首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu W  Sanz A  Pardo L  Liu-Chen LY 《Biochemistry》2008,47(40):10576-10586
We previously demonstrated that D3.49(164)Y or T6.34(279)K mutation in the rat mu opioid receptor (MOPR) resulted in agonist-independent activation. Here, we identified the cysteine(s) within the transmembrane domains (TMs) of the D3.49(164)Y mutant that became accessible in the binding-site crevice by use of methanethiosulfonate ethylammonium (MTSEA) and inferred conformational changes associated with receptor activation. While the C7.38(321)S mutant was insensitive to MTSEA, the D3.49(164)Y/C7.38(321)S mutant showed similar sensitivity as the D3.49(164)Y, suggesting that, in the D3.49(164)Y mutant, C7.38(321) becomes inaccessible while other cysteines are accessible in the binding-site crevice. Each of the other seven cysteines in the TMs was mutated to serine on the background of D3.49(164)Y/C7.38(321)S, and the resulting triple mutants were evaluated for [3H]diprenorphine and [d-Ala2,NMe-Phe4,Gly5-ol]-enkephalin (DAMGO) binding and effect of MTSEA on [3H]diprenorphine binding. The D3.49(164)Y/C7.38(321)S mutant and the triple mutants, except the C6.47(292)S triple mutant, retained similar affinities for [3H]diprenorphine and DAMGO as the D3.49(164)Y mutant. The second-order rate constants for MTSEA reactions showed that C3.44(159)S, C4.48(190)S, C5.41(235)S, and C7.47(330)S significantly reduced sensitivity to MTSEA, compared with the D3.49(164)Y/C7.38(321)S. These results suggest that the four cysteines may be rotated and/or tilted to become accessible. While the D3.49(164)Y/C7.38(321)S was similarly sensitive to MTSEA as the D3.49(164)Y mutant, the T6.34(279)K/C7.38(321)S was much less sensitive to MTSEA than the T6.34(279)K mutant, suggesting that the two constitutively active mutants assume different conformations and/or possess different dynamic properties. Molecular models of the MOPR monomer and homodimer, using the crystal structures of rhodopsin, the beta2-adrenergic receptor, and the ligand-free opsin, which contains several features characteristic of the active state, were employed to analyze these experimental results in a structural context.  相似文献   

2.
The human oxytocin receptor is known to exhibit promiscuous activity by coupling to both Galpha(q) and Galpha(i) G proteins to activate distinct signaling pathways. A single-amino acid substitution within the highly conserved E/DRY motif at the cytosolic extension of helix 3 [i.e., D136(3.49)N] increased the rate of both basal and agonist-stimulated inositol phosphate (IP(3)) accumulation of the receptor. Furthermore, like for a typical constitutively active receptor, the partial agonist arginine vasopressin behaved as a full agonist for the D136(3.49)N mutant. Subsequently, both oxytocin and arginine vasopressin showed an increased potency in stimulating IP3 accumulation as compared to the wild-type receptor. Very interestingly, our experiments provide strong evidence that the D136(3.49)N mutant inhibits receptor signaling via Galpha(i)-mediated pathways while increasing the activity through the Galpha(q)-mediated pathways. Molecular simulations of the free and OT-bound forms of wild-type OTR and of the D136(3.49)N constitutively active mutant suggest that the receptor portions close to the E/DRY and NPxxY motifs are particularly susceptible to undergoing structural modification in response to activating mutations and agonist binding. Furthermore, computational modeling suggests that the OT-bound form of wild-type OTR is able to explore more states than the OT-bound form of the D136(3.49)N constitutively active mutant, consistent with its G protein promiscuity. Taken together, these observations emphasize the important role of the E/DRY motif not only in receptor activation but also in the promiscuity of G protein coupling. Knowledge of the mechanism of selective G protein coupling could aid drug discovery efforts to identify signaling specific therapies.  相似文献   

3.
We examined whether a proposed spatial proximity between Asp114(2.50) and Asn332(7.49) affected the functional properties of the mu opioid receptor. The D114(2.50)N mutant had reduced binding affinities for morphine, DAMGO and CTAP, but not for naloxone and [3H]diprenorphine; this mutation also abolished agonist-induced increase in [35S]GTPgammaS binding. The N332(7.49)D mutation eliminated detectable binding of either [3H]diprenorphine or [3H]DAMGO. The combined D114(2.50)N-N332(7.49)D mutation restored high affinity binding for [3H]diprenorphine, CTAP and naloxone, and restored partially the binding affinities, potencies and efficacies of morphine and DAMGO. Thus, reciprocal mutations of Asp114(2.50) and Asn332(7.49) compensate for the detrimental effects of the single mutations, indicating that the residues are adjacent in space and that their chemical functionalities are important for ligand binding and receptor activation.  相似文献   

4.
A dopamine D(2Short) receptor:G(alphao) fusion protein was expressed in Sf9 cells using the baculovirus expression system. [(3)H]Spiperone bound to D(2Short):G(alphao) with a pK(d) approximately 10. Dopamine stimulated the binding of [(35)S]guanosine-5'-O-(3-thio)triphosphate (GTPgammaS) to D(2Short):G(alphao) expressed with Gbeta(1)gamma(2) (E(max)>460%; pEC(50) 5.43+/-0.06). Most of the putative D(2) antagonists behaved as inverse agonists (suppressing basal [(35)S]GTPgammaS binding) at D(2Short):G(alphao)/Gbeta(1)gamma(2) although (-)-sulpiride and ziprasidone were neutral antagonists. Competition of [(3)H]spiperone binding by dopamine and 10,11-dihydroxy-N-n-propylnorapomorphine revealed two binding sites of different affinities, even in the presence of GTP (100 micro M). The D(2Short):G(alphao) fusion protein is therefore a good model for characterising D(2) receptors.  相似文献   

5.
We tested the hypothesis that part of the lumenal amino acid segment between the two most C-terminal membrane segments of the skeletal muscle ryanodine receptor (RyR1) is important for channel activity and conductance. Eleven mutants were generated and expressed in HEK293 cells focusing on amino acid residue I4897 homologous to the selectivity filter of K(+) channels and six other residues in the M3-M4 lumenal loop. Mutations of amino acids not absolutely conserved in RyRs and IP(3)Rs (D4903A and D4907A) showed cellular Ca(2+) release in response to caffeine, Ca(2+)-dependent [(3)H]ryanodine binding, and single-channel K(+) and Ca(2+) conductances not significantly different from wild-type RyR1. Mutants with an I4897 to A, L, or V or D4917 to A substitution showed a decreased single-channel conductance, loss of high-affinity [(3)H]ryanodine binding and regulation by Ca(2+), and an altered caffeine-induced Ca(2+) release in intact cells. Mutant channels with amino acid residue substitutions that are identical in the RyR and IP(3)R families (D4899A, D4899R, and R4913E) exhibited a decreased K(+) conductance and showed a loss of high-affinity [(3)H]ryanodine binding and loss of single-channel pharmacology but maintained their response to caffeine in a cellular assay. Two mutations (G4894A and D4899N) were able to maintain pharmacological regulation both in intact cells and in vitro but had lower single-channel K(+) and Ca(2+) conductances than the wild-type channel. The results support the hypothesis that amino acid residues in the lumenal loop region between the two most C-terminal membrane segments constitute a part of the ion-conducting pore of RyR1.  相似文献   

6.
P Huang  J Li  C Chen  I Visiers  H Weinstein  L Y Liu-Chen 《Biochemistry》2001,40(45):13501-13509
Mutations within the "X1BBX2X3B" motif or its variants in the junction of the third intracellular (i3) loop and the sixth transmembrane domain (TM6) have been shown to lead to constitutive activation of several G protein-coupled receptors (GPCRs). In this study, T6.34(279) at the X3 locus of the rat mu opioid receptor was mutated to Lys and Asp, and the mutants were examined for binding and signaling properties. The T6.34(279)K mutant was poorly expressed, and pretreatment with naloxone greatly enhanced its expression. This construct exhibited properties identified previously with constitutive activation: (1) compared with the wild type, it produced much higher agonist-independent [35S]GTPgammaS binding, which was abolished by pertussis toxin treatment; (2) it displayed an enhanced affinity for the agonist DAMGO similar to that of the high-affinity state of the wild type, which was not altered by GTPgammaS, while having unchanged affinity for the antagonist diprenorphine. The T6.34(279)K mutant displayed a higher intracellular receptor pool than the wild type. Naloxone inhibited the basal [35S]GTPgammaS binding of the T6.34(279)K mutant, demonstrating inverse agonist activity at this mutant receptor. In contrast, the T6.34(279)D substitution did not increase basal [35S]GTPgammaS binding, greatly reduced agonist-promoted [35S]GTPgammaS binding, and markedly decreased affinity for DAMGO. Thus, the T6.34(279)D mutant adopts conformations corresponding to inactive states of the receptor. The results were interpreted in the structural context of a model for the mu opioid receptor that incorporates the information from the crystal structure of rhodopsin. The interaction of T6.34(279) with R3.50(165) in the mu opioid receptor is considered to stabilize the inactive conformations. The T6.34(279)K substitution would then disrupt this interaction and support agonist-free activation, while T6.34(279)D mutation should strengthen this interaction which keeps the receptor in inactive states. T6.34(279) may, in addition, interact with the neighboring R6.35(280) to help constrain the receptor in inactive states, and T6.34(279)K and T6.34(279)D mutations would affect this interaction by disrupting or strengthening it, respectively. To the best of our knowledge, the results presented here represent the first structurally rationalized demonstration that mutations of this locus can lead to dramatically different properties of a GPCR.  相似文献   

7.
The role of the zinc site in the N-terminal fragment of human Sonic hedgehog (ShhN) was explored by comparing the biophysical and functional properties of wild-type ShhN with those of mutants in which the zinc-coordinating residues H140, D147, and H182, or E176 which interacts with the metal ion via a bridging water molecule, were mutated to alanine. The wild-type and E176A mutant proteins retained 1 mol of zinc/mol of protein after extensive dialysis, whereas the H140A and D147A mutants retained only 0.03 and 0.05 mol of zinc/mol of protein, respectively. Assay of the wild-type and mutant proteins in two activity assays indicated that the wild-type and E176A mutant proteins had similar activity, whereas the H140A and D147A mutants were significantly less active. These assays also indicated that the H140A and D147A mutants were susceptible to proteolysis. CD, fluorescence, and (1)H NMR spectra of the H140A, D147A, and E176A mutants measured at 20 or 25 degrees C were very similar to those observed for wild-type ShhN. However, CD measurements at 37 degrees C showed evidence of some structural differences in the H140A and D147A mutants. Guanidine hydrochloride (GuHCl) denaturation studies revealed that the loss of zinc from the H140A and D147A mutants destabilized the folded proteins by approximately 3.5 kcal/mol, comparable to the effect of removing zinc from wild-type ShhN by treatment with EDTA. Thermal melting curves of wild-type ShhN gave a single unfolding transition with a midpoint T(m) of approximately 59 degrees C, whereas both the H140A and D147A mutants displayed two distinct transitions with T(m) values of 37-38 and 52-54 degrees C, similar to that observed for EDTA-treated wild-type ShhN. Addition of zinc to the H140A and D147A mutants resulted in a partial restoration of stability against thermal and GuHCl denaturation. The ability of these mutants to bind zinc was confirmed using a fluorescence-based binding assay that indicated that they bound zinc with K(d) values of approximately 1.6 and approximately 15 nM, respectively, as compared to a value of 相似文献   

8.
GPR20 was isolated as an orphan G protein-coupled receptor from genomic DNA by PCR amplification. Although GPR20 was closely related to nucleotide or lipid receptors, the functional role of this receptor, as well as its endogenous ligand, remains unclear. Here we demonstrate that GPR20 is constitutively active in the absence of ligand, leading to continuous activation of its coupled G proteins. When GPR20 was exogenously expressed in HEK293 cells, both the basal level and the prostaglandin E(2)-induced production of cAMP were significantly decreased. A remarkable increase in [(35)S]guanosine 5'-(gamma-thio)triphosphate (GTPgammaS) binding to membrane preparations was also observed in GPR20-expressing cells. These effects of GPR20 overexpression were diminished in cells treated with pertussis toxin, suggesting that the expression of GPR20 results in the activation of G(i/o) proteins. Involvement of GPR20 in the activation of G(i/o) proteins was also supported by evidence that the disruption of a conserved DRY motif in GPR20 attenuated both [(35)S]GTPgammaS incorporation and inhibition of the prostaglandin E(2)-induced cAMP production. Knockdown of GPR20 in PC12h cells resulted in an elevation of the basal cAMP level, suggesting that the endogenous GPR20 achieves a constitutively or spontaneously active conformation. Furthermore, enhancement of [(3)H]thymidine incorporation was also observed in the GPR20-silencing cells, implying that the GPR20 expression seems to attenuate PC12h cell growth. Taken together, these data indicate that GPR20 constitutively activates G(i) proteins without ligand stimulation. The receptor may be involved in cellular processes, including control of intracellular cAMP levels and mitogenic signaling.  相似文献   

9.
We constructed several mutant human MC4R cDNAs by site directed mutagenesis and expressed these receptors in COS-1 cells. The conserved DRY motif among GPCRs was mutated to generate eight mutants. While no MC4R ligand binding was detected in any of the mutants, one mutant, D146A, resulted in higher cAMP production in cells than the wild-type receptor without ligand stimulation.  相似文献   

10.
We have investigated whether transmembrane amino acid residues Asp128 (domain III), Tyr129 (domain III) [corrected], and Tyr308 (domain VII) in the mouse delta opioid receptor play a role in receptor activation. To do so, we have used a [35S]GTPgammaS (where GTPgammaS is guanosine 5'-3-O-(thio)triphosphate) binding assay to quantify the activation of recombinant receptors transiently expressed in COS cells and compared functional responses of D128N, D128A, Y129F, Y129A, and Y308F point-mutated receptors to that of the wild-type receptor. In the absence of ligand, [35S]GTPgammaS binding was increased for every mutant receptor under study (1.6-2.6-fold), suggesting that all mutations are able to enhance constitutive activity at the receptor. In support of this finding, the inverse agonist N,N-diallyl-Tyr-Aib-Aib-Phe-Leu (where Aib represents alpha-aminobutyric acid) efficiently reduced basal [35S]GTPgammaS binding in the mutated receptor preparations. The potent agonist BW373U86 stimulated [35S]GTPgammaS binding above basal levels with similar (D128N, Y129F, and Y129A) or markedly increased (Y308F) efficacy compared with wild-type receptor. BW373U86 potency was maintained or increased. In conclusion, our results demonstrate that the mutations under study increase functional activity of the receptor. Three-dimensional modeling suggests that Asp128 (III) and Tyr308 (VII) interact with each other and that Tyr129 (III) undergoes H bonding with His278 (VI). Thus, Asp128, Tyr129, and Tyr308 may be involved in a network of interhelical bonds, which contributes to maintain the delta receptor under an inactive conformation. We suggest that the mutations weaken helix-helix interactions and generate a receptor state that favors the active conformation and/or interacts with heterotrimeric G proteins more effectively.  相似文献   

11.
Gastric H(+),K(+)-ATPase is shown to transport 2 mol of H(+)/mol of ATP hydrolysis in isolated hog gastric vesicles. We studied whether the H(+) transport mechanism is due to charge transfer and/or transfer of hydronium ion (H(3)O(+)). From transport of [(18)O]H(2)O, 1.8 mol of water molecule/mol of ATP hydrolysis was found to be transported. We performed a molecular dynamics simulation of the three-dimensional structure model of the H(+),K(+)-ATPase alpha-subunit at E(1) conformation. It predicts the presence of a charge transfer pathway from hydronium ion in cytosolic medium to Glu-345 in cation binding site 2 (H(3)O(+)-Lys-164 -Gln-161-Glu-345). No charge transport pathway was formed in mutant Q161L, E345L, and E345D. Alternative pathways (H(3)O(+)-Gln-161-Glu-345) in mutant K164L and (H(3)O(+)-Arg-105-Gln-161-Gln-345) in mutant E345Q were formed. The H(+),K(+)-ATPase activity in these mutants reflected the presence and absence of charge transfer pathways. We also found charge transfer from sites 2 to 1 via a water wire and a charge transfer pathway (H(3)O(+)-Asn-794 -Glu-797). These results suggest that protons are charge-transferred from the cytosolic side to H(2)O in sites 2 and 1, the H(2)O comes from cytosolic medium, and H(3)O(+) in the sites are transported into lumen during the conformational transition from E(1)PtoE(2)P.  相似文献   

12.
To identify residues of the rat AT1A angiotensin II receptor involved with signal transduction and binding of the non-peptide agonist L-162,313 (5,7-dimethyl-2-ethyl-3-[[4-[2(n-butyloxycarbonylsulfonamido)-5-isobutyl-3-thienyl]phenyl]methyl]imidazol[4,5,6]-pyridine) we have performed ligand binding and inositol phosphate turnover assays in COS-7 cells transiently transfected with the wild-type and mutant forms of the receptor. Mutant receptors bore modifications in the extracellular region: T88H, Y92H, G1961, G196W, and D278E. Compound L-162,313 displaced [125I]-Sar1,Leu8-AngII from the mutants G196I and G196W with IC50 values similar to that of the wild-type. The affinity was, however, slightly affected by the D278E mutation and more significantly by the T88H and Y92H mutations. In inositol phosphate turnover assays, the ability of L-162,313 to trigger the activation cascade was compared with that of angiotensin II. These assays showed that the G196W mutant reached a relative maximum activation exceeding that of the wild-type receptor; the efficacy was slightly reduced in the G1961 mutant and further reduced in the T88H, Y92H, and D278E mutants. Our data suggest that residues of the extracellular domain of the AT1 receptor are involved in the binding of the non-peptide ligand, or in a general receptor activation phenomenon that involves conformational modifications for a preferential binding of agonists or antagonists.  相似文献   

13.
Mice lacking dopamine D2 receptors exhibit a significantly decreased agonist-promoted forebrain neocortical D1 receptor activation that occurs without changes in D1 receptor expression levels. This raises the possibility that, in brains of D2 mutants, a substantial portion of D1 receptors are uncoupled from their G protein, a phenomenon known as receptor desensitization. To test this, we examined D1-agonist-stimulated [35S]GTPgammaS binding (in the presence and absence of protein phosphatase inhibitors) and cAMP production (in the presence and absence of pertussis toxin) in forebrain neocortical tissues of wild-type mice and D2-receptor mutants. These studies revealed a decreased agonist-stimulated G-protein activation in D2 mutants. Moreover, whereas protein phosphatase 1/2A (PP1/2A) and 2B (PP2B) inhibitors decrease [35S]GTPgammaS binding in a concentration-dependent manner in wild type, they have either no (PP2B) or only partial (PP1/2A) effects in D2 mutants. Furthermore, for D2 mutants, immunoprecipitation experiments revealed increased basal and D1-agonist-stimulated phosphorylation of D1-receptor proteins at serine residues. Finally, D1 immunoprecipitates of both wild type and D2 mutants also contain protein kinase A (PKA) and PP2B immunoreactivities. In D2 mutants, however, the catalytic activity of the immunoprecipitated PP2B is abolished. These data indicate that neocortical D1 receptors are physically linked to PKA and PP2B and that the increased phosphorylation of D1 receptors in brains of D2 mutants is due to defective dephosphorylation of the receptor rather than increased kinase-mediated phosphorylation.  相似文献   

14.
The intrahelical salt bridge between E/D3.49 and R3.50 within the E/DRY motif on helix 3 (H3) and the interhelical hydrogen bonding between the E/DRY and residues on H6 are thought to be critical in stabilizing the class A G protein-coupled receptors in their inactive state. Removal of these interactions is expected to generate constitutively active receptors. This study examines how neutralization of E3.49/6.30 in the thromboxane prostanoid (TP) receptor alters ligand binding, basal, and agonist-induced activity and investigates the molecular mechanisms of G protein activation. We demonstrate here that a panel of full and partial agonists showed an increase in affinity and potency for E129V and E240V mutants. Yet, even augmenting the sensitivity to detect constitutive activity (CA) with overexpression of the receptor or the G protein revealed resistance to an increase in basal activity, while retaining fully the ability to cause agonist-induced signaling. However, direct G protein activation measured through bioluminescence resonance energy transfer (BRET) indicates that these mutants more efficiently communicate and/or activate their cognate G proteins. These results suggest the existence of additional constrains governing the shift of TP receptor to its active state, together with an increase propensity of these mutants to agonist-induced signaling, corroborating their definition as superactive mutants. The particular nature of the TP receptor as somehow “resistant” to CA should be examined in the context of its pathophysiological role in the cardiovascular system. Evolutionary forces may have favored regulation mechanisms leading to low basal activity and selected against more highly active phenotypes.  相似文献   

15.
The chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) is a G protein-coupled receptor that mediates the pro-inflammatory effects of prostaglandin D(2) (PGD(2)) generated in allergic inflammation. The CRTH2 receptor shares greatest sequence similarity with chemoattractant receptors compared with prostanoid receptors. To investigate the structural determinants of CRTH2 ligand binding, we performed site-directed mutagenesis of putative mCRTH2 ligand-binding residues, and we evaluated mutant receptor ligand binding and functional properties. Substitution of alanine at each of three residues in the transmembrane (TM) helical domains (His-106, TM III; Lys-209, TM V; and Glu-268, TM VI) and one in extracellular loop II (Arg-178) decreased PGD(2) binding affinity, suggesting that these residues play a role in binding PGD(2). In contrast, the H106A and E268A mutants bound indomethacin, a nonsteroidal anti-inflammatory drug, with an affinity similar to the wild-type receptor. HEK293 cells expressing the H106A, K209A, and E268A mutants displayed reduced inhibition of intracellular cAMP and chemotaxis in response to PGD(2), whereas the H106A and E268A mutants had functional responses to indomethacin similar to the wild-type receptor. Binding of PGE(2) by the E268A mutant was enhanced compared with the wild-type receptor, suggesting that Glu-268 plays a role in determining prostanoid ligand selectivity. Replacement of Tyr-261 with phenylalanine did not affect PGD(2) binding but decreased the binding affinity for indomethacin. These results provided the first details of the ligand binding pocket of an eicosanoid-binding chemoattractant receptor.  相似文献   

16.
In the chick retina, the D1 dopaminergic system differentiates very early, as shown by receptor-mediated increases in intracellular cyclic AMP concentration and the presence of [(3)H]SCH23390-specific binding sites. Here, we characterized, by RT-PCR, the expression of defined D1 receptor subtypes D(1A), D(1B), and D(1D) during the development of the chick retina. Total RNA was extracted from retinas of 6-day-old embryos (E6) to 1-day-old hatched chickens and reverse-transcribed. The resulting cDNA was amplified using D(1A)-, D(1B)-, or D(1D)-specific primers, and the PCR-amplified products were analyzed by electrophoresis. The fragment corresponding to D(1A) receptor was detected in developing retina as early as E7, whereas the fragment corresponding to D(1B) was observed starting around E10. No PCR product corresponding to D(1D) was observed in the retina, although it was detected in chick brain. As synaptogenesis in chick retina begins after E11 and [(3)H]SCH 23390 D1 binding sites increase after this stage, the present results show that expression of D(1B) receptor increases during synaptogenesis, whereas D(1A) is the receptor subtype associated with the D1-like actions of dopamine early in retina development.  相似文献   

17.
The role of two glutamate residues (E164 and E144) in the active site of enoyl-CoA hydratase has been probed by site-directed mutagenesis. The catalytic activity of the E164Q and E144Q mutants has been determined using 3'-dephosphocrotonyl-CoA. Removal of the 3'-phosphate group reduces the affinity of the substrate for the enzyme, thereby facilitating the determination of K(m) and simplifying the analysis of the enzymes' pH dependence. k(cat) for the hydration of 3'-dephosphocrotonyl-CoA is reduced 7700-fold for the E144Q mutant and 630000-fold for the E164Q mutant, while K(m) is unaffected. These results indicate that both glutamate residues play crucial roles in the hydration chemistry catalyzed by the enzyme. Previously, we reported that, in contrast to the wild-type enzyme, the E164Q mutant was unable to exchange the alpha-proton of butyryl-CoA with D(2)O [D'Ordine, R. L., Bahnson, B. J., Tonge, P. J. , and Anderson, V. E. (1994) Biochemistry 33, 14733-14742]. Here we demonstrate that E144Q is also unable to catalyze alpha-proton exchange even though E164, the glutamate that is positioned to abstract the alpha-proton, is intact in the active site. The catalytic function of each residue has been further investigated by exploring the ability of the wild-type and mutant enzymes to eliminate 2-mercaptobenzothiazole from 4-(2-benzothiazole)-4-thiabutanoyl-CoA (BTTB-CoA). As expected, reactivity toward BTTB-CoA is substantially reduced (690-fold) for the E164Q enzyme compared to wild-type. However, E144Q is also less active than wild-type (180-fold) even though elimination of 2-mercaptobenzothiazole (pK(a) 6.8) should require no assistance from an acid catalyst. Clearly, the ability of E164 to function as an acid-base in the active site is affected by mutation of E144 and it is concluded that the two glutamates act in concert to effect catalysis.  相似文献   

18.
Two invariant tryptophan residues on the N-terminal extracellular region of the rat alpha1 subunit, Trp-69 and Trp-94, are critical for the assembly of the GABA(A) (gamma-aminobutyric acid, type A) receptor into a pentamer. These tryptophans are common not only to all GABA(A) receptor subunits, but also to all ligand-gated ion channel subunits. Converting each Trp residue to Phe and Gly by site-directed mutagenesis allowed us to study the role of these invariant tryptophan residues. Mutant alpha1 subunits, coexpressed with beta2 subunits in baculovirus-infected Sf9 cells, displayed high affinity binding to [(3)H]muscimol, a GABA site ligand, but no binding to [(35)S]t-butyl bicyclophosphorothionate, a ligand for the receptor-associated ion channel. Neither [(3)H]muscimol binding to intact cells nor immunostaining of nonpermeabilized cells gave evidence of surface expression of the receptor. When expressed with beta2 and gamma2 polypeptides, the mutant alpha1 polypeptides did not form [(3)H]flunitrazepam binding sites though wild-type alpha1 polypeptides did. The distribution of the mutant receptors on sucrose gradients suggests that the effects on ligand binding result from the inability of the mutant alpha1 subunits to form pentamers. We conclude that Trp-69 and Trp-94 participate in the formation of the interface between alpha and beta subunits, but not of the GABA binding site.  相似文献   

19.
The human alpha(2B)-adrenoceptor (alpha(2B)-AR) was mutated by substituting the D(3.49) aspartate in position 109 with an alanine (alpha(2B)-D109A) in the conserved DRY sequence at the cytoplasmic face of TM3. We studied the effects of the mutation on agonist binding and on receptor activation in CHO cells, including possible inverse agonism monitored by measuring intracellular Ca(2+) concentrations ([Ca(2+)](i)). The mutated receptor had increased binding affinity for agonists, especially dexmedetomidine (3.8-fold). The increased affinity was abolished by pretreatment of the cells with pertussis toxin. The mutation produced constitutive receptor activity evidenced as increased basal [Ca(2+)](i) and increased potency and efficacy of agonists to elicit Ca(2+) responses. The imidazoline derivative RX821002 functioned as an inverse agonist only through the alpha(2B)-D109A, reducing [Ca(2+)](i). The results thus indicate that this mutation causes constitutive receptor-G(i)-protein precoupling, and that the D(3.49) aspartate residue of the DRY motif is involved in controlling coupled and uncoupled conformations of alpha(2B)-AR.  相似文献   

20.
Previous studies have revealed that activation of rat striatal D(1) dopamine receptors stimulates both adenylyl cyclase and phospholipase C via G(s) and G(q), respectively. The differential distribution of these systems in brain supports the existence of distinct receptor systems. The present communication extends the study by examining other brain regions: hippocampus, amygdala, and frontal cortex. In membrane preparations of these brain regions, selective stimulation of D(1) dopamine receptors increases the hydrolysis of phosphatidylinositol/phosphatidylinositol 4,5-biphosphate. In these brain regions, D(1) dopamine receptors couple differentially to multiple Galpha protein subunits. Antisera against Galpha(q) blocks dopamine-stimulated PIP(2) hydrolysis in hippocampal and in striatal membranes. The binding of [(35)S]GTPgammaS or [alpha-(32)P]GTP to Galpha(i) was enhanced in all brain regions. Dopamine also increased the binding of [(35)S]GTPgammaS or [alpha-(32)P]GTP to Galpha(q) in these brain regions: hippocampus = amygdala > frontal cortex. However, dopamine-stimulated binding of [(35)S]GTPgammaS to Galphas only in the frontal cortex and striatum. This differential coupling profile in the brain regions was not related to a differential regional distribution of the Galpha proteins. Dopamine induced increases in GTPgammaS binding to Galpha(s) and Galpha(q) was blocked by the D(1) antagonist SCH23390 but not by D(2) receptor antagonist l-sulpiride, suggesting that D(1) dopamine receptors couple to both Galpha(s) and Galpha(q) proteins. Co-immunoprecipitation of Galpha proteins with receptor-binding sites indicate that in the frontal cortex, D(1) dopamine-binding sites are associated with both Galpha(s) and Galpha(q) and, in hippocampus or amygdala, D(1) dopamine receptors couple solely to Galpha(q). The results indicate that in addition to the D(1)/G(s)/adenylyl cyclase system, brain D(1)-like dopamine receptor sites activate phospholipase C through Galpha(q) protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号