首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
UDP-glucuronosyltransferase 1A6 (UGT1A6) is a major isoform in the human liver that glucuronidates numerous drugs, environmental chemicals and endogenous substrates. In this study, human and cynomolgus monkey UGT1A6 cDNAs (humUGT1A6 and monUGT1A6, respectively) were cloned, and the corresponding proteins were heterologously expressed in yeast cells to identify the functions of primate UGT1A6s. The enzymatic properties of UGT1A6 proteins were characterized by the kinetic analysis of serotonin (5-hydroxytryptamine, 5-HT) and 4-methylumbelliferone (4-MU) glucuronidation. humUGT1A6 and monUGT1A6 showed 96% identity in their nucleotide and amino acid sequences. Immunoblotting analysis using an antibody raised against human UGT1A6 showed that protein staining intensities were different between human and cynomolgus monkey UGT1A6 enzymes in microsomal fractions from livers and yeast cells, although both enzymes were detectable. The apparent K(m) value (15 mM) for 5-HT glucuronidation of cynomolgus monkey liver microsomes was significantly higher than that (8.6mM) of human liver microsomes, whereas V(max) values were lower in cynomolgus monkeys (2.8 nmol/min/mg protein) than in humans (8.6 nmol/min/mg protein). No significant species difference was observed in K(m) (approximately 90 microM) or V(max) (approximately 25 nmol/min/mg protein) values for liver microsomal 4-MU glucuronidation. In yeast cell microsomes, K(m) values (approximately 6mM) for 5-HT glucuronidation by recombinant UGT1A6s were similar, while a V(max) value (0.1nmol/min/mg protein) of monUGT1A6 was significantly lower than that (0.7 nmol/min/mg protein) of humUGT1A6. In 4-MU glucuronidation, both K(m) (210 microM) and V(max) (3.5 nmol/min/mg protein) values of monUGT1A6 were significantly higher than those of humUGT1A6 (K(m), 110 microM; V(max), 1.5nmol/min/mg protein). These findings suggest that the enzymatic properties of UGT1A6 were extensively different between humans and cynomolgus monkeys, although humUGT1A6 and monUGT1A6 showed high homology at the amino acid level. The information gained in this study should help with in vivo extrapolation and to assess the toxicity of xenobiotics.  相似文献   

2.
Transport of the co-substrate UDPGA (UDP-glucuronic acid) into the lumen of the endoplasmic reticulum is an essential step in glucuronidation reactions due to the intraluminal location of the catalytic site of the enzyme UGT (UDP-glucuronosyltransferase). In the present study, we have characterized the function of several NSTs (nucleotide sugar transporters) and UGTs as potential carriers of UDPGA for glucuronidation reactions. UDPGlcNAc (UDP-N-acetylglucosamine)-dependent UDPGA uptake was found both in rat liver microsomes and in microsomes prepared from the rat hepatoma cell line H4IIE. The latency of UGT activity in microsomes derived from rat liver and V79 cells expressing UGT1A6 correlated well with mannose-6-phosphatase latency, confirming the UGT in the recombinant cells retained a physiology similar to rat liver microsomes. In the present study, four cDNAs coding for NSTs were obtained; two were previously reported (UGTrel1 and UGTrel7) and two newly identified (huYEA4 and huYEA4S). Localization of NSTs within the human genome sequence revealed that huYEA4S is an alternatively spliced form of huYEA4. All the cloned NSTs were stably expressed in V79 (Chinese hamster fibroblast) cells, and were able to transport UDPGA after preloading of isolated microsomal vesicles with UDPGlcNAc. The highest uptake was seen with UGTrel7, which displayed a V(max) approx. 1% of rat liver microsomes. Treatment of H4IIE cells with beta-naphthoflavone induced UGT protein expression but did not affect the rate of UDPGA uptake. Furthermore, microsomes from UGT1-deficient Gunn rat liver showed UDPGA uptake similar to those from control rats. These data show that NSTs can act as UDPGA transporters for glucuronidation reactions, and indicate that UGTs of the 1A family do not function as UDPGA carriers in microsomes. The cell line H4IIE is a useful model for the study of UDPGA transporters for glucuronidation reactions.  相似文献   

3.
UDP-glucuronosyltransferases (UGTs) are a major family of enzymes catalyzing the transfer of glucuronic acid to a range of endogenous compounds and xenobiotics facilitating their elimination in either urine or bile. Although the dog is commonly used in drug metabolism studies, relatively little is known about the expression and activity of UGTs in this species. This report describes the molecular cloning and functional characterization of the first dog UGT, UGT1A6. The cloned protein is composed of 528 amino acids with the variable region demonstrating a 67-72% identity with the variable regions of mouse, rat, and human UGT1A6. The enzyme expressed stably in V79 cells predominantly catalyzed the glucuronidation of simple, planar phenols (e.g., for 1-naphthol, K(m) = 41 microM, V(max) = 0.07 nmol/min/mg protein), a class of compounds extensively glucuronidated by human UGT1A6. Based on sequence homology and common catalytic activity, this dog UGT1A protein appears to be the canine orthologue of human UGT1A6.  相似文献   

4.
Benzene is an occupational and environmental toxicant. The main human health concern associated with benzene exposure is leukemia. The toxic effects of benzene are dependent on its metabolism by the cytochrome p450 enzyme system. The cytochrome p450 enzymes CYP2E1 and CYP2F2 are the major contributors to the bioactivation of benzene in rats and mice. Although benzene metabolism has been shown to occur with mouse and human lung microsomal preparations, little is known about the ability of human CYP2F to metabolize benzene or the lung cell types that might activate this toxicant. Our studies compared bronchiolar derived (BEAS-2B) and alveolar derived (A549) human cell lines for benzene metabolizing ability by evaluating the roles of CYP2E1 and CYP2F1. BEAS-2B cells that overexpressed CYP2F1 and recombinant CYP2F1 were also evaluated. BEAS-2B cells overexpressing the enzyme CYP2F1 produced 47.4 +/- 14.7 pmols hydroxylated metabolite/10(6) cells/45 min. The use of the CYP2E1-selective inhibitor diethyldithiocarbamate and the CYP2F2-selective inhibitor 5-phenyl-1-pentyne demonstrated that both CYP2E1 and CYP2F1 are important in benzene metabolism in the BEAS-2B and A549 human lung cell lines. The recombinant expressed human CYP2F1 enzyme had a K(m) value of 3.83 microM and a V(max) value of 0.01 pmol/pmol p450 enzyme/min demonstrating a reasonably efficient catalysis of benzene metabolism (V(max)/K(m) = 2.6). Thus, these studies have demonstrated in human lung cell lines that benzene is bioactivated by two lung-expressed p450 enzymes.  相似文献   

5.
Eight human liver UDP-glucuronosyltransferases (UGTs) were expressed in baculovirus-infected insect cells as fusion proteins carrying a short C-terminal extension that ends with 6 histidine residues (His tag). The activity of recombinant UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT2B4, UGT2B7, and UGT2B15 was almost fully inhibited by 0.2% Triton X-100. In the case of UGT1A9, however, glucuronidation of alpha-naphthol and scopoletin was resistant to such inhibition, whereas glucuronidation of entacapone and several other aglycones was sensitive. His-tagged UGT1A9 was purified by immobilized metal-chelating chromatography (IMAC). Purified UGT1A9 glucuronidated scopoletin at a high rate, whereas its glucuronidation activity toward entacapone was low and largely dependent on phospholipid addition. Recombinant UGT1A9 in which the His tag was replaced by hemagglutinin antigenic peptide (HA tag) was also prepared. Insect cells were co-infected with baculoviruses encoding both HA-tagged and His-tagged UGT1A9. Membranes from the co-infected cells, or a mixture of membranes from separately infected cells, were subjected to detergent extraction and IMAC, and the resulting fractions were analyzed for the presence of each type of UGT1A9 using tag-specific antibodies. In the case of separate infection, the HA-tagged UGT1A9 did not bind to the column. When co-infected with His-tagged UGT1A9, however, part of the HA-tagged enzyme was bound to the column and was eluted by imidazole concentration gradient together with the His-tagged UGT1A9, suggesting the formation of stable dimers that contain one His-tagged and one HA-tagged UGT1A9 monomers.  相似文献   

6.
UDP-glucuronosyltransferases (UGTs) catalyze the transfer of glucuronic acid from uridine diphosphate-glucuronic acid (UDP-GA) to compounds with amine, hydroxyl, and carboxylic acid moieties. N-glucuronidation is an important pathway for elimination of many tertiary amine therapeutic agents used in humans. UGT1A4 has been reported to be specific for glucuronidating primary, secondary, and tertiary amines, forming N-glucuronides. To further investigate the drugs metabolized by UGT1A4, the Bac-to-Bac expression system was used to express the recombinant UGT1A4 with His-tag on the C-terminal. The His-tagged recombinant UGT1A4 expressed in Spodoptera frugiperda (Sf9) cells were detected using anti-His antibody and the molecular weight of the recombinant protein was approximately 55kDa. The enzyme activity towards imipramine in cell homogenate protein was found to be 83.14+/-15pmol/min/mg protein (n=3) with 0.5mM imipramine by HPLC, but was not detectable in blank Sf9 cells. It paved the way for the further studies for drug glucuronidation by UGT1A4. The purification of the UGT1A4 can be done by Ni-resin. This is helpful to do research on the structure of the UFT1A4.  相似文献   

7.
A variant clone of cultured chinese hamster lung fibroblasts (V79), selected for resistance to 8-azaguanine (V79 azagrst), although lacking hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8), is able to convert hypoxanthine into IMP via purine-nucleoside phosphorylase (EC 2.4.2.1) and nucleoside kinase. In addition to the phosphoribosylation pathway, we also present evidence for the occurrence of a kinase-mediated pathway of recovery of hypoxanthine in the wild-type cells. The lower rate of formation of IMP in the V79 azagrst cells, apparently correlated with the phosphorylation of the nucleoside, suggests possible differences in the catalytic and/or regulatory properties of nucleoside kinase in the two cell lines. This fact might be of particular relevance in evaluating the mechanisms of resistance to purine analogs displayed by several cell types.  相似文献   

8.
2-Amino-9H-pyrido[2,3-b]indole (AαC) is a carcinogenic heterocyclic aromatic amine (HAA) that arises in tobacco smoke. UDP-glucuronosyltransferases (UGTs) are important enzymes that detoxicate many procarcinogens, including HAAs. UGTs compete with P450 enzymes, which bioactivate HAAs by N-hydroxylation of the exocyclic amine group; the resultant N-hydroxy-HAA metabolites form covalent adducts with DNA. We have characterized the UGT-catalyzed metabolic products of AαC and the genotoxic metabolite 2-hydroxyamino-9H-pyrido[2,3-b]indole (HONH-AαC) formed with human liver microsomes, recombinant human UGT isoforms, and human hepatocytes. The structures of the metabolites were elucidated by (1)H NMR and mass spectrometry. AαC and HONH-AαC underwent glucuronidation by UGTs to form, respectively, N(2)-(β-D-glucosidurony1)-2-amino-9H-pyrido[2,3-b]indole (AαC-N(2)-Gl) and N(2)-(β-D-glucosidurony1)-2-hydroxyamino-9H-pyrido[2,3-b]indole (AαC-HON(2)-Gl). HONH-AαC also underwent glucuronidation to form a novel O-linked glucuronide conjugate, O-(β-D-glucosidurony1)-2-hydroxyamino-9H-pyrido[2,3-b]indole (AαC-HN(2)-O-Gl). AαC-HN(2)-O-Gl is a biologically reactive metabolite and binds to calf thymus DNA (pH 5.0 or 7.0) to form the N-(deoxyguanosin-8-yl)-AαC adduct at 20-50-fold higher levels than the adduct levels formed with HONH-AαC. Major UGT isoforms were examined for their capacity to metabolize AαC and HONH-AαC. UGT1A4 was the most catalytically efficient enzyme (V(max)/K(m)) at forming AαC-N(2)-Gl (0.67 μl·min(-1)·mg of protein(-1)), and UGT1A9 was most catalytically efficient at forming AαC-HN-O-Gl (77.1 μl·min(-1)·mg of protein(-1)), whereas UGT1A1 was most efficient at forming AαC-HON(2)-Gl (5.0 μl·min(-1)·mg of protein(-1)). Human hepatocytes produced AαC-N(2)-Gl and AαC-HN(2)-O-Gl in abundant quantities, but AαC-HON(2)-Gl was a minor product. Thus, UGTs, usually important enzymes in the detoxication of many procarcinogens, serve as a mechanism of bioactivation of HONH-AαC.  相似文献   

9.
10.
Mucopolysaccharidosis type IIIB (MPS-IIIB, Sanfilippo type B Syndrome) is a heterosomal, recessive lysosomal storage disorder resulting from a deficiency of [alpha]-N-acetylglucosaminidase (NAGLU). To characterize this enzyme further and evaluate its potential for enzyme replacement studies we expressed the NAGLU-encoding cDNA in Chinese hamster ovary cells (CHO-K1 cells) and purified the recombinant enzyme from the medium of stably transfected cells by a two-step affinity chromatography. Two isoforms of recombinant NAGLU with apparent molecular weights of 89 and 79 kDa were purified and shown to differ in their glycosylation pattern. The catalytic parameters of both forms of the recombinant enzyme were indistinguishable from each other and similar to those of NAGLU purified from various tissues. However, compared to other recombinant lysosomal enzymes expressed from CHO-K1 cells, the mannose-6-phosphate receptor mediated uptake of the secreted form of recombinant NAGLU into cultured skin fibroblasts was considerably reduced. A small amount of phosphorylated NAGLU present in purified enzyme preparations was shown to be endocytosed by MPS-IIIB fibroblasts via the mannose-6-phosphate receptor-mediated pathway and transported to the lysosomes, where they corrected the storage phenotype. Direct metabolic labeling experiments with Na(2) (32)PO(4) confirmed that the specific phosphorylation of recombinant NAGLU secreted from transfected CHO cells is significantly lower when compared with a control lysosomal enzyme. These results suggest that the use of secreted NAGLU in future enzyme and gene replacement therapy protocols will be severely limited due to its small degree of mannose-6-phosphorylation.  相似文献   

11.
12.
Menadione (2-methyl-1,4-naphthoquine), also known as vitamin K3, has been widely used as a model compound in the field of oxidative stress-related research. The metabolism of menadione has been studied, and it is known that menadione undergoes a two-electron reduction by NAD(P)H:Quinone oxidoreductase 1 (NQO1) after which the reduced form of menadione (2-methyl-1,4-naphthalenediol, menadiol) is glucuronidated and excreted in urine. To investigate which human UDP-glucuronosyltransferase (UGT) isoforms participate in the glucuronidation of menadiol reduced by NQO1 from menadione, we first constructed heterologously expressed NQO1 in Sf9 cells and tested the menadiol glucuronidating activity of 16 human recombinant UGT isoforms. Of the 16 UGT isoforms, UGTs 1A6, 1A7, 1A8, 1A9, and 1A10 catalyzed menadiol glucuronidation, and, of these, UGTs 1A6 and 1A10 catalyzed menadiol glucuronidation at much higher rates than the other UGTs. Menadiol was regioselectively glucuronidated in the manner of 4-position > 1-position by UGTs 1A7, 1A8, 1A9, and 1A10. In contrast to these UGTs, only UGT1A6 exhibited 1-menadiol-preferential glucuronidating activity. The results suggest possible detoxification pathways for quinones via NQO1 reduction followed by UGT glucuronidation.  相似文献   

13.
The tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is a potent lung carcinogen in the A/J mouse, and is believed to be a causative agent for human lung cancer. NNK requires metabolic activation by alpha-hydroxylation to exert its carcinogenic potential. The human P450, 2A6 is a catalyst of this reaction. There are two closely related enzymes in the mouse, P450 2A4 and 2A5, which differ from each other by only 11 amino acids. In the present study these two mouse P450s were expressed in Spodoptera frugiperda (Sf9) cells using recombinant baculovirus. The catalysis of NNK metabolism by Sf9 microsomal fractions containing either P450 2A4 or 2A5 was determined. Both enzymes catalyzed the alpha-hydroxylation of NNK but with strikingly different efficiencies and specificities. P450 2A5 preferentially catalyzed NNK methyl hydroxylation, while P450 2A4 preferentially catalyzed methylene hydroxylation. The KM and Vmax for the former were 1.5 microM and 4.0 nmol/min/nmol P450, respectively, and for the latter 3.9 mM and 190 nmol/min/nmol P450. The mouse coumarin 7-hydroxylase, P450 2A5 is a significantly better catalyst of NNK alpha-hydroxylation than is the closely related human enzyme, P450 2A6.  相似文献   

14.
UDP-glucuronosyltransferases (UGTs) are highly expressed in liver, intestine and kidney, and catalyze the glucuronic acid conjugation of both endogenous compounds and xenobiotics. Using recombinant human UGT isoforms, we show that glucuronic acid conjugation of the model substrate, (−)-epicatechin, is catalyzed mainly by UGT1A8 and UGT1A9. In HepG2 cells, pretreatment with polyunsaturated fatty acids increased substrate glucuronidation. In the intestinal Caco-2/HT29-MTX co-culture model, overall relative glucuronidation rates were much higher than in HepG2 cells, and (−)-epicatechin was much more readily conjugated when applied to the basolateral side of the cell monolayer. Under these conditions, 95% of the conjugated product was effluxed back to the site of application, and none of the other phase 2-derived metabolites followed this distribution pattern. HT29-MTX cells contained >1000-fold higher levels of UGT1A8 mRNA than Caco-2 or HepG2 cells. Gene expression of UGT1A8 increased after treatment of cells with docosahexaenoic acid, as did UGT1A protein levels. Immunofluorescence staining and Western blotting showed the presence of UGT1A in the basal and lateral parts of the plasma membrane of HT29-MTX cells. These results suggest that some of the UGT1A8 enzyme is not residing in the endoplasmic reticulum but spans the plasma membrane, resulting in increased accessibility to compounds outside the cell. This facilitates more efficient conjugation of substrate and is additionally coupled with rapid efflux by functionally associated basolateral transporters. This novel molecular strategy allows the cell to carry out conjugation without the xenobiotic entering into the interior of the cell.  相似文献   

15.
Ethyl carbamate (EC) and two related carcinogens, ethyl N-hydroxycarbamate (ENHC) and vinyl carbamated (VC), caused species-specific increase in sister-chromatid exchange (SCE) formation in the bone marrow cells of rodents. Mice exposed to 400 mg/kg of EC had SCE increases of 6-times-baseline, while rats, Chines hamsters, and golden hamsters showed 3- to 4-times-baseline increases in response to this dose. Lesser, but still significant, differences were found for ENHC and VC; the severest effects consistently occured in mice. Control bone marrow cell-cycle kinetics among the rodent species were similar. Mouse strains A and C57BL/6, which have high and low susceptibilities to EC induction of lung adenomas, respectively, showed nearly identical levels of SCE induction after in vivo exposure to these carbamate. However, testing of VC, a possible metabolite of EC, in vitro revelaed strain-dependent liver enzyme (Aroclor-induced S-9 fraction) capabilities to convert VC to genotoxic products. SCE induction, gene mutation for 6-thioguanine and ouabain resistance, and cytotoxicity in Chinese hamster V79 cells were significantly greater when A strain S-9 enzymes were used as compared with C57BL/6 strain S-9 enzyme preparations. No effect of SCE of reseeding, compared with no reseeding, of VC-treated V79 cells was observed. At a concentration of 25 μg/ml, VC cause 6-times-baselin induction of SCE in the presence of A strain S-9 mix and 4-times-baseline induction in the presence of C57BL/6 strain S-9 mix. These in vitro strain-dependent patterns of response are relevant to the current theory that VC amy be a proximate carcinogenic metabolite of EC.  相似文献   

16.
The soyabean isoflavones genistein and daidzein, which may protect against some cancers, cardiovascular disease and bone mineral loss, undergo substantial Phase 2 metabolism, predominantly glucuronidation. We observed a correlation between rates of metabolism of marker substrates of specific UGTs and rates of glucuronidation of genistein and daidzein in vitro by a panel of human liver microsomes, demonstrating that UGT1A1 and UGT1A9, but not UGT1A4, make a major contribution to the metabolism of these isoflavones by human liver. These findings were substantiated by observations that recombinant human UGT1A1 and UGT1A9, but not UGT1A4, catalysed the production of the major glucuronides of both genistein and daidzein in vitro. Recombinant human UGT1A8 also metabolised both genistein and daidzein, whereas UGT1A6 was specific to genistein and UGTs 2B7 and 2B15 were inactive, or only marginally active, with either isoflavone as substrate. The intestinal isoform UGT1A10 metabolised either both isoflavones or genistein only, depending on the commercial supplier of the recombinant enzyme, possibly as a result of a difference in amino acid sequence, which we were unable to confirm. Daidzein (16 microM) increased cell death in the MCF-7 human breast cancer cell line and this effect was reversed by glucuronidation. In view of a well-characterised functional polymorphism in UGT1A1, these observations may have implications for inter-individual variability in the potential health-beneficial effects of isoflavone consumption.  相似文献   

17.
Magnolia bark extract (MBE) has been used historically in traditional Chinese and Japanese medicines, and more recently as a component of dietary supplements and cosmetic products. The genotoxic potential of MBE was studied in two in vitro chromosomal aberration assays. In Chinese hamster ovary (CHO) cells, exposure for 3 h to MBE at concentrations of 0-30 microg/ml in the absence of a metabolic activation system (S9) and 0-7 microg/ml with S9 did not induce chromosomal aberrations, whereas higher concentrations were cytotoxic and did not allow for analysis of aberrations. Extended exposure for 18 h without metabolic activation at concentrations up to 15 microg/ml also resulted in a negative response. In V79 cells derived from Chinese hamster lung tissue, treatment for 6h with concentrations up to 52 and 59 microg/ml in the absence and presence of S9, respectively, did not increase the incidence of chromosomal aberrations compared to negative controls. Furthermore, MBE exposure for 24 h without metabolic activation did not induce aberrations. The results of these studies demonstrate that MBE is not genotoxic under the conditions of the in vitro chromosomal aberration assays in CHO and V79 cells, and support the safety of MBE.  相似文献   

18.
The Chinese hamster lung (V79) cell was intrinsically 10-times more resistant to peplomycin, a bleomycin-related antitumor antibiotic, than the Chinese hamster ovary (CHO) cell. This may be associated with the 3-times higher levels of recovery of bleomycin hydrolase activity of the V79 cell. The degradation of bleomycin hydrolase molecules in both V79 and CHO cells was examined using a monoclonal antibody specific for the enzyme. Labelling experiments showed that the bleomycin hydrolase in CHO cells was less stable than the comparable enzyme in V79 cells, and that 48 kDa subunits comprising bleomycin hydrolase (a homohexameric enzyme) molecules were degraded into 31 kDa forms in both cell lines. The 105,000 X g pellet (microsomes) fraction obtained after subcellular fractionation of CHO cells contained both 48 kDa subunit and 31 kDa forms of bleomycin hydrolase, while the 105,000 X g supernatant cytosol fraction yielded only 48 kDa subunit forms of the enzyme. Moreover, bleomycin hydrolase activity of both V79 and CHO cells was almost entirely recovered from the cytosol fraction. These results suggest that degradation of the 48 kDa subunit form of bleomycin hydrolase in these two lines of cultured cells into the 31 kDa form occurs on the plasma membrane or the endoplasmic reticulum, with which the resulting large number of bleomycin hydrolase molecules or degraded forms of the enzyme that have lost enzymatic activity are associated.  相似文献   

19.
A novel, specific, and potent biological action of leukotriene C4 (LTC4) was demonstrated in the Chinese hamster lung fibroblast cell line V79A03 (V79 cells), namely the confirment of protection against subsequent gamma-irradiation. Consequently, studies were conducted to determine whether LTC4-conferred radioprotection could be attributed to a receptor-mediated phenomenon. Specific binding sites for leukotriene C4 (LTC4) were identified and characterized using intact V79 cells incubated at 4 degrees C in the presence of serine-borate, during which time conversion of LTC4 to LTD4 or LTE4 was undetectable. Binding was maximal in a broad region between pH 6.2 and 8.8. Ca2+, Mg2+, and Na+ were not required for binding, and binding was not altered by GTP, ATP, or cAMP, by leukotrienes B4, D4, or E4, or by the leukotriene end point antagonists LY 171883, FPL 55712, or Revlon 5901-5. Scatchard analyses and kinetic experiments indicated the presence of high-affinity [Kd = 2.5 +/- 0.63 nM, approximately 9.9 x 10(5) sites/cell] and low-affinity [Kd = 350 +/- 211 nM, approximately 2.7 x 10(6) sites/cell] binding sites. The observed binding characteristics of LTC4 to V79 cells are consistent with a receptor-mediated phenomenon. In a companion communication which follows this report, we report the subcellular distribution of LTC4 binding to V79 cells and demonstrate that this binding is unlikely to be attributed principally to interaction with glutathione-S-transferase.  相似文献   

20.
Human UDP-glucuronosyltransferases (UGTs) are important enzymes in metabolic elimination of endo- and xenobiotics. It was recently shown that addition of fatty acid free bovine serum albumin (BSA) significantly enhances in vitro activities of UGTs, a limiting factor in in vitro–in vivo extrapolation. Nevertheless, since only few human UGT enzymes were tested for this phenomenon, we have now performed detailed enzyme kinetic analysis on the BSA effects in six previously untested UGTs, using 2–4 suitable substrates for each enzyme. We also examined some of the previously tested UGTs, but using additional substrates and a lower BSA concentration, only 0.1%. The latter concentration allows the use of important but more lipophilic substrates, such as estradiol and 17-epiestradiol. In five newly tested UGTs, 1A7, 1A8, 1A10, 2A1, and 2B15, the addition of BSA enhanced, to a different degree, the in vitro activity by either decreasing reaction’s K m, increasing its V max, or both. In contrast, the activities of UGT2B17, another previously untested enzyme, were almost unaffected. The results of the assays with the previously tested UGTs, 1A1, 1A6, 2B4, and 2B7, were similar to the published BSA only as far as the BSA effects on the reactions’ K m are concerned. In the cases of V max values, however, our results differ significantly from the previously published ones, at least with some of the substrates. Hence, the magnitude of the BSA effects appears to be substrate dependent, especially with respect to V max increases. Additionally, the BSA effects may be UGT subfamily dependent since K m decreases were observed in members of subfamilies 1A, 2A and 2B, whereas large V max increases were only found in several UGT1A members. The results shed new light on the complexity of the BSA effects on the activity and enzyme kinetics of the human UGTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号