首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Preservation of dried liposomes in the presence of sugar and phosphate   总被引:3,自引:0,他引:3  
It has been well established that sugars can be used to stabilize liposomes during drying by a mechanism that involves the formation of a glassy state by the sugars as well as by a direct interaction between the sugar and the phospholipid head groups. We have investigated the protective effect of phosphate on solute retention and storage stability of egg phosphatidylcholine (egg PC) liposomes that were dried (air-dried and freeze-dried) in the presence of sugars and phosphate. The protective effect of phosphate was tested using both glucose (low T(g)) and sucrose (high T(g)) by measuring leakage of carboxyfluorescein (CF), which was incorporated inside the vesicles. Liposomes that were dried with glucose or phosphate alone showed complete leakage after rehydration. However, approximately 30% CF-retention was obtained using mixtures of phosphate and glucose. Approximately 75% CF-retention was observed with liposomes that were dried with sucrose. The solute retention further increased to 85% using mixtures of phosphate and sucrose. The pH of the phosphate buffer prior to drying was found to have a strong effect on the solute retention. Fourier transform infrared spectroscopy studies showed that phosphate and sugars form a strong hydrogen bonding network, which dramatically increased the T(g). The HPO(4)(2-) form of phosphate was found to interact stronger with sugars than the H(2)PO(4)(-) form. The increased solute retention of liposomes dried in the sugar phosphate mixtures did not coincide with improved storage stability. At temperatures below 60 degrees C the rate of solute-leakage was found to be strikingly higher in the presence of phosphate, indicating that phosphate impairs storage stability of dried liposomes.  相似文献   

2.
We have demonstrated that sugars and suger/zinc mixtures can be used to preserve the activity of dried phosphofructokinase (PFK) during long-term storage over CaSO4. After 9 weeks in the presence of either 200 mM sucrose or 200 mM trehalose little loss of PFK activity was noted, with almost 60% of the original prefreeze-dry activity recovered when samples were rehydrated. Even reducing sugars protected the dried enzyme throughout the entire storage period. Of the sugars tested, 200 mM lactose provided the most stability to PFK; at the end of the dry storage, over 80% of the initial activity was recovered. With either 200 mM maltose or 400 mM glucose, about 40% of the initial activity was recovered at the end of the experiment. With all the sugars tested, the addition of 0.6 mM Zn2+ to sugar/PFK mixtures enhanced the stability of the enzyme, and no long-term adverse effects of the metal ion on enzyme activity were noted.  相似文献   

3.
Aims: To investigate the effect of freeze‐dried Lactobacillus coryniformis Si3 on storage stability by adding polymers to sucrose‐based formulations and to examine the relationship between amorphous matrix stability and cell viability. Methods and Results: The resistance to moisture‐induced sucrose crystallization and effects on the glass transition temperature (Tg) by the addition of polymers to the formulation were determined by different calorimetric techniques. Both polymers increased the amorphous matrix stability compared to the control, and poly(vinyl)pyrrolidone K90 was more effective in increasing amorphous stability than Ficoll 400. The viability of Lact. coryniformis Si3 after storage was investigated by plate counts following exposure to different moisture levels and temperatures for up to 3 months. The polymers enhanced the cellular viability to different degrees, dependent upon polymer and storage condition. Conclusions: Polymers can be used to enhance the stability of freeze‐dried Lact. coryniformis Si3 products, but cell viability and matrix stability do not always correlate. The general rule of thumb to keep a highly amorphous product 50° below its Tg for overall stability seemed to apply for this type of bacterial products. We showed that by combining thermal analysis with plate counts, it was possible to determine storage conditions where cell viability and matrix stability were kept high. Significance and Impact of the Study: The results will aid in the rational formulation design and proper determination of storage conditions for freeze‐dried and highly amorphous lactic acid bacteria formulations. We propose a hypothesis of reason for different stabilizing effects on the cells by the different polymers based on our findings and previous findings.  相似文献   

4.
The formation of intracellular glass is proposed to be relevant to protein stabilization and survival of anhydrobiotic organisms in the dry state. The stability of proteins in the amorphous carbohydrate matrix and its relevance to seed survival have been investigated in the present study. Glucose-6-phosphate dehydrogenase (G6PDH) was preserved in the amorphous glucose/sucrose (1:10, w/w) matrix by freeze-drying. The stability of freeze-dried G6PDH was examined at temperatures above and below the glass transition temperature (Tg). The rate of G6PDH inactivation in the amorphous carbohydrate matrix deviated significantly from the Arrhenius kinetics, and conformed to the Williams-Landel-Ferry (WLF) relationship. The temperature dependence of G6PDH inactivation in two sets of samples with different Tg values was compared. Identical temperature dependence of G6PDH inactivation was observed after temperature normalization by (T?Tg). Seed survival of Vigna radiata Wilczek (mung bean) showed a similar WLF kinetics at storage temperatures T≥Tg. In situ protein stability in mung bean embryonic axes was studied using differential scanning calorimetry (DSC). Thermal stability of seed proteins exhibited a strong dependence on the Tg of intracellular glass. These results indicate an important role of the glassy state in protein stabilization. Our data suggest an association between protein stability in intracellular glass and seed survival during storage.  相似文献   

5.
We have used 13C-labeled sugars and nuclear magnetic resonance (NMR) spectrometry to study the metabolic pathway of starch biosynthesis in developing wheat grain (Triticum aestivum cv Mardler). Our aim was to examine the extent of redistribution of 13C between carbons atoms 1 and 6 of [1-13C] or [6-13C]glucose (or fructose) incorporated into starch, and hence provide evidence for or against the involvement of triose phosphates in the metabolic pathway. Starch synthesis in the endosperm tissue was studied in two experimental systems. First, the 13C sugars were supplied to isolated endosperm tissue incubated in vitro, and second the 13C sugars were supplied in vivo to the intact plant. The 13C starch produced by the endosperm tissue of the grain was isolated and enzymically degraded to glucose using amyloglucosidase, and the distribution of 13C in all glucosyl carbons was quantified by 13C-NMR spectrometry. In all of the experiments, irrespective of the incubation time or incubation conditions, there was a similar pattern of partial (between 15 and 20%) redistribution of label between carbons 1 and 6 of glucose recovered from starch. There was no detectable increase over background 13C incidence in carbons 2 to 5. Within each experiment, the same pattern of partial redistribution of label was found in the glucosyl and fructosyl moieties of sucrose extracted from the tissue. Since it is unlikely that sucrose is present in the amyloplast, we suggest that the observed redistribution of label occurred in the cytosolic compartment of the endosperm cells and that both sucrose and starch are synthesized from a common pool of intermediates, such as hexose phosphate. We suggest that redistribution of label occurs via a cytosolic pathway cycle involving conversion of hexose phosphate to triose phosphate, interconversion of triose phosphate by triose phosphate isomerase, and resynthesis of hexose phosphate in the cytosol. A further round of triose phosphate interconversion in the amyloplast could not be detected. These data seriously weaken the argument for the selective uptake of triose phosphates by the amyloplast as part of the pathway of starch biosynthesis from sucrose in plant storage tissues. Instead, we suggest that a hexose phosphate such as glucose 1-phosphate, glucose 6-phosphate, or fructose 6-phosphate is the most likely candidate for entry into the amyloplast. A pathway of starch biosynthesis is presented, which is consistent with our data and with the current information on the intracellular distribution of enzymes in plant storage tissues.  相似文献   

6.
The conformation of hydrated and air-dried poly-l-lysine in thin films was studied using Fourier transform IR spectroscopy in the amide-I region. Hydrated poly-l-lysine has a random coil conformation. Upon slow drying of small droplets of the polypeptide solution over a period of several hours, an extended β-sheet conformation is adopted. This conformational transition can be prevented by fast air-drying within 2–3 min. Slow air-drying in the presence of sucrose also preserves the aqueous conformation and results in the formation of a glassy state. Comparison of shifts of the OH band with temperature indicates that sucrose/poly-l-lysine mixtures form a molecularly more densely packed glassy matrix, having a higher glass transition temperature (Tg), than sucrose alone. Whether direct interaction of sugar and polypeptide or glass formation is involved in the stabilization during slow air-drying was studied by drying in the presence of glucose or dextran. Compared with dextran (and sucrose to a lesser extent), glucose gives superior protection. Dried glucose has the lowest Tg and the best interacting properties. We conclude that either immobilization by fast air-drying or sufficient interaction with a protectant through hydrogen bonding (slow drying) plays the leading role in the preservation of the aqueous protein structure.  相似文献   

7.
In order to understand the effect of phosphate salts on the freeze-concentrated glass-like transition temperature (T g′) of aqueous sugar solutions, two types of sugar (glucose and maltose) and five types of phosphate salts (Na3PO4, Na4P2O7, Na5P3O10, K3PO4, and K4P2O7) were employed, and the thermal properties of various sugar-phosphate aqueous systems were investigated using differential scanning calorimetry. The T g′ of glucose increased with increasing sodium phosphates up to a certain phosphate ratio, decreasing thereafter. The maximum T g′ value was slightly higher in the order of Na3PO4 > Na4P2O7 ≥ Na5P3O10. Maltose-sodium phosphate also showed a similar trend as glucose-sodium phosphate samples. However, the degree of T g′-rise of maltose systems was much less than that of glucose. It is thought that the T g′ elevated by the molecular interaction between sugar and phosphate ions will be reduced by hydrated sodium ions. In comparisons between potassium phosphate and sodium phosphate, it was found that sugar-potassium phosphates showed the lower maximum T g′ at a lower phosphate ratio than sugar-sodium phosphates. In addition, the T g′ of potassium phosphates dropped sharply in comparison with sodium phosphates at the high phosphate ratio. These results suggest that potassium phosphates are lower T g′ than sodium phosphates, and that potassium ion plays a better plasticizer than sodium ion. A certain amount of sodium phosphates (Na3PO4 and Na4P2O7) caused devitrification. Potassium phosphates, however, did not show devitrification which can be explained by the fact that potassium ion can be dynamically restricted by sugar.  相似文献   

8.
Bradyrhizobium japonicum bacteroids were isolated anaerobically and were supplied with 14C-labeled trehalose, sucrose, UDP-glucose, glucose, or fructose under low O2 (2% in the gas phase). Uptake and conversion of 14C to CO2 were measured at intervals up to 90 minutes. Of the five compounds studied, UDP-glucose was most rapidly absorbed but it was very slowly metabolized. Trehalose was the sugar most rapidly converted to CO2, and fructose was respired at a rate at least double that of glucose. Sucrose and glucose were converted to CO2 at a very low but measurable rate (<0.1 nanomoles per milligram protein per hour). Carbon Number 1 of glucose appeared in CO2 at a rate 30 times greater than the conversion of carbon Number 6 to CO2, indicating high activity of the pentose phosphate pathway. Enzymes of the Entner-Doudoroff pathway were not detected in bacteroids, but very low activities of sucrose synthase and phosphofructokinase were demonstrated. Although metabolism of sugars by B. japonicum bacteroids was clearly demonstrated, the rate of sugar uptake was only 1/30 to 1/50 the rate of succinate uptake. The overall results support the view that, although bacteroids metabolize sugars, the rates are very low and are inadequate to support nitrogenase.  相似文献   

9.
The lyotropic behavior and glass-forming properties of octyl β-d-glucoside (C8Glu) and octyl β-d-thioglucoside (C8SGlu)/water binary mixtures were evaluated using differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). The results clearly indicate that the mixture forms a glass in the supercooling state of liquid crystalline phases such as cubic, lamellar, and smectic. The glass transition temperature (Tg) of the mixture was strongly dependent on solute concentration, with a higher concentration correlating with a higher Tg. The experimental Tg was consistent with the predicted value calculated using the Couchman-Karasz equation in both the C8Glu and C8SGlu/water mixtures. The change of heat capacity at Tg showed the two bending points under variation of concentrations. And the highest temperature of phase transition from lamellar to isotropic solution was observed at around 50% molar concentration. It was expected that non-percolated state of water existed in extremely higher concentration ranges.  相似文献   

10.
The compartmentation of solutes in suspension cells of Saccharum sp. during different growth phases in batch culture was determined using CuCl2 to permeabilize the plasma membrane of the cells. The efflux of cytosolic and vacuolar pools of sugars, cations and phosphate was monitored, and the efflux data for phosphate were compared and corrected using data from compartmentation analysis of phosphate as determined by 31P-nuclear magnetic resonance spectroscopy. The results show that sucrose is not accumulated in the vacuoles at any phase of the growth cycle. On the other hand, glucose and fructose are usually accumulated in the vacuole, except at the end of the cell-culture cycle when equal distribution of glucose and fructose between the cytosol and the vacuole is found. Both Na+ and Mg2+ are preferentially located in the vacuoles, but follow the same tendency as glucose and fructose with almost complete location in the vacuole in the early culture phases and increasing cytosolic concentration with increasing age of the cell culture. Potassium ions are always clearly accumulated in the cytosol at a concentration of about 80 mM; only about 20% of the cellular K+ is located inside the vacuole. Cytosolic phosphate is little changed during the cell cycle, whereas the vacuolar phosphate pool changes according to total cellular phosphate. In general there are two different modes of solute compartmentation in sugarcane cells. Some solutes, fructose, glucose, Mg2+ and Na+, show high vacuolar compartmentation when the total cellular content of the respective solute is low, whereas in the case of ample supply the cytosolic pools increase. For other solutes, phosphate and K+, the cytosolic concentration tends to be kept constant, and only excess solute is stored in the vacuole and remobilized under starvation conditions. The behaviour of sucrose is somewhat intermediate and it appears to equilibrate easily between cytosol and vacuole.Abbreviation NMR nuclear magnetic resonance The very cooperative help by Dr. J. Reiner with the 31P-NMR measurements and the technical assistance by D. Keis are gratefully acknowledged. This research was supported by the Deutsche Forschungsgemeinschaft and by Fonds der Chemischen Industrie.  相似文献   

11.
Trehalose is the most effective carbohydrate in preserving the structure and function of biological systems during dehydration and subsequent storage. We have studied the kinetics of protein inactivation in amorphous glucose/sucrose (1:10, w/w) and glucose/trehalose (1:10, w/w) systems, and examined the relationship between protein preservation, phase separation and crystallization during dry storage. The glucose/trehalose system preserved glucose-6-phosphate dehydrogenase better than did the glucose/sucrose system with the same glass transition temperature (Tg). The Williams-Landel-Ferry kinetic analysis indicated that the superiority of the glucose/trehalose system over the glucose/sucrose system was possibly associated with a low free volume and a low free volume expansion at temperatures above the Tg. Phase separation and crystallization during storage were studied using differential scanning calorimetry, and three separate domains were identified in stored samples (i.e., sugar crystals, glucose-rich and disaccharide-rich amorphous domains). Phase separation and crystallization were significantly retarded in the glucose/trehalose system. Our data suggest that the superior stability of the trehalose system is associated with several properties of the trehalose glass, including low free volume, restricted molecular mobility and the ability to resist phase separation and crystallization during storage.  相似文献   

12.
Sucrose translocation and storage in the sugar beet   总被引:14,自引:9,他引:5       下载免费PDF全文
Several physiological processes were studied during sugar beet root development to determine the cellular events that are temporally correlated with sucrose storage. The prestorage stage was characterized by a marked increase in root fresh weight and a low sucrose to glucose ratio. Carbon derived from 14C-sucrose accumulation was partitioned into protein and structural carbohydrate fractions and their amino acid, organic acid, and hexose precursors. The immature root contained high soluble acid invertase activity (Vmax 20 micromoles per hour per milligram protein; Km 2 to 3 millimolar) which disappeared prior to sucrose storage. Sucrose storage was characterized by carbon derived from 14C-sucrose uptake being partitioned into the sucrose fraction with little evidence of further metabolism. The onset of storage was accompanied by the appearance of sucrose synthetase activity (Vmax 12 micromoles per hour per milligram protein; Km 7 millimolar). Neither sucrose phosphate synthetase nor alkaline invertase activities were detected during beet development. Intact sugar beet plants (containing a 100-gram beet) exported 70% of the translocate to the beet, greater than 90% of which was retained as sucrose with little subsequent conversions.  相似文献   

13.
Vitrification of sugar-based solutions plays an important role in cryopreservation, lyophilization, and the emerging field of anhydrous preservation. An understanding of the glass transition characteristics of such formulations is essential for determining an appropriate storage temperature to ensure an extended shelf life of vitrified products. To better understand the effect of salts on the glass transition temperature (Tg) of glass-forming sugars, we investigated several data-fitting models (Fox, Gordon–Taylor and Kwei) for sugar–salt formulations using data from the literature, as well as new data generated on blends of trehalose and choline dihydrogen phosphate (CDHP). CDHP has recently been shown to have promise as a stabilizing agent for proteins and DNA. The Kwei equation, which has a specific parameter characterizing intermolecular interactions, provides good fits to the Tg data for sugar–salt blends, and complements other commonly used models that are frequently used to model Tg data.  相似文献   

14.
The effect of sugars (sucrose, maltose, and glucose) on the thermal and chemical denaturation of rabbit serum albumin (RSA) has been examined by viscosity and far UV circular dichroism measurements. The viscosity measurements indicate a change in the reduced viscosity from 4.18 to 16.23 ml/g in the temperature range from 20 to 90°C. The T m value for RSA obtained by viscosity measurements in the absence of sugar was found to be 63.2°C, but this value increased to 68.4, 70.3, and 73.2°C in the presence of 0.5 M sucrose, 0.5 M glucose, and 0.5 M maltose, respectively. Further, the stability of RSA in the presence of 0.5 M sugars was also investigated by measuring the mean residue ellipticity at 222 nm (MRE222) using chemical (0-6 M guanidine hydrochloride) and thermal (20-90°C) transition processes. At the midpoint of the chemical denaturation, the increase in the MRE values at 222 nm in the presence of 0.5 M sugars were of the same order as the increase in the T m values, i.e., maltose > glucose > sucrose. Interestingly, a mixture of 0.25 M glucose and 0.25 M fructose showed a cumulative effect on the thermal as well as chemical stability as compared to 0.5 M sucrose alone. In the case of both thermal and chemical denaturation, there was an increase in the MRE222 values upon addition of various sugars, this indicating induction of secondary structure in the protein.  相似文献   

15.
Sugars play an important role in the desiccation tolerance of most anhydrobiotic organisms. It has been shown in previous studies that different structural families of oligosaccharides have different efficacies to interact with phospholipid headgroups and protect membranes from solute leakage during drying. Here, we have compared three families of linear oligosaccharides (fructans (inulins), malto-oligosaccharides, manno-oligosaccharides) for their chain-length dependent protection of egg phosphatidylcholine liposomes against membrane fusion. We found increased protection with chain length up to a degree of polymerization (DP) of 5 for malto-oligosaccharides, and a decrease for inulins and manno-oligosaccharides. Differential scanning calorimetry measurements showed that for all sugars the glass transition temperature (T g) increased with DP, although to different degrees for the different oligosaccharide families. Higher T g values resulted in reduced membrane fusion only for malto-oligosaccharides below DP5. Contrary to expectation, for inulins, manno-oligosaccharides and malto-oligosaccharides of a DP above five, fusion increased with increasing T g, indicating that other physical parameters are more important in determining the ability of different sugars to protect membranes against fusion during drying. Further research will be necessary to experimentally define such parameters.  相似文献   

16.
Compartmentation fluxes of carbohydrates along the phloem path were analysed in the petiole of Cyclamen persicum (L.) Mill. Sucrose represented the dominant fraction (58-75% of soluble carbohydrates in the vascular symplast). Planteose (12-22%), glucose (3-8%) and fructose (3-13%) occurred in lower amounts (data from liquid chromatography, percentages of the total peak area). Starch was not detectable. Upon feeding leaves with 14CO2, 98% and 90% of radiolabel was recovered as sucrose in the vascular symplast after 3 h and 24 h, respectively. Thus, sucrose appeared to be the exclusive transport sugar in Cyclamen. Experiments with asymmetrically labelled sucrose revealed that there was no metabolism of translocated sucrose. Analysis of six consecutive petiole segments (each 2 cm in length) showed a homogeneous longitudinal distribution of these sugars differed markedly. On average, the sucrose concentration amounted to 4.7 and 0.4 mg g-1 FM in the vascular apoplast and petiole parenchyma, respectively. Sucrose was unloaded with out hydrolysis and stored in the periphery of the phloem path. Planteose was identified as another storage saccharide. Sucrose synthesis by sucrose phosphate synthase occurred when isolated vascular bundles were incubated with [14C]glucose or [14C]fructose. These data suggest that the phloem path is characterized by both source and sink like activity.  相似文献   

17.
Bowen JE 《Plant physiology》1972,49(5):789-793
The mechanism by which sucrose is transported into the inner spaces of immature internodal parenchyma tissue of sugarcane (Saccharum officinarum L. var. H 49-5) was studied in short term experiments (15 to 300 seconds). Transport of sucrose, glucose, and fructose was each characterized by a Vmax of 1.3 μmoles/gram fresh weight·2 hours, and each of these three sugars mutually and competitively inhibited transport of the other two. When 14C-glucose was supplied exogenously, 14C-glucose 6-phosphate and 14C-glucose were the first labeled compounds to appear in the tissue; no 14C-sucrose was detected until after 60-second incubation. After 15-second incubation in 14C-sucrose, all intracellular radioactivity was in glucose, fructose, glucose 6-phosphate, and fructose 6-phosphate; trace amounts of 14C-sucrose were found after 30 seconds and after 5 minutes, 71% of the intracellular radioactivity was in sucrose. Although it was possible that sucrose was transported intact into the inner space and then immediately hydrolyzed, it was shown that the rate of hydrolysis under these conditions was too low to account for the rate of hexose accumulation. Pretreatment of the tissue with rabbit anti-invertase antiserum eliminated sucrose transport, but had no effect on glucose transport. Since the antibodies did not penetrate the plasmalemma, it was concluded that sucrose was hydrolyzed by an invertase in the free space prior to transport. The glucose and fructose moieties, or their phosphorylated derivatives, were then transported into the inner space and sucrose was resynthesized. No evidence for the involvement of sucrose phosphate in transport was found in these experiments.  相似文献   

18.
《Annals of botany》1997,79(3):291-297
The relationship between the glassy state in seeds and storage stability was examined, using the glass transition curve and a seed viability database from previous experiments. Storage data for seeds at various water contents were studied by Williams–Landel–Ferry (WLF) kinetics, whereas the glass transition curves of seeds with different storage stability were analysed by the Gordon–Taylor equation in terms of the plasticization effect of water on seed storage stability. It was found that the critical temperatures (Tc) for long-term storage of three orthodox seeds were near or below their glass transition temperatures (Tg), indicating the requirement for the presence of the glassy state for long-term seed storage. The rate of seed viability loss was a function of T-Tgat T>Tg, which fitted the WLF equation well, suggesting that storage stability was associated with the glass transition, and that the effect of water content on seed storage was correlated with the plasticization effect of water on intracellular glasses. A preliminary examination suggested a possible link between the glass transition curve and seed storage stability. According to the determined WLF constants, intracellular glasses in seeds fell into the second class of amorphous systems as defined by Slade and Levine (Critical Reviews in Food Science and Nutrition30: 115–360, 1991). These results support the interpretation that the glassy state plays an important role in storage stability and should be a major consideration in optimizing storage conditions.  相似文献   

19.
Short-term transport studies were conducted using excised whole Zea mays kernels incubated in buffered solutions containing radiolabeled sugars. Following incubation, endosperms were removed and rates of net 14C-sugar uptake were determined. Endogenous sugar gradients of the kernel were estimated by measuring sugar concentrations in cell sap collected from the pedicel and endosperm. A sugar concentration gradient from the pedicel to the endosperm was found. Uptake rates of 14C-labeled glucose, fructose, and sucrose were linear over the concentration range of 2 to 200 millimolar. At sugar concentrations greater than 50 millimolar, hexose uptake exceeded sucrose uptake. Metabolic inhibitor studies using carbonylcyanide-m-chlorophenylhydrazone, sodium cyanide, and dinitrophenol and estimates of Q10 suggest that the transport of sugars into the developing maize endosperm is a passive process. Sucrose was hydrolyzed to glucose and fructose during uptake and in the endosperm was either reconverted to sucrose or incorporated into insoluble matter. These data suggest that the conversion of sucrose to glucose and fructose may play a role in sugar absorption by endosperm. Our data do not indicate that sugars are absorbed actively. Sugar uptake by the endosperm may be regulated by the capacity for sugar utilization (i.e. starch synthesis).  相似文献   

20.
A mesophilic, obligately anaerobic, propionate-producing fermentative bacterium, designated strain NM7T, was isolated from rural rice paddy field. Cells of strain NM7T are Gram-negative, non-motile, non-spore-forming, short rods, and negative for catalase. The strain grew optimally at 37 °C (the range for growth 15–40 °C) and pH 7.0 (pH 5.0–7.5). The strain could grow fermentatively on various sugars, including arabinose, xylose, fructose, galactose, glucose, mannose, cellobiose, lactose, maltose, sucrose, pectin and starch. The main end products of glucose fermentation were acetate and propionate. Yeast extract was not required but stimulated the growth. Nitrate, sulfate, thiosulfate, elemental sulfur, sulfite, and Fe(III) nitrilotriacetate were not used as terminal electron acceptors. The G+C content of genomic DNA was 42.8 mol%. The major cellular fatty acids were C15:0, anteiso-C15:0, C16:0, and C17:0. The most abundant polar lipid of strain NM7T was phosphatidylethanolamine. 16S rRNA gene sequence analysis revealed that it belongs to the family Porphyromonadaceae of the phylum Bacteroidetes. The closest recognized species was Paludibacter propionicigenes (91.4 % similarity in 16S rRNA gene sequence). A novel species, Paludibacter jiangxiensis sp. nov., is proposed to accommodate strain NM7T (=JCM 17480T = CGMCC 1.5150T = KCTC 5844T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号