induced non-shivering thermogenesis (2.370 ml O2·g-1·h-1), amounting to 124% of the value predicted. The active metabolic rate at ambient temperatures between 31.0 and 14.5° C averages 1.064 ml O2·g-1·h-1; at ambient temperatures between 14.5 and 2.0° C AMR=3.228-0.140T a.Abbreviations AMR active metabolic rate - bm body mass - BMR basal metabolic rate - h heat transfer coefficient - NA noradrenaline - NST non-shivering thermogenesis - NSTmax maximum rate of NA-induced non-shivering thermogenesis - RMR resting metabolic rate - RQ respiratory quotient - STPD standard temperature and pressure (25°C, 1 ATM) - T a ambient temperature - T b body temperature  相似文献   

10.
Production of lipid from oleaginous yeast using starch as a carbon source is not a common practice; therefore, the purpose of this investigation was to explore the capability of starch assimilating microbes to produce oil, which was determined in terms of biomass weight, productivity, and lipid yield. Saccharomyces pastorianus, Rhodotorula mucilaginosa, Rhodotorula glutinis, and fungal isolate Ganoderma wiiroense were screened for the key parameters. The optimization was also performed by one-factor-at-a-time approach. Considering the specific yield of lipid and cell dry weight yield, R. glutinis and R. mucilaginosa showed superiority over other strains. G. wiiroense, a new isolate, would also be a promising strain for starch waste utilization in terms of extracellular and intracellular specific yield of lipids. Extracellular specific yield of lipid was highest in R. glutinis culture (0.025?g?g?1 of biomass) followed by R. mucilaginosa (0.022?g?g?1 of biomass) and G. wiiroense (0.020?g?g?1 of biomass). Intracellular lipid was again highest in R. glutinis (0.048?g?g?1 of biomass). The most prominent fatty acid methyl esters among the lipid as detected by GC-MS were saturated lipids mainly octadecanoic acid, tetradecanoate, and hexadecanoate. Extracellular lipid produced on starch substrate waste would be a cost-effective alternative for energy-intensive extraction process in biodiesel industry.  相似文献   

11.
Two yeasts (Saccharomyces cerevisiae and Saccharomyces cerevisiae var ellipsoideus)were tested for their ability to ferment sugarcane (Saccharum officinarum) juice. In order to do this, time course studies of volatile, fixed, and total acidity, pH, alcohol, total sugars and °Bx were performed and the presence of methanol was tested. The fermentation studies were carried out at 25, 28 and 30 °C and the juice was inoculated with 1 and 5% (v/v) suspensions of both yeasts containing 1 × 108 cells ml−1. Time course studies indicated a similar fermentative pattern at the three temperatures evaluated, hence 25 °C was chosen as the cheapest alternative. The size of the inoculum made no difference in the fermentation. Analyses of the sugarcane juice wine showed the following results: pH, 3.2; alcohol, 10 °GL; total solids, 16.5 g l−1; ash, 1.4 g l−1; total acidity, 5.4 g l−1; volatile acidity, 0.12 g l−1; fixed acidity, 5.3 g l−1 and no methanol was detected. Two additional products were obtained after adding passion fruit juice and roselle (Hibiscus sabdarifa Linn) concentrates. The fruit-flavoured wines were significantly preferred (P ≤ 0.05) over the plain product. These results indicated that the elaboration of wine-like beverages is a good alternative use for sugarcane.  相似文献   

12.
Zhou N  Zhang Y  Wu X  Gong X  Wang Q 《Bioresource technology》2011,102(21):10158-10161
When Chlorella biomass was hydrolyzed in the presence of 2% HCl and 2.5% MgCl2, a sugar concentration of nearly 12%, and a sugar recovery of about 83% was obtained. Fermentation experiments demonstrated that glucose in the Chlorella biomass hydrolysates was converted into ethanol by Saccharomyces cerevisiae with a yield of 0.47 g g−1, which is 91% of the theoretical yield. This chemical hydrolysis approach is thus a novel route for the hydrolysis of biomass to generate fermentable sugars.  相似文献   

13.
The effect of nutrient supplementation of brewery’s spent grain (BSG) hydrolysates was evaluated with respect to biomass and xylitol production by Debaryomyces hansenii. For optimal biomass production, supplementation of full-strength BSG hydrolysates required only phosphate (0.5 g l−1 KH2PO4), leading to a biomass yield and productivity of 0.60 g g−1 monosaccharides and 0.55 g l−1 h−1, respectively. Under the conditions studied, no metabolic products other than CO2 and biomass were identified. For xylitol production, fourfold and sixfold concentrated hydrolysate-based media were used to assess the supplementation effects. The type of nutrient supplementation modulated the ratio of total polyols/total extracellular metabolites as well as the xylitol/arabitol ratio. While the former varied from 0.8 to 1, the xylitol/arabitol ratio reached a maximum value of 2.6 for yeast extract (YE)-supplemented hydrolysates. The increase in xylitol productivity and yield was related to the increase of the percentage of consumed xylose induced by supplementation. The best xylitol yield and productivity were found for YE supplementation corresponding to 0.55 g g−1 and 0.36 g l−1 h−1, respectively. In sixfold concentrated hydrolysates, providing that the hydrolysate was supplemented, the levels of xylitol produced were similar or higher than those for arabitol. Xylitol yield exhibited a further increase in the sixfold hydrolysate supplemented with trace elements, vitamins and minerals to 0.65 g g−1, albeit the xylitol productivity was somewhat lower. The effect of using activated charcoal detoxification in non-supplemented versus supplemented sixfold hydrolysates was also studied. Detoxification did not improve polyols formation, suggesting that the hemicellulose-derived inhibitor levels present in concentrated BSG hydrolysates are well tolerated by D. hansenii.  相似文献   

14.
Data from analyses of continuous culture fermentation of insoluble cellulose by Ruminococcus albus 7 were used to derive constants for the rate of cellulose hydrolysis and fermentation, growth yield, and maintenance. Cellulose concentration was 1% in the nutrient reservoir, and hydraulic retention times of 0.5, 1.0, 1.5, 1.75, and 2.0 days were used. Concentrations of reducing sugars in the cultures were negligible (less than 1%) compared with the amount of hydrolyzed cellulose, indicating that cellulose hydrolysis was the rate-limiting step of the fermentation. The rate of utilization of cellulose depended on the steady-state concentration of cellulose and was first order with a rate constant (k) of 1.18 day−1. The true microbial growth yield (Y) was 0.11 g g−1, the maintenance coefficient (m) was 0.10 g g−1 h−1, and the maximum YATP was 7.7 g of biomass (dry weight) mol of ATP−1.  相似文献   

15.
Mango peel is one of the major wastes from fruit processing industries, which poses considerable disposal problems and ultimately leads to environmental pollution. The objective of the current research was to determine the significant parameters on the production of polygalacturonase from mango peel which is a major industrial waste. Solid state culture conditions for polygalacturonase production by Fusarium moniliforme from dried mango peel powder were optimized by Taguchi’s L-18 orthogonal array experimental design methodology. Eight fungal metabolic influencing variables, viz. temperature, mango peel, inoculum, peptone, ammonium nitrate (NH4NO3), magnesium sulphate (MgSO4), zinc sulphate (ZnSO4) and potassium dihydrogen phosphate (KH2PO4) were selected to optimize polygalacturonase production. The optimized parameters composed of temperature (30°C), mango peel (6.5%, g, w/v), inoculum (8%, ml, v/v), peptone (1%, g, w/v), NH4NO3 (0.60%, g, w/v), MgSO4 (0.05%, g, w/v), ZnSO4 (0.06%, g, w/v) and KH2PO4 (0.4%, g, w/v). Based on the influence of interaction of fermentation components of fermentation, these could be classified as the least significant and the most significant at individual and interaction levels. The temperature, inoculum level, mango peel substrate and KH2PO4 showed maximum production impact at optimized conditions. From the optimized conditions the polygalacturonase activity was maximized to 43.2 U g−1.  相似文献   

16.
Summary The growth behaviour of Memnoniella echinata and Fusarium roseum was examined in slurry fermentation systems using untreated orange peel as substrate. A composite experiment was then designed to study the effect of orange peel initial concentration and the effect of the nitrogen: peel ratio on crude protein yidld (Y p ) and protein enrichment (Z p ) of the final biomass.The more concentrated the peel slurry, the greater the substrate inhibitory effect on microbial growth becomes.Finally, multiple regression technique allowed both the experimental values of Y p and Z p to be reconstructed with mean percentage errors smaller than 4% and 8%, respectively, and the optimal operating strategy for such SCP production process to be determined.  相似文献   

17.
Microwave-assisted ammonium hydroxide (NH4OH) followed by phosphoric acid (H3PO4) treatments were used to release monomeric sugars from Miscanthus sinensis grown in Cha-Chueng-Sao province, Thailand. Treatment with 1.0% (w/v) NH4OH, 15:1 liquid-to-solid ratio (LSR) at 120 °C temperature for 15 min liberated 2.9 g of monomeric sugars per 100 g of dried biomass, whereas the corresponding yield for a treatment with 1.78% v/v H3PO4, 15:1 LSR at 140 °C for 30 min was 62.3 g/100 g. The two-stage pretreatment, treatment with NH4OH at 120 °C temperature for 15 min followed by treatment with H3PO4 at 140 °C for 30 min, impressively provided the highest total monomeric sugar yield of 71.6 g/100 g dried biomass.  相似文献   

18.
Three strains of red yeast Rhodosporidium kratochvilovae, Rhodotorula glutinis and Sporidiobolus salmonicolor were studied for their responses to the presence metal stress, oxidative stress and a combination of these stress factors. For all yeast strains, the production of β‐carotene increased in stress conditions. The combination of H2O2 and Zn2+ significantly activated the pathways for the production of torularhodin in the strain Rglutinis (from 250 to 470 μg g?1 DCW) as well as β‐carotene (from 360 to 1100 μg g?1 DCW) and torulene (from 100 to 360 μg g?1 DCW) in Spsalmonicolor. Strains of Rglutinis and Rhkratochvilovae bound the majority of Zn(II) ions to the fibrillar part of the cell walls, whereas the strain Spsalmonicolor bound them to both extracellular polymers and the fibrillar part of the cell walls. A decrease in the ability of yeasts to tolerate higher concentrations of Zn(II) in the presence of free radicals (hydrogen peroxide) was also found.  相似文献   

19.
Summary The growth behaviour of Fusarium avenaceum (Sect. Roseum Wr.) in slurry fermentation systems using untreated orange peel as substrate was studied in a laboratory-fermenter scale to reproduce the results obtained in a shakenflask fermenter. The eventual effect of impeller speed on mechanical disruption of mycelial hyphae was then assessed by determining mycelial growth, total reducing sugars consumption, TOC reduction, carbon dioxide evolution and oxygen absorption rates. In particular, the main biomass yield coefficient, as well as the apparent specific growth rate, appeared to be independent of the impeller speed, at least within the experimental range of 450 and 900 min–1 (equivalent to peripheral impeller speeds of 3.8–7.5 m sec–1.  相似文献   

20.
The combined effects of water activity (aw) and temperature on mycotoxin production by Penicilium commune (cyclopiazonic acid — CPA) and Aspergillus flavus (CPA and aflatoxins — AF) were studied on maize over a 14-day period using a statistical experimental design. Analysis of variance showed a highly significant interaction (P 0.001) between these factors and mycotoxin production. The minimum aw/temperature for CPA production (2264 ng g–1 P. commune, 709 ng g–1 A. flavus) was 0.90 aw/30 °C while greatest production (7678 ng g–1 P. commune, 1876 ng g–1 A. flavus) was produced at 0.98 aw/20 °C. Least AF (411 ng g–1) was produced at 0.90 aw/20 °C and most (3096 ng g–1) at 0.98 aw/30 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号