首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Smad4 is required to regulate the fate of cranial neural crest cells   总被引:1,自引:0,他引:1  
Ko SO  Chung IH  Xu X  Oka S  Zhao H  Cho ES  Deng C  Chai Y 《Developmental biology》2007,312(1):435-447
Smad4 is the central mediator for TGF-β/BMP signals, which are involved in regulating cranial neural crest (CNC) cell formation, migration, proliferation and fate determination. It is unclear whether TGF-β/BMP signals utilize Smad-dependent or -independent pathways to control the development of CNC cells. To investigate the functional significance of Smad4 in regulating CNC cells, we generated mice with neural crest specific inactivation of the Smad4 gene. Our study shows that Smad4 is not required for the migration of CNC cells, but is required in neural crest cells for the development of the cardiac outflow tract. Smad4 is essential in mediating BMP signaling in the CNC-derived ectomesenchyme during early stages of tooth development because conditional inactivation of Smad4 in neural crest derived cells results in incisor and molar development arrested at the dental lamina stage. Furthermore, Smad-mediated TGF-β/BMP signaling controls the homeobox gene patterning of oral/aboral and proximal/distal domains within the first branchial arch. At the cellular level, a Smad4-mediated downstream target gene(s) is required for the survival of CNC cells in the proximal domain of the first branchial arch. Smad4 mutant mice show underdevelopment of the first branchial arch and midline fusion defects. Taken together, our data show that TGF-β/BMP signals rely on Smad-dependent pathways in the ectomesenchyme to mediate epithelial-mesenchymal interactions that control craniofacial organogenesis.  相似文献   

2.
3.
The tongue is a muscular organ and plays a crucial role in speech, deglutition and taste. Despite the important physiological functions of the tongue, little is known about the regulatory mechanisms of tongue muscle development. TGFβ family members play important roles in regulating myogenesis, but the functional significance of Smad-dependent TGFβ signaling in regulating tongue skeletal muscle development remains unclear. In this study, we have investigated Smad4-mediated TGFβ signaling in the development of occipital somite-derived myogenic progenitors during tongue morphogenesis through tissue-specific inactivation of Smad4 (using Myf5-Cre;Smad4(flox/flox) mice). During the initiation of tongue development, cranial neural crest (CNC) cells occupy the tongue buds before myogenic progenitors migrate into the tongue primordium, suggesting that CNC cells play an instructive role in guiding tongue muscle development. Moreover, ablation of Smad4 results in defects in myogenic terminal differentiation and myoblast fusion. Despite compromised muscle differentiation, tendon formation appears unaffected in the tongue of Myf5-Cre;Smad4(flox/flox) mice, suggesting that the differentiation and maintenance of CNC-derived tendon cells are independent of Smad4-mediated signaling in myogenic cells in the tongue. Furthermore, loss of Smad4 results in a significant reduction in expression of several members of the FGF family, including Fgf6 and Fgfr4. Exogenous Fgf6 partially rescues the tongue myoblast fusion defect of Myf5-Cre;Smad4(flox/flox) mice. Taken together, our study demonstrates that a TGFβ-Smad4-Fgf6 signaling cascade plays a crucial role in myogenic cell fate determination and lineage progression during tongue myogenesis.  相似文献   

4.
Bone morphogenetic protein (BMP) signaling plays an essential role in early tooth development, evidenced by disruption of BMP signaling leading to an early arrested tooth development. Despite being a central mediator of BMP canonical signaling pathway, inactivation of Smad4 in dental mesenchyme does not result in early developmental defects. In the current study, we investigated the mechanism of receptor-activated Smads (R-Smads) and Smad4 in the regulation of the odontogenic gene Msx1 expression in the dental mesenchyme. We showed that the canonical BMP signaling is not operating in the early developing tooth, as assessed by failed activation of the BRE-Gal transgenic allele and the absence of phospho-(p)Smad1/5/8-Smad4 complexes. The absence of pSmad1/5/8-Smad4 complex appeared to be the consequence of saturation of Smad4 by pSmad2/3 in the dental mesenchyme as knockdown of Smad2/3 or overexpression of Smad4 led to the formation of pSmad1/5/8-Smad4 complexes and activation of canonical BMP signaling in dental mesenchymal cells. We showed that Smad1/5 but not Smad4 are required for BMP-induced expression of Msx1 in dental mesenchymal cells. We further presented evidence that in the absence of Smad4, BMPs are still able to induce pSmad1/5/8 nuclear translocation and their binding to the Msx1 promoter directly in dental mesenchymal cells. Our results demonstrate the functional operation of an atypical canonical BMP signaling (Smad4-independent and Smad1/5/8-dependent) pathway in the dental mesenchyme during early odontogenesis, which may have general implication in the development of other organs.  相似文献   

5.
Coronary vessel development depends on a subpopulation of epicardial cells that undergo epithelial to mesenchymal transformation (EMT) and invade the subepicardial space and myocardium. These cells form the smooth muscle of the vessels and fibroblasts, but the mechanisms that regulate these processes are poorly understood. Mice lacking the Type III Transforming Growth Factor β Receptor (TGFβR3) die by E14.5 due to failed coronary vessel development accompanied by reduced epicardial cell invasion. BMP2 signals via TGFβR3 emphasizing the importance of determining the relative contributions of the canonical BMP signaling pathway and TGFβR3-dependent signaling to BMP2 responsiveness. Here we examined the role of TGFβR3 in BMP2 signaling in epicardial cells. Whereas TGFβ induced loss of epithelial character and smooth muscle differentiation, BMP2 induced an ALK3-dependent loss of epithelial character and modestly inhibited TGFβ-stimulated differentiation. Tgfbr3(-/-) cells respond to BMP2 indicating that TGFβR3 is not required. However, Tgfbr3(-/-) cells show decreased invasion in response to BMP2 and overexpression of TGFβR3 in Tgfbr3(-/-) cells rescued invasion. Invasion was dependent on ALK5, ALK2, ALK3, and Smad4. Expression of TGFβR3 lacking the 3 C-terminal amino acids required to interact with the scaffolding protein GIPC (GAIP-interacting protein, C terminus) did not rescue. Knockdown of GIPC in Tgfbr3(+/+) or Tgfbr3(-/-) cells rescued with TGFβR3 decreased BMP2-stimulated invasion confirming a requirement for TGFβR3/GIPC interaction. Our results reveal the relative roles of TGFβR3-dependent and TGFβR3-independent signaling in the actions of BMP2 on epicardial cell behavior and demonstrate the critical role of TGFβR3 in mediating BMP2-stimulated invasion.  相似文献   

6.
Pattern formation and growth must be tightly coupled during embryonic development. In vertebrates, however, little is known of the molecules that serve to link these two processes. Here we show that bone morphogenetic proteins (BMP) coordinate the acquisition of pattern information and the stimulation of proliferation in the embryonic spinal neural tube. We have blocked BMP and transforming growth factor-β superfamily (TGFβ) function in the chick embryo using Noggin, a BMP antagonist, and siRNA against Smad4. We show that BMPs/TGFβs are necessary to regulate pattern formation and the specification of neural progenitor populations in the dorsal neural tube. BMPs also serve to establish discrete expression domains of Wnt ligands, receptors, and antagonists along the dorsal-ventral axis of the neural tube. Using the extracellular domain of Frizzled 8 to block Wnt signaling and Wnt3a ligand misexpression to activate WNT signaling, we demonstrate that the Wnt pathway acts mitogenically to expand the populations of neuronal progenitor cells specified by BMP. Thus, BMPs, acting through WNTs, couple patterning and growth to generate dorsal neuronal fates in the appropriate proportions within the neural tube.  相似文献   

7.
The generation of insulin-producing β-cells from human pluripotent stem cells is dependent on efficient endoderm induction and appropriate patterning and specification of this germ layer to a pancreatic fate. In this study, we elucidated the temporal requirements for TGFβ family members and canonical WNT signaling at these developmental stages and show that the duration of nodal/activin A signaling plays a pivotal role in establishing an appropriate definitive endoderm population for specification to the pancreatic lineage. WNT signaling was found to induce a posterior endoderm fate and at optimal concentrations enhanced the development of pancreatic lineage cells. Inhibition of the BMP signaling pathway at specific stages was essential for the generation of insulin-expressing cells and the extent of BMP inhibition required varied widely among the cell lines tested. Optimal stage-specific manipulation of these pathways resulted in a striking 250-fold increase in the levels of insulin expression and yielded populations containing up to 25% C-peptide+ cells.  相似文献   

8.
SMAD4 is a common intracellular effector for TGF‐β family cytokines, but the mechanism by which its activity is dynamically regulated is unclear. We demonstrated that ubiquitin‐specific protease (USP) 4 strongly induces activin/BMP signaling by removing the inhibitory monoubiquitination from SMAD4. This modification was triggered by the recruitment of the E3 ligase, SMURF2, to SMAD4 following ligand‐induced regulatory (R)‐SMAD–SMAD4 complex formation. Whereas the interaction of the negative regulator c‐SKI inhibits SMAD4 monoubiquitination, the ligand stimulates the recruitment of SMURF2 to the c‐SKI‐SMAD2 complex and triggers c‐SKI ubiquitination and degradation. Thus, SMURF2 has a role in termination and initiation of TGF‐β family signaling. An increase in monoubiquitinated SMAD4 in USP4‐depleted mouse embryonic stem cells (mESCs) decreased both the BMP‐ and activin‐induced changes in the embryonic stem cell fate. USP4 sustained SMAD4 activity during activin‐ and BMP‐mediated morphogenic events in early zebrafish embryos. Moreover, zebrafish depleted of USP4 exhibited defective cell migration and slower coordinated cell movement known as epiboly, both of which could be rescued by SMAD4. Therefore, USP4 is a critical determinant of SMAD4 activity.  相似文献   

9.
The transforming growth factor(TGF)-βsignaling pathway controls many cellular processes,including proliferation,differentiation,and apoptosis.Abnormalities in the TGF-βsignaling pathway and its components are closely related to the occurrence of many human diseases,including cancer.Mothers against decapentaplegic homolog 4(Smad4),also known as deleted in pancreatic cancer locus 4,is a typical tumor suppressor candidate gene locating at q21.1 of human chromosome 18 and the common mediator of the TGF-β/Smad and bone morphogenetic protein/Smad signaling pathways.It is believed that Smad4 inactivation correlates with the development of tumors and stem cell fate decisions.Smad4 also interacts with cytokines,miRNAs,and other signaling pathways,jointly regulating cell behavior.However,the regulatory function of Smad4 in tumorigenesis,stem cells,and drug resistance is currently controversial.In addition,Smad4 represents an attractive therapeutic target for cancer.Elucidating the specific role of Smad4 is important for understanding the mechanism of tumorigenesis and cancer treatment.Here,we review the identification and characterization of Smad4,the canonical TGF-β/Smad pathway,as well as the multiple roles of Smad4 in tumorigenesis,stem cells,and drug resistance.Furthermore,we provide novel insights into the prospects of Smad4-targeted cancer therapy and the challenges that it will face in the future.  相似文献   

10.
Human embryonic stem cells (hESCs) self-renew indefinitely and give rise to derivatives of all three primary germ layers, yet little is known about the signaling cascades that govern their pluripotent character. Because it plays a prominent role in the early cell fate decisions of embryonic development, we have examined the role of TGFbeta superfamily signaling in hESCs. We found that, in undifferentiated cells, the TGFbeta/activin/nodal branch is activated (through the signal transducer SMAD2/3) while the BMP/GDF branch (SMAD1/5) is only active in isolated mitotic cells. Upon early differentiation, SMAD2/3 signaling is decreased while SMAD1/5 signaling is activated. We next tested the functional role of TGFbeta/activin/nodal signaling in hESCs and found that it is required for the maintenance of markers of the undifferentiated state. We extend these findings to show that SMAD2/3 activation is required downstream of WNT signaling, which we have previously shown to be sufficient to maintain the undifferentiated state of hESCs. Strikingly, we show that in ex vivo mouse blastocyst cultures, SMAD2/3 signaling is also required to maintain the inner cell mass (from which stem cells are derived). These data reveal a crucial role for TGFbeta signaling in the earliest stages of cell fate determination and demonstrate an interconnection between TGFbeta and WNT signaling in these contexts.  相似文献   

11.
Both bone morphogenetic protein 2 (BMP2) and WNT/β-catenin signaling promote human trophoblast cell invasion. BMP2 has been shown to up-regulate bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) in granulosa cells. Besides, studies indicate BAMBI is a positive regulator for WNT/β-catenin signaling. However, whether BMP2 can increase BAMBI expression to induce WNT/β-catenin signaling for trophoblast cell invasion is still unknown. To study the roles of BAMBI in BMP2-induced activation of WNT/β-catenin signaling and human trophoblast invasion, we used immortalized human extravillous trophoblast (EVT) cell line (HTR8/SVneo) and primary human EVT cells as study models. Messenger RNA and protein levels of target genes were checked with RT-qPCR and Western blot assay respectively. The function of target proteins was studied via small interfering RNA (siRNA)-mediated knockdown. In addition, trophoblast cell invasiveness was examined by matrigel-coated transwell assays. Our results demonstrate that BMP2 treatment increased BAMBI mRNA levels and the activation of WNT/β-catenin signaling including the raised phosphorylation of GSK3β, the up-regulation of active (non-phosphorylated) β-catenin as well as its downstream target molecule cyclin D1, all of which were totally blocked by the activin receptor-like kinases (ALK) 2/3 inhibitor DMH1 or siRNA-mediated knockdown of BAMBI in HTR8/SVneo cells. Consistently, in primary human EVT cells, BMP2 also induced the up-regulation of BAMBI and the activation of WNT/β-catenin signaling indicated by the increased levels of active β-catenin and cyclin D1, which were completely blocked by BAMBI knockdown. In conclusion, BMP2 promotes the activation of canonical WNT/β-catenin signaling and human trophoblast cell invasion by up-regulating BAMBI.  相似文献   

12.
13.
Mouse and human embryonic stem cells are in different states of pluripotency (naive/ground and primed states). Mechanisms of signaling regulation in cells with ground and primed states of pluripotency are considerably different. In order to understand the contribution of endogenous and exogenous factors in the maintenance of a metastable state of the cells in different phases of pluripotency, we examined the expression of TGFβ family factors (ActivinA, Nodal, Lefty1, TGFβ1, GDF3, BMP4) and FGF2 initiating the appropriate signaling pathways in mouse and human embryonic stem cells (mESCs, hESCs) and supporting feeder cells. Quantitative real-time PCR analysis of gene expression showed that the expression patterns of endogenous factors studied were considerably different in mESCs and hESCs. The most significant differences were found in the levels of endogenous expression of TGFβ1, BMP4 and ActivinA. The sources of exogenous factors ActivnA, TGFβ1, and FGF2 for hESCs are feeder cells (mouse and human embryonic fibroblasts) expressing high levels of these factors, as well as low levels of BMP4. Thus, our data demonstrated that the in vitro maintenance of metastable state of undifferentiated pluripotent cells is achieved in mESCs and hESCs using different schemes of the regulations of ActivinA/Nodal/Lefty/Smad2/3 and BMP/Smad1/5/8 endogenous branches of TGFβ signaling. The requirement for exogenous stimulation or inhibition of these signaling pathways is due to different patterns of endogenous expression of TGFβ family factors and FGF2 in the mESCs and hESCs. For the hESCs, enhanced activity of ActivinA/Nodal/Lefty/Smad2/3 signaling by exogenous factor stimulation is necessary to mitigate the effects of BMP/Smad1/5/8 signaling pathways that promote cell differentiation into the extraembryonic structures. Significant differences in endogenous FGF2 expression in the cells in the ground and primed states of pluripotency demonstrate diverse involvement of this factor in the regulation of the pluripotent cell self-renewal.  相似文献   

14.
15.
16.
17.
18.
Nie X  Deng CX  Wang Q  Jiao K 《Developmental biology》2008,316(2):417-430
TGFβ/BMP signaling pathways are essential for normal development of neural crest cells (NCCs). Smad4 encodes the only common Smad protein in mammals, which is a critical nuclear mediator of TGFβ/BMP signaling. In this work, we sought to investigate the roles of Smad4 for development of NCCs. To overcome the early embryonic lethality of Smad4 null mice, we specifically disrupted Smad4 in NCCs using a Cre/loxP system. The mutant mice died at mid-gestation with defects in facial primordia, pharyngeal arches, outflow tract and cardiac ventricles. Further examination revealed that mutant embryos displayed severe molecular defects starting from E9.5. Expression of multiple genes, including Msx1, 2, Ap-2α, Pax3, and Sox9, which play critical roles for NCC development, was downregulated by NCC disruption of Smad4. Moreover, increased cell death was observed in pharyngeal arches from E10.5. However, the cell proliferation rate in these areas was not substantially altered. Taken together, these findings provide compelling genetic evidence that Smad4-mediated activities of TGFβ/BMP signals are essential for appropriate NCC development.  相似文献   

19.
Bone morphogenetic protein 2 (BMP2) is a potent growth factor crucial for cell fate determination. It directs the differentiation of mesenchymal stem cells into osteoblasts, chondrocytes, adipocytes, and myocytes. Initiation of BMP2 signaling pathways occurs at the cell surface through type I and type II serine/threonine kinases housed in specific membrane domains such as caveolae enriched in the caveolin-1 beta isoform (CAV1β, caveolae) and clathrin-coated pits (CCPs). In order for BMP2 to initiate Smad signaling it must bind to its receptors on the plasma membrane resulting in the phosphorylation of the BMP type Ia receptor (BMPRIa) followed by activation of Smad signaling. The current model suggests that the canonical BMP signaling pathway, Smad, occurs in CCPs. However, several recent studies suggested Smad signaling may occur outside of CCPs. Here, we determined; (i) The location of BMP2 binding to receptors localized in caveolae, CCPs, or outside of these domains using AFM and confocal microscopy. (ii) The location of phosphorylation of BMPRIa on the plasma membrane using membrane fractionation, and (iii) the effect of down regulation of caveolae on Smad signaling. Our data indicate that BMP2 binds with highest force to BMP receptors (BMPRs) localized in caveolae. BMPRIa is phosphorylated in caveolae and the disruption of caveolae-inhibited Smad signaling in the presence of BMP2. This suggests caveolae are necessary for the initiation of Smad signaling. We propose an extension of the current model of BMP2 signaling, in which the initiation of Smad signaling is mediated by BMPRs in caveolae.  相似文献   

20.
ABSTRACT

The TGFβ superfamily of proteins participates in tooth development. TGFβ1 and TGFβ3 regulate odontoblast differentiation and dentin extracellular matrix synthesis. Although the expression of TGFβ family member ligands is well-characterized during mammalian tooth development, less is known about the TGFβ receptor, which is a heteromeric complex consisting of a type I and type II receptors. The molecular mechanism of ALK5 (TGFβR1) in the dental mesenchyme is not clear. We investigated the role of ALK5 in tooth germ mesenchymal cells (TGMCs) from the lower first molar tooth germs of day 15.5 embryonic mice. Human recombinant TGFβ3 protein or an ALK5 inhibitor (SD208) was added to the cells. Cell proliferation was inhibited by SD208 and promoted by TGFβ3. We found that SD208 inhibited TGMCs osteogenesis and dentinogenesis. Both canonical and noncanonical TGFβ signaling pathways participated in the process. TAK1, P-TAK1, p38 and P-p38 showed greater expression and SMAD4 showed less expression when ALK5 was inhibited. Our findings contribute to understanding the role of TGFβ signaling for the differentiation of mesenchymal stem cells derived from dental germ and suggest possible targets for optimizing the use of stem cells of dental origin for tissue regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号