首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Team‐Based Learning (TBL) is a pedagogical tool that has great potential to develop student engagement, accountability, and equity in the online classroom. TBL is rooted in evidence‐based educational theories and practices that underlie many active learning approaches such as self‐testing, team discussion, and application of knowledge. The use of these approaches is associated with better student performance, retention, and sense of belonging in the classroom, aspects that are often reported to be especially lacking in online courses. Here, we describe how we implemented TBL in a face‐to‐face and an online introductory level evolution and biodiversity course. We implemented TBL in the face‐to‐face course (~200 students) starting in 2018 and in the online course (~30 students) starting in the summer of 2019. We used several online applications to facilitate the transition to an online platform such as Simbio, Slack, VoiceThread, Articulate 360, and Teammates. Our experiences using TBL approaches in the online course have been rewarding, and students are engaged and accountable for their learning and performed well in the course. Our goal is to provide an example of how we designed a life science course using TBL approaches and transitioned the course to an online environment. With the current switch to remote instruction and online learning, we recommend the use of TBL as a course design approach that can improve the students’ online learning experience.  相似文献   

2.
The COVID‐19 pandemic has disrupted many standard approaches to STEM education. Particularly impacted were field courses, which rely on specific natural spaces often accessed through shared vehicles. As in‐person field courses have been found to be particularly impactful for undergraduate student success in the sciences, we aimed to compare and understand what factors may have been lost or gained during the conversion of an introductory field course to an online format. Using a mixed methods approach comparing data from online and in‐person field‐course offerings, we found that while community building was lost in the online format, online participants reported increased self‐efficacy in research and observation skills and connection to their local space. The online field course additionally provided positive mental health breaks for students who described the time outside as a much‐needed respite. We maintain that through intentional design, online field courses can provide participants with similar outcomes to in‐person field courses.  相似文献   

3.
Inquiry‐based learning allows students to actively engage in and appreciate the process of science. As college courses transition to online instruction in response to COVID‐19, incorporating inquiry‐based learning is all the more essential for student engagement. However, with the cancelation of in‐person laboratory courses, implementing inquiry can prove challenging for instructors. Here, I describe a case that exemplifies a strategy for inquiry‐based learning and can be adapted for use in various course modalities, from traditional face‐to‐face laboratory courses to asynchronous and synchronous online courses. I detail an assignment where students explore the developmental basis of morphological evolution. Flowers offer an excellent example to address this concept and are easy for students to access and describe. Students research local flowering plants, collect and dissect flower specimens to determine their whorl patterns, and generate hypotheses to explain the developmental genetic basis of the patterns identified. This task allows students to apply their scientific thinking skills, conduct guided exploration in nature, and connect their understanding of the developmental basis of evolutionary change to everyday life. Incorporating inquiry using readily available, tangible, tractable real‐world examples represents a pragmatic and effective model that can be applied in a variety of disciplines during and beyond COVID‐19.  相似文献   

4.
Teaching ecology effectively and experientially has become more challenging for at least two reasons today. Most experiences of our students are urban, and we now face the near immediate and continuing need to deliver courses (either partially or wholly) online because of COVID‐19. Therefore, providing a learning experience that connects students to their environment within an ecological framework remains crucial and perhaps therapeutic to mental health. Here, we describe how prior to the pandemic we adapted our field‐based laboratories to include data collection, analysis, and interpretation, along with the development of a citizen‐science approach for online delivery. This design is simple to implement, does not require extensive work, and maintains the veracity of original learning outcomes. Collaboration online following field data collection in ecology courses within the context of cities offers further options to adapt to student experience levels, resource availability, and accessibility, as well as bringing instructors and students together to build an open well‐curated data set that can be used in ecology courses where no laboratories are available. Finally, it promotes an open collaboration among ecology instructors that can drive lasting conversations about ecology curriculum.  相似文献   

5.
During the Spring Semester of 2020, an outbreak of a novel coronavirus (SARS‐CoV‐2) and the illnesses it caused (COVID‐19) led to widespread cancelling of on‐campus instruction at colleges and universities in the United States and other countries around the world. Response to the pandemic in university settings included a rapid and unexpected shift to online learning for faculty and students. The transition to teaching and learning online posed many challenges, and the experiences of students during this crisis may inform future planning for distance learning experiences during the ongoing pandemic and beyond. Herein, we discuss the experiences of first‐ and second‐year university students enrolled in a biology seminar course as their classes migrated to online environments. Drawing on reported student experiences and prior research and resources, we discuss the ways we will adjust our own teaching for future iterations of the course while offering recommendations for instructors tasked with teaching in online environments.  相似文献   

6.
The COVID‐19 pandemic prompted a transition to remote delivery of courses that lack immersive hands‐on research experiences for undergraduate science students, resulting in a scientific research skills gap. In this report, we present an option for an inclusive and authentic, hands‐on research experience that all students can perform off‐campus. Biology students in a semester‐long (13 weeks) sophomore plant physiology course participated in an at‐home laboratory designed to study the impacts of nitrogen addition on growth rates and root nodulation by wild nitrogen‐fixing Rhizobia in Pisum sativum (Pea) plants. This undergraduate research experience, piloted in the fall semester of 2020 in a class with 90 students, was created to help participants learn and practice scientific research skills during the COVID‐19 pandemic. Specifically, the learning outcomes associated with this at‐home research experience were: (1) generate a testable hypothesis, (2) design an experiment to test the hypothesis, (3) explain the importance of biological replication, (4) perform meaningful statistical analyses using R, and (5) compose a research paper to effectively communicate findings to a general biology audience. Students were provided with an at‐home laboratory kit containing the required materials and reagents, which were chosen to be accessible and affordable in case students were unable to access our laboratory kit. Students were guided through all aspects of research, including hypothesis generation, data collection, and data analysis, with video tutorials and live virtual sessions. This at‐home laboratory provided students an opportunity to practice hands‐on research with the flexibility to collect and analyze their own data in a remote setting during the COVID‐19 pandemic. This, or similar laboratories, could also be used as part of distance learning biology courses.  相似文献   

7.
In spring 2020, the University of Minnesota Erosion and Stormwater Management Certification Program temporarily ceased in‐person workshops due to the spread of COVID‐19. Twenty workshops were canceled, and the 1,233 attendees (all adult learners) were moved into asynchronous online course sections. These online workshops were the first remote courses that many of the attendees had ever attempted. Here, we provide tips for successfully creating online classes for nontraditional student populations.  相似文献   

8.
The coronavirus disease of 2019 (COVID‐19) pandemic has impacted educational systems worldwide during 2020, including primary and secondary schooling. To enable students of a local secondary school in Brisbane, Queensland, to continue with their practical agricultural science learning and facilitate online learning, a “Grass Gazers” citizen science scoping project was designed and rapidly implemented as a collaboration between the school and a multidisciplinary university research group focused on pollen allergy. Here, we reflect on the process of developing and implementing this project from the perspective of the school and the university. A learning package including modules on pollen identification, tracking grass species, measuring field greenness, using a citizen science data entry platform, forensic palynology, as well as video guides, risk assessment and feedback forms were generated. Junior agriculture science students participated in the learning via online lessons and independent data collection in their own local neighborhood and/or school grounds situated within urban environments. The university research group and school coordinator, operating in their own distributed work environments, had to develop, source, adopt, and/or adapt material rapidly to meet the unique requirements of the project. The experience allowed two‐way knowledge exchange between the secondary and tertiary education sectors. Participating students were introduced to real‐world research and were able to engage in outdoor learning during a time when online, indoor, desk‐based learning dominated their studies. The unique context of restrictions imposed by the social isolation policies, as well as government Public Health and Department of Education directives, allowed the team to respond by adapting teaching and research activity to develop and trial learning modules and citizen science tools. The project provided a focus to motivate and connect teachers, academic staff, and school students during a difficult circumstance. Extension of this citizen project for the purposes of research and secondary school learning has the potential to offer ongoing benefits for grassland ecology data acquisition and student exposure to real‐world science.  相似文献   

9.
As education methodology has grown to incorporate online learning, disciplines with a field component, like ecology, may find themselves sidelined in this transition. In response to challenges posed by moving classes online, previous studies have assessed whether an online environment can be effective for student learning. This work has found that active learning structures, which maximize information processing and require critical thinking, best support student learning. All too commonly, online and active learning are perceived as mutually exclusive. We argue the success of online learning requires facilitating active learning in online spaces. To highlight this intersection in practice, we use a case study of an online, active, and synchronous ecology and conservation biology course from the College of Natural Sciences at Minerva Schools at KGI. We use our perspectives as curriculum designers, instructors, and students of this course to offer recommendations for creating active online ecology courses. Key components to effective course design and implementation are as follows: facilitating critical “thinking like a scientist”, integrating open‐ended assignments into class discussion, and creating active in‐class dialogues by minimizing lecturing. Based on our experience, we suggest that by employing active learning strategies, the future of ecology in higher education is not inhibited, but in fact supported, by opportunities for learning online.  相似文献   

10.
Traditional forms of higher learning include teaching in the classroom on college campuses and in‐person adult‐focused public outreach events for non‐students. Online college degree programs and public outreach platforms have been steadily emerging, and the COVID‐19 pandemic has, at least temporarily, forced all related ecology and evolutionary biology programs to move to online delivery. Podcasting is a form of online mass communication that is rapidly gaining popularity and has the flexibility to be incorporated into the pedagogical toolbox for the online classroom and remote public outreach programming. Podcasting is also becoming more popular in the ecology and evolutionary biology field. Here, we describe the great potential of podcasting to transform the learning experience, present a case study of success from the United States, provide a table of podcast recommended by ecologist responding to a listserv, and provide a road map for adoption and utilization of podcasting for the future.  相似文献   

11.
As Open Science practices become more commonplace, there is a need for the next generation of scientists to be well versed in these aspects of scientific research. Yet, many training opportunities for early career researchers (ECRs) could better emphasize or integrate Open Science elements. Field courses provide opportunities for ECRs to apply theoretical knowledge, practice new methodological approaches, and gain an appreciation for the challenges of real‐life research, and could provide an excellent platform for integrating training in Open Science practices. Our recent experience, as primarily ECRs engaged in a field course interrupted by COVID‐19, led us to reflect on the potential to enhance learning outcomes in field courses by integrating Open Science practices and online learning components. Specifically, we highlight the opportunity for field courses to align teaching activities with the recent developments and trends in how we conduct research, including training in: publishing registered reports, collecting data using standardized methods, adopting high‐quality data documentation, managing data through reproducible workflows, and sharing and publishing data through appropriate channels. We also discuss how field courses can use online tools to optimize time in the field, develop open access resources, and cultivate collaborations. By integrating these elements, we suggest that the next generation of field courses will offer excellent arenas for participants to adopt Open Science practices.  相似文献   

12.
13.
Citizen science can facilitate in‐depth learning for pupils and students, contribute to scientific research, and permit civic participation. Here, we describe the development of the transnational school‐based citizen science project Phenology of the North Calotte. Its primary goal is to introduce pupils (age 12–15; grades 7–10) in northern Norway, Russia, and Finland to the local and global challenges of climate change resulting in life cycle changes at different trophic and ecosystem levels in their backyards. Partnerships between regional scientists and staff from NIBIO Svanhovd, State nature reserves, national parks, and teachers and pupils from regional schools aim to engage pupils in project‐based learning. The project uses standardized protocols, translated into the different languages of participating schools. The phenological observations are centered around documenting clearly defined life cycle phases (e.g., first appearance of species, flowering, ripening, leaf yellowing, snow fall, and melt). The observations are collected either on paper and are subsequently submitted manually to an open‐source online database or submitted directly via a newly developed mobile app. In the long term, the database is anticipated to contribute to research studying changes in phenology at different trophic levels. In principle, guided school‐based citizen science projects have the potential to contribute to increased environmental awareness and education and thereby to transformative learning at the societal level while contributing to scientific progress of understudied biomes, like the northern taiga and (sub)arctic tundra. However, differences in school systems and funding insecurity for some schools have been major prohibiting factors for long‐term retention of pupils/schools in the program. Project‐based and multidisciplinary learning, although pedagogically desired, has been partially difficult to implement in participating schools, pointing to the need of structural changes in national school curricula and funding schemes as well as continuous offers for training and networking for teachers.  相似文献   

14.
Practical teaching can give authentic learning experiences and teach valuable skills for undergraduate students in the STEM disciplines. One of the main ways of giving students such experiences, laboratory teaching, is met with many challenges such as budget cuts, increased use of virtual learning, and currently the university lockdowns due to the COVID‐19 pandemic. We highlight how at‐home do‐it‐yourself (DIY) experiments can be a good way to include physical interaction with your study organism, system, or technique to give the students a practical, authentic learning experience. We hope that by outlining the benefits of a practical, at‐home, DIY experiment we can inspire more people to design these teaching activities in the current remote teaching situation and beyond. By contributing two examples in the field of plant biology we enrich the database on experiments to draw inspiration from for these teaching methods.  相似文献   

15.
Enrollment in courses taught remotely in higher education has been on the rise, with a recent surge in response to a global pandemic. While adapting this form of teaching, instructors familiar with traditional face‐to‐face methods are now met with a new set of challenges, including students not turning on their cameras during synchronous class meetings held via videoconferencing. After transitioning to emergency remote instruction in response to the COVID‐19 pandemic, our introductory biology course shifted all in‐person laboratory sections into synchronous class meetings held via the Zoom videoconferencing program. Out of consideration for students, we established a policy that video camera use during class was optional, but encouraged. However, by the end of the semester, several of our instructors and students reported lower than desired camera use that diminished the educational experience. We surveyed students to better understand why they did not turn on their cameras. We confirmed several predicted reasons including the most frequently reported: being concerned about personal appearance. Other reasons included being concerned about other people and the physical location being seen in the background and having a weak internet connection, all of which our exploratory analyses suggest may disproportionately influence underrepresented minorities. Additionally, some students revealed to us that social norms also play a role in camera use. This information was used to develop strategies to encourage—without requiring—camera use while promoting equity and inclusion. Broadly, these strategies are to not require camera use, explicitly encourage usage while establishing norms, address potential distractions, engage students with active learning, and understand your students’ challenges through surveys. While the demographics and needs of students vary by course and institution, our recommendations will likely be directly helpful to many instructors and also serve as a model for gathering data to develop strategies more tailored for other student populations.  相似文献   

16.
Drug development is a costly and lengthy process with low success rates. To improve the efficiency of drug development, there has been an increasing need in developing alternative methods able to eliminate toxic compounds early in the drug development pipeline. Drug metabolism plays a key role in determining the efficacy of a drug and its potential side effects. Since drug metabolism occurs mainly in the liver, liver cell‐based alternative engineering platforms have been growing in the last decade. Microphysiological liver cell‐based systems called liver‐on‐a‐chip platforms can better recapitulate the environment for human liver cells in laboratory settings and have the potential to reduce the number of animal models used in drug development by predicting the response of the liver to a drug in vitro. In this review, we discuss the liver microphysiological platforms from the perspective of drug metabolism studies. We highlight the stand‐alone liver‐on‐a‐chip platforms and multi‐organ systems integrating liver‐on‐a‐chip devices used for drug metabolism mimicry in vitro and review the state‐of‐the‐art platforms reported in the last few years. With the development of more robust and reproducible liver cell‐based microphysiological platforms, the drug development field has the potential of reducing the costs and lengths associated with currently existing drug testing methods.  相似文献   

17.
Online educational videos have the potential to enhance undergraduate biology learning, for example by showcasing contemporary scientific research and providing content coverage. Here, we describe the integration of nine videos into a large‐enrollment (n = 356) introductory evolution and ecology course via weekly homework assignments. We predicted that videos that feature research stories from contemporary scientists could reinforce topics introduced in lecture and provide students with novel insights into the nature of scientific research. Using qualitative analysis of open‐ended written feedback from the students on each video assigned throughout the term (n = 133–229 responses per video) and on end‐of‐quarter evaluations (n = 243), we identified common categories of student perspectives. All videos received more positive than negative comments and all videos received comments indicating that students found them intellectually and emotionally stimulating, accessible, and relevant to course content. Additionally, all videos also received comments indicating some students found them intellectually unstimulating, though these comments were generally far less numerous than positive comments. Students responded positively to videos that incorporated at least one of the following: documentary‐style filming, very clear links to course content (especially hands‐on activities completed by the students), relevance to recent world events, clarity on difficult topics, and/or charismatic narrators or species. We discuss opportunities and challenges for the use of online educational videos in teaching ecology and evolution, and we provide guidelines instructors can use to integrate them into their courses.  相似文献   

18.
The COVID‐19 crisis has forced researchers in Ecology to change the way we work almost overnight. Nonetheless, the pandemic has provided us with several novel components for a new way of conducting science. In this perspective piece, we summarize eight central insights that are helping us, as early career researchers, navigate the uncertainties, fears, and challenges of advancing science during the COVID‐19 pandemic. We highlight how innovative, collaborative, and often Open Science‐driven developments that have arisen from this crisis can form a blueprint for a community reinvention in academia. Our insights include personal approaches to managing our new reality, maintaining capacity to focus and resilience in our projects, and a variety of tools that facilitate remote collaboration. We also highlight how, at a community level, we can take advantage of online communication platforms for gaining accessibility to conferences and meetings, and for maintaining research networks and community engagement while promoting a more diverse and inclusive community. Overall, we are confident that these practices can support a more inclusive and kinder scientific culture for the longer term.  相似文献   

19.
COVID‐19 created a host of challenges for science education; in our case, the pandemic halted our in‐person elementary school outreach project on bird biology. This project was designed as a year‐long program to teach fifth‐grade students in Ithaca, New York, USA, about bird ecology and biodiversity using in‐person presentations, games, activities, and outdoor demonstrations. As a central part of this effort, we set up nest boxes on school property and planned to monitor them with students during bird breeding in the spring. Here, we describe our experiences transitioning this program online: we live streamed nest boxes to the students’ virtual classroom and used them as a focal point for virtual lessons on bird breeding and nestling development. In an era of social distancing and isolation, we propose that nest box live streaming and virtual lessons can support communities by providing access to the outdoors and unconventional science learning opportunities for all students. Instituting similar programs at local schools has the potential to increase equitable learning opportunities for students across geographic locations and with varying degrees of physical access to the outdoors and nature.  相似文献   

20.
Overwintering is a challenging period in the life of temperate insects. A limited energy budget characteristic of this period can result in reduced investment in immune system. Here, we investigated selected physiological and immunological parameters in laboratory‐reared and field‐collected harlequin ladybirds (Harmonia axyridis). For laboratory‐reared beetles, we focused on the effects of winter temperature regime (cold, average, or warm winter) on total haemocyte concentration aiming to investigate potential effects of ongoing climate change on immune system in overwintering insects. We recorded strong reduction in haemocyte concentration during winter; however, there were only limited effects of winter temperature regime on changes in haemocyte concentration in the course of overwintering. For field‐collected beetles, we measured additional parameters, specifically: total protein concentration, antimicrobial activity against Escherichia coli, and haemocyte concentration before and after overwintering. The field experiment did not investigate effects of winter temperature, but focused on changes in inducibility of insect immune system during overwintering, that is, measured parameters were compared between naïve beetles and those challenged by Escherichia coli. Haemocyte concentration decreased during overwintering, but only in individuals challenged by Escherichia coli. Prior to overwintering, the challenged beetles had a significantly higher haemocyte concentration compared to naïve beetles, whereas no difference was observed after overwintering. A similar pattern was observed also for antimicrobial activity against Escherichia coli as challenged beetles outperformed naïve beetles before overwintering, but not after winter. In both sexes, total protein concentration increased in the course of overwintering, but females had a significantly higher total protein concentration in their hemolymph compared to males. In general, our results revealed that insect’s ability to respond to an immune challenge is significantly reduced in the course of overwintering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号