首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
As education methodology has grown to incorporate online learning, disciplines with a field component, like ecology, may find themselves sidelined in this transition. In response to challenges posed by moving classes online, previous studies have assessed whether an online environment can be effective for student learning. This work has found that active learning structures, which maximize information processing and require critical thinking, best support student learning. All too commonly, online and active learning are perceived as mutually exclusive. We argue the success of online learning requires facilitating active learning in online spaces. To highlight this intersection in practice, we use a case study of an online, active, and synchronous ecology and conservation biology course from the College of Natural Sciences at Minerva Schools at KGI. We use our perspectives as curriculum designers, instructors, and students of this course to offer recommendations for creating active online ecology courses. Key components to effective course design and implementation are as follows: facilitating critical “thinking like a scientist”, integrating open‐ended assignments into class discussion, and creating active in‐class dialogues by minimizing lecturing. Based on our experience, we suggest that by employing active learning strategies, the future of ecology in higher education is not inhibited, but in fact supported, by opportunities for learning online.  相似文献   

2.
Experience and training in field work are critical components of undergraduate education in ecology, and many university courses incorporate field‐based or experiential components into the curriculum in order to provide students hands‐on experience. Due to the onset of the COVID‐19 pandemic and the sudden shift to remote instruction in the spring of 2020, many instructors of such courses found themselves struggling to identify strategies for developing rigorous field activities that could be completed online, solo, and from a student''s backyard. This case study illustrates the process by which one field‐based course, a UC California Naturalist certification course offered at the University of California, Davis, transitioned to fully remote instruction. The transition relied on established, publicly available, online participatory science platforms (e.g., iNaturalist) to which the students contributed data and field observations remotely. Student feedback on the course and voluntary‐continued engagement with the participatory science platforms indicates that the student perspective of the experience was on par with previous traditional offerings of the course. This case study also includes topics and participatory science resources for consideration by faculty facing a similar transition from group field activities to remote, individual field‐based experiences.  相似文献   

3.
Biodiversity is a complex, yet essential, concept for undergraduate students in ecology and other natural sciences to grasp. As beginner scientists, students must learn to recognize, describe, and interpret patterns of biodiversity across various spatial scales and understand their relationships with ecological processes and human influences. It is also increasingly important for undergraduate programs in ecology and related disciplines to provide students with experiences working with large ecological datasets to develop students’ data science skills and their ability to consider how ecological processes that operate at broader spatial scales (macroscale) affect local ecosystems. To support the goals of improving student understanding of macroscale ecology and biodiversity at multiple spatial scales, we formed an interdisciplinary team that included grant personnel, scientists, and faculty from ecology and spatial sciences to design a flexible learning activity to teach macroscale biodiversity concepts using large datasets from the National Ecological Observatory Network (NEON). We piloted this learning activity in six courses enrolling a total of 109 students, ranging from midlevel ecology and GIS/remote sensing courses, to upper‐level conservation biology. Using our classroom experiences and a pre/postassessment framework, we evaluated whether our learning activity resulted in increased student understanding of macroscale ecology and biodiversity concepts and increased familiarity with analysis techniques, software programs, and large spatio‐ecological datasets. Overall, results suggest that our learning activity improved student understanding of biological diversity, biodiversity metrics, and patterns of biodiversity across several spatial scales. Participating faculty reflected on what went well and what would benefit from changes, and we offer suggestions for implementation of the learning activity based on this feedback. This learning activity introduced students to macroscale ecology and built student skills in working with big data (i.e., large datasets) and performing basic quantitative analyses, skills that are essential for the next generation of ecologists.  相似文献   

4.
Inquiry‐based learning allows students to actively engage in and appreciate the process of science. As college courses transition to online instruction in response to COVID‐19, incorporating inquiry‐based learning is all the more essential for student engagement. However, with the cancelation of in‐person laboratory courses, implementing inquiry can prove challenging for instructors. Here, I describe a case that exemplifies a strategy for inquiry‐based learning and can be adapted for use in various course modalities, from traditional face‐to‐face laboratory courses to asynchronous and synchronous online courses. I detail an assignment where students explore the developmental basis of morphological evolution. Flowers offer an excellent example to address this concept and are easy for students to access and describe. Students research local flowering plants, collect and dissect flower specimens to determine their whorl patterns, and generate hypotheses to explain the developmental genetic basis of the patterns identified. This task allows students to apply their scientific thinking skills, conduct guided exploration in nature, and connect their understanding of the developmental basis of evolutionary change to everyday life. Incorporating inquiry using readily available, tangible, tractable real‐world examples represents a pragmatic and effective model that can be applied in a variety of disciplines during and beyond COVID‐19.  相似文献   

5.
During the Spring Semester of 2020, an outbreak of a novel coronavirus (SARS‐CoV‐2) and the illnesses it caused (COVID‐19) led to widespread cancelling of on‐campus instruction at colleges and universities in the United States and other countries around the world. Response to the pandemic in university settings included a rapid and unexpected shift to online learning for faculty and students. The transition to teaching and learning online posed many challenges, and the experiences of students during this crisis may inform future planning for distance learning experiences during the ongoing pandemic and beyond. Herein, we discuss the experiences of first‐ and second‐year university students enrolled in a biology seminar course as their classes migrated to online environments. Drawing on reported student experiences and prior research and resources, we discuss the ways we will adjust our own teaching for future iterations of the course while offering recommendations for instructors tasked with teaching in online environments.  相似文献   

6.
Instructors can deliberately design for equity, diversity, and inclusion, including for large first‐year classes, and now instructors have added challenges given COVID‐19. Our paper explores the question: How do we integrate equity, diversity, and inclusion and universal design for learning (UDL) into first‐year, undergraduate ecology and evolution introductory lessons given the COVID‐19 pandemic? Given the large field exploring equity, diversity, and inclusion, we chose to focus on developing reflective practice question rubrics for before, during, and after lessons to encourage UDL for instructors, teaching assistants, and learners. We conducted a focus group within our team and discussed ideas related to online learning, including related pitfalls and solutions. Lastly, we created a figure to illustrate ideas and end with a general discussion. Our reflective practice questions for UDL rubrics, figure, focus group, and discussion aim to increase positive action for equity, diversity, and inclusion in the classroom and beyond.  相似文献   

7.
Team‐Based Learning (TBL) is a pedagogical tool that has great potential to develop student engagement, accountability, and equity in the online classroom. TBL is rooted in evidence‐based educational theories and practices that underlie many active learning approaches such as self‐testing, team discussion, and application of knowledge. The use of these approaches is associated with better student performance, retention, and sense of belonging in the classroom, aspects that are often reported to be especially lacking in online courses. Here, we describe how we implemented TBL in a face‐to‐face and an online introductory level evolution and biodiversity course. We implemented TBL in the face‐to‐face course (~200 students) starting in 2018 and in the online course (~30 students) starting in the summer of 2019. We used several online applications to facilitate the transition to an online platform such as Simbio, Slack, VoiceThread, Articulate 360, and Teammates. Our experiences using TBL approaches in the online course have been rewarding, and students are engaged and accountable for their learning and performed well in the course. Our goal is to provide an example of how we designed a life science course using TBL approaches and transitioned the course to an online environment. With the current switch to remote instruction and online learning, we recommend the use of TBL as a course design approach that can improve the students’ online learning experience.  相似文献   

8.
The coronavirus disease of 2019 (COVID‐19) pandemic has impacted educational systems worldwide during 2020, including primary and secondary schooling. To enable students of a local secondary school in Brisbane, Queensland, to continue with their practical agricultural science learning and facilitate online learning, a “Grass Gazers” citizen science scoping project was designed and rapidly implemented as a collaboration between the school and a multidisciplinary university research group focused on pollen allergy. Here, we reflect on the process of developing and implementing this project from the perspective of the school and the university. A learning package including modules on pollen identification, tracking grass species, measuring field greenness, using a citizen science data entry platform, forensic palynology, as well as video guides, risk assessment and feedback forms were generated. Junior agriculture science students participated in the learning via online lessons and independent data collection in their own local neighborhood and/or school grounds situated within urban environments. The university research group and school coordinator, operating in their own distributed work environments, had to develop, source, adopt, and/or adapt material rapidly to meet the unique requirements of the project. The experience allowed two‐way knowledge exchange between the secondary and tertiary education sectors. Participating students were introduced to real‐world research and were able to engage in outdoor learning during a time when online, indoor, desk‐based learning dominated their studies. The unique context of restrictions imposed by the social isolation policies, as well as government Public Health and Department of Education directives, allowed the team to respond by adapting teaching and research activity to develop and trial learning modules and citizen science tools. The project provided a focus to motivate and connect teachers, academic staff, and school students during a difficult circumstance. Extension of this citizen project for the purposes of research and secondary school learning has the potential to offer ongoing benefits for grassland ecology data acquisition and student exposure to real‐world science.  相似文献   

9.
Online educational videos have the potential to enhance undergraduate biology learning, for example by showcasing contemporary scientific research and providing content coverage. Here, we describe the integration of nine videos into a large‐enrollment (n = 356) introductory evolution and ecology course via weekly homework assignments. We predicted that videos that feature research stories from contemporary scientists could reinforce topics introduced in lecture and provide students with novel insights into the nature of scientific research. Using qualitative analysis of open‐ended written feedback from the students on each video assigned throughout the term (n = 133–229 responses per video) and on end‐of‐quarter evaluations (n = 243), we identified common categories of student perspectives. All videos received more positive than negative comments and all videos received comments indicating that students found them intellectually and emotionally stimulating, accessible, and relevant to course content. Additionally, all videos also received comments indicating some students found them intellectually unstimulating, though these comments were generally far less numerous than positive comments. Students responded positively to videos that incorporated at least one of the following: documentary‐style filming, very clear links to course content (especially hands‐on activities completed by the students), relevance to recent world events, clarity on difficult topics, and/or charismatic narrators or species. We discuss opportunities and challenges for the use of online educational videos in teaching ecology and evolution, and we provide guidelines instructors can use to integrate them into their courses.  相似文献   

10.
Enrollment in courses taught remotely in higher education has been on the rise, with a recent surge in response to a global pandemic. While adapting this form of teaching, instructors familiar with traditional face‐to‐face methods are now met with a new set of challenges, including students not turning on their cameras during synchronous class meetings held via videoconferencing. After transitioning to emergency remote instruction in response to the COVID‐19 pandemic, our introductory biology course shifted all in‐person laboratory sections into synchronous class meetings held via the Zoom videoconferencing program. Out of consideration for students, we established a policy that video camera use during class was optional, but encouraged. However, by the end of the semester, several of our instructors and students reported lower than desired camera use that diminished the educational experience. We surveyed students to better understand why they did not turn on their cameras. We confirmed several predicted reasons including the most frequently reported: being concerned about personal appearance. Other reasons included being concerned about other people and the physical location being seen in the background and having a weak internet connection, all of which our exploratory analyses suggest may disproportionately influence underrepresented minorities. Additionally, some students revealed to us that social norms also play a role in camera use. This information was used to develop strategies to encourage—without requiring—camera use while promoting equity and inclusion. Broadly, these strategies are to not require camera use, explicitly encourage usage while establishing norms, address potential distractions, engage students with active learning, and understand your students’ challenges through surveys. While the demographics and needs of students vary by course and institution, our recommendations will likely be directly helpful to many instructors and also serve as a model for gathering data to develop strategies more tailored for other student populations.  相似文献   

11.
As Open Science practices become more commonplace, there is a need for the next generation of scientists to be well versed in these aspects of scientific research. Yet, many training opportunities for early career researchers (ECRs) could better emphasize or integrate Open Science elements. Field courses provide opportunities for ECRs to apply theoretical knowledge, practice new methodological approaches, and gain an appreciation for the challenges of real‐life research, and could provide an excellent platform for integrating training in Open Science practices. Our recent experience, as primarily ECRs engaged in a field course interrupted by COVID‐19, led us to reflect on the potential to enhance learning outcomes in field courses by integrating Open Science practices and online learning components. Specifically, we highlight the opportunity for field courses to align teaching activities with the recent developments and trends in how we conduct research, including training in: publishing registered reports, collecting data using standardized methods, adopting high‐quality data documentation, managing data through reproducible workflows, and sharing and publishing data through appropriate channels. We also discuss how field courses can use online tools to optimize time in the field, develop open access resources, and cultivate collaborations. By integrating these elements, we suggest that the next generation of field courses will offer excellent arenas for participants to adopt Open Science practices.  相似文献   

12.
The challenges facing higher education in response to COVID‐19 are significant and possibly none more so than in ecology and aligned disciplines. Not only did most ecology lecturers have to rush lectures and tutorials online, but also laboratory and field classes. We reflect on our experience of this move and also consider those of 30 other ecology‐aligned teaching academics to summarize the challenges faced in the move online early in 2020 and the developing plans for adapting ecology teaching and learning going into the 2020/21 academic year. The move online had the most significant impact on field classes, with more of these canceled than lectures or laboratory classes. Most respondents to an online poll also highlighted that many respondents (~45%) felt that ecology was more impacted by COVID‐19 that even other STEM disciplines. The availability of technological solutions is key to moving forward and will hopefully enhance the teaching and learning experience for many beyond the current crisis.  相似文献   

13.
Traditional forms of higher learning include teaching in the classroom on college campuses and in‐person adult‐focused public outreach events for non‐students. Online college degree programs and public outreach platforms have been steadily emerging, and the COVID‐19 pandemic has, at least temporarily, forced all related ecology and evolutionary biology programs to move to online delivery. Podcasting is a form of online mass communication that is rapidly gaining popularity and has the flexibility to be incorporated into the pedagogical toolbox for the online classroom and remote public outreach programming. Podcasting is also becoming more popular in the ecology and evolutionary biology field. Here, we describe the great potential of podcasting to transform the learning experience, present a case study of success from the United States, provide a table of podcast recommended by ecologist responding to a listserv, and provide a road map for adoption and utilization of podcasting for the future.  相似文献   

14.
COVID‐19 created a host of challenges for science education; in our case, the pandemic halted our in‐person elementary school outreach project on bird biology. This project was designed as a year‐long program to teach fifth‐grade students in Ithaca, New York, USA, about bird ecology and biodiversity using in‐person presentations, games, activities, and outdoor demonstrations. As a central part of this effort, we set up nest boxes on school property and planned to monitor them with students during bird breeding in the spring. Here, we describe our experiences transitioning this program online: we live streamed nest boxes to the students’ virtual classroom and used them as a focal point for virtual lessons on bird breeding and nestling development. In an era of social distancing and isolation, we propose that nest box live streaming and virtual lessons can support communities by providing access to the outdoors and unconventional science learning opportunities for all students. Instituting similar programs at local schools has the potential to increase equitable learning opportunities for students across geographic locations and with varying degrees of physical access to the outdoors and nature.  相似文献   

15.
The COVID‐19 global pandemic caused instructors to pivot to remote and online teaching, an especially challenging task in hands‐on classes such as invertebrate biology. In this special 25th anniversary issue of Invertebrate Biology, the authors present a variety of clever and effective ways to help invertebrate biology instructors adapt to teaching in an online environment. Student‐centered research and learning are essential in all biology classes, and we explore scientific writing, field trips, do‐it‐yourself laboratories, and more. These techniques will be useful for classes of varying sizes and types, from non‐major undergraduates to graduate students, even after the pandemic is over. Innovation for teaching invertebrate biology online may help facilitate more inclusive courses that serve diverse students more equitably. Ideas for how to best move traditionally hands‐on laboratories into online or remote formats are currently also being informally discussed in a collaborative online space for instructors.  相似文献   

16.
The COVID‐19 pandemic has disrupted many standard approaches to STEM education. Particularly impacted were field courses, which rely on specific natural spaces often accessed through shared vehicles. As in‐person field courses have been found to be particularly impactful for undergraduate student success in the sciences, we aimed to compare and understand what factors may have been lost or gained during the conversion of an introductory field course to an online format. Using a mixed methods approach comparing data from online and in‐person field‐course offerings, we found that while community building was lost in the online format, online participants reported increased self‐efficacy in research and observation skills and connection to their local space. The online field course additionally provided positive mental health breaks for students who described the time outside as a much‐needed respite. We maintain that through intentional design, online field courses can provide participants with similar outcomes to in‐person field courses.  相似文献   

17.
18.
Learning biology, and in particular systematics, requires learning a substantial amount of specific vocabulary, both for botanical and zoological studies. While crucial, the precise identification of structures serving as evolutionary traits and systematic criteria is not per se a highly motivating task for students. Teaching this in a traditional teaching setting is quite challenging especially with a large crowd of students to be kept engaged. This is even more difficult if, as during the COVID‐19 crisis, students are not allowed to access laboratories for hands‐on observation on fresh specimens and sometimes restricted to short‐range movements outside their home. Here, we present QuoVidi, a new open‐source web platform for the organization of large‐scale treasure hunts. The platform works as follows: students, organized in teams, receive a list of quests that contain morphologic, ecologic, or systematic terms. They have to first understand the meaning of the quests, then go and find them in the environment. Once they find the organism corresponding to a quest, they upload a geotagged picture of their finding and submit this on the platform. The correctness of each submission is evaluated by the staff. During the COVID‐19 lockdown, previously validated pictures were also submitted for evaluation to students that were locked in low‐biodiversity areas. From a research perspective, the system enables the creation of large image databases by the students, similar to citizen science projects. Beside the enhanced motivation of students to learn the vocabulary and perform observations on self‐found specimens, this system allows instructors to remotely follow and assess the work performed by large numbers of students. The interface is freely available, open‐source and customizable. Unlike existing naturalist platforms, allows the educators to fully customize the quests of interest. This enables the creation of multiple teaching scenarios, without being bound to a fixed scope. QuoVidi can be used in other disciplines with adapted quests and we expect it to be of interest in many classroom settings.  相似文献   

19.
Many publications make use of opportunistic data, such as citizen science observation data, to infer large‐scale properties of species’ distributions. However, the few publications that use opportunistic citizen science data to study animal ecology at a habitat level do so without accounting for spatial biases in opportunistic records or using methods that are difficult to generalize. In this study, we explore the biases that exist in opportunistic observations and suggest an approach to correct for them. We first examined the extent of the biases in opportunistic citizen science observations of three wild ungulate species in Norway by comparing them to data from GPS telemetry. We then quantified the extent of the biases by specifying a model of the biases. From the bias model, we sampled available locations within the species’ home range. Along with opportunistic observations, we used the corrected availability locations to estimate a resource selection function (RSF). We tested this method with simulations and empirical datasets for the three species. We compared the results of our correction method to RSFs obtained using opportunistic observations without correction and to RSFs using GPS‐telemetry data. Finally, we compared habitat suitability maps obtained using each of these models. Opportunistic observations are more affected by human access and visibility than locations derived from GPS telemetry. This has consequences for drawing inferences about species’ ecology. Models naïvely using opportunistic observations in habitat‐use studies can result in spurious inferences. However, sampling availability locations based on the spatial biases in opportunistic data improves the estimation of the species’ RSFs and predicted habitat suitability maps in some cases. This study highlights the challenges and opportunities of using opportunistic observations in habitat‐use studies. While our method is not foolproof it is a first step toward unlocking the potential of opportunistic citizen science data for habitat‐use studies.  相似文献   

20.
Bioinspiration is a promising lens for biology instruction as it allows the instructor to focus on current issues, such as the COVID‐19 pandemic. From social distancing to oxygen stress, organisms have been tackling pandemic‐related problems for millions of years. What can we learn from such diverse adaptations in our own applications? This review uses a seminar course on the COVID‐19 crisis to illustrate bioinspiration as an approach to teaching biology content. At the start of the class, students mind‐mapped the entire problem; this range of subproblems was used to structure the biology content throughout the entire class. Students came to individual classes with a brainstormed list of biological systems that could serve as inspiration for a particular problem (e.g., absorptive leaves in response to the problem of toilet paper shortages). After exploration of relevant biology content, discussion returned to the focal problem. Students dug deeper into the literature in a group project on mask design and biological systems relevant to filtration and transparency. This class structure was an engaging way for students to learn principles from ecology, evolution, behavior, and physiology. Challenges with this course design revolved around the interdisciplinary and creative nature of the structure; for instance, the knowledge of the participants was often stretched by engineering details. While the present class was focused on the COVID‐19 crisis, a course structured through a bioinspired approach can be applied to other focal problems, or subject areas, giving instructors a powerful method to deliver interdisciplinary content in an integrated and inquiry‐driven way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号