首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
A new ribosome-inactivating protein (RIP) with a molecular weight of 31 kDa induced by Cinchonaglycoside C (1) designated CIP31, was isolated from tobacco leaves. Analysis of this protein sequence indicated that it belongs to the RIP family and it was distinct from the other plant RIPs reported previously at its N-terminal amino acid sequence. CIP31 can directly impair synthesis of coat protein (CP) of tobacco mosaic virus (TMV), which resulted in inhibition of TMV long distance movement and multiplication in tobacco plants at concentrations of ng/mL. Furthermore, no toxicity was shown to the growth and fertility of the plants. CIP31 was synthesized only in the presence of Cinchonaglycoside C (1) and was independent of the salicylic acid (SA) signal pathway. We provided evidence for the SA-independent biological induction of resistance.  相似文献   

2.
A new ribosome-inactivating protein(RIP)with a molecular weight of 31 kDa induced by Cinchonaglycoside C(1)designatedCLP31,was isolated from tobacco leaves.Analysis of this protein sequence indicated that it belongs to the RIP family and itwas distinct from the other plant RIPs reported previously at its N-terminal amino acid sequence.CIP31 can directly impairsynthesis of coat protein(CP)of tobacco mosaic virus(TMV),which resulted in inhibition of TMV long distance movementand multiplication in tobacco plants at concentrations of ng/mL.Furthermore,no toxicity was shown to the growth andfertility of the plants.CIP31 was synthesized only in the presence of Cinchonaglycoside C(1)and was independent of thesalicylic acid(SA)signal pathway.We provided evidence for the SA-independent biological induction of resistance.  相似文献   

3.
As reported previously, UV-irradiation induces crosslinking between tobacco mosaic virus (TMV) coat protein molecules and intraviral RNA nucleotides. We have irradiated [3H]-uridine labeled TMV and isolated TMV coat protein subunits with the attached nucleotide label. These TMV protein subunits were hydrolyzed with trypsin. The tryptic peptides were separated by high-performance liquid chromatography and [3H]-labeled peptides were identified. The UV-irradiation of TMV was found to result in crosslinking to intraviral RNA of the T8 tryptic peptide (residues 93-112) of TMV coat protein.  相似文献   

4.
We have investigated the function of the 30 kd protein of tobacco mosaic virus (TMV) by a reverse genetics approach. First, a point mutation of TMV Ls1 (a temperature-sensitive mutant defective in cell-to-cell movement), that causes an amino acid substitution in the 30 kd protein, was introduced into the parent strain, TMV L. The generated mutant showed the same phenotype as TMV Ls1, and therefore the one-base substitution in the 30 kd protein gene adequately explains the defectiveness of TMV Ls1. Next, four kinds of frame-shift mutants were constructed, whose mutations are located at three different positions of the 30 kd protein gene. All the frame-shift mutants were replication-competent in protoplasts but none showed infectivity on tobacco plants. From these observations the 30 kd protein was confirmed to be involved in cell-to-cell movement. To clarify that the 30 kd protein is not necessary for replication, two kinds of deletion mutants were constructed; one lacking most of the 30 kd protein gene and the other lacking both the 30 kd and coat protein genes. Both mutants replicated in protoplasts and the former still produced the subgenomic mRNA for the coat protein. These results clearly showed that the 30 kd protein, as well as the coat protein, is dispensable for replication and that no cis-acting element for replication is located in their coding sequences. It is also suggested that the signal for coat protein mRNA synthesis may be located within about 100 nucleotides upstream of the initiation codon of the coat protein gene.  相似文献   

5.
根据对TMV高效复制和基因表达的顺式作用元件的分析,在体外重组包装了2个缺失型TMV粒子:TMVRP和TMVCP。前者缺失了TMV外壳蛋白CP基因的3′端及后序区域,后者缺失了大部分复制酶基因。把两者分别或共同电击感染烟草原生质体:1.用CP抗体进行免疫印渍检测,单独感染的原生质体内的CP在16小时内无增加,而在共同感染的原生质体内,CP在感染2小时后就开始明显增加。2.用RT一两次PCR法专一地检测新生负链RNA的合成情况,在单独感染的原生质体内没有检测到,但在混合感染的原生质体内在感染1小时后就检测到CP基因特异的负链RNA的形成,并用Southern杂交得到进一步验证。这些结果表明,复制酶缺失型TMVCP内的CP基因不能表达,但可以在TMVRP存在时,通过其所表达的复制酶互补作用得到复制从而有效表达.  相似文献   

6.
TMV binding substance (R) was isolated from a tobacco leaf membrane fraction and was purified by extraction with organic solvents and by column chromatography. Experimental results suggest that the binding of R with TMV results in inactivation of TMV. When tobacco leaves were inoculated with the R-TMV complex, it was found that the formation of polysome containing infecting viral RNA was inhibited. Model experiments showed that the mode of R-TMV adsorption to the membrane is different from that of TMV adsorption and that stripping of coat protein from TMV by SDS was inhibited by R. A possible explanation for the mechanism of this inhibition by R is that the R-TMV complex follows a pathway which does not lead to establishment of infection. Although less efficient, R was still active when it was applied after virus inoculation. Due to its affinity to coat protein, R might also interfere with a later process of viral multiplication.  相似文献   

7.
Induction of reactive oxygen species (ROS) was observed within seconds of the addition of exogenous tobacco mosaic virus (TMV) to the outside of tobacco (Nicotiana tabacum cv Samsun NN, EN, or nn) epidermal cells. Cell death was correlated with ROS production. Infectivity of the TMV virus was not a prerequisite for this elicitation and isolated coat protein (CP) subunits could also elicit the fast oxidative burst. The rapid induction of ROS was prevented by both inhibitors of plant signal transduction and inhibitors of NAD(P)H oxidases, suggesting activation of a multi-step signal transduction pathway. Induction of intracellular ROS by TMV was detected in TMV-resistant and -susceptible tobacco cultivars isogenic for the N allele. The burst was also detected with strains of virus that either elicit (ToMV) or fail to elicit (TMV U1) N' gene-mediated responses. Hence, early ROS generation is independent or upstream of known genetic systems in tobacco that can mediate hypersensitive responses. Analysis of other viruses and TMV CP mutants showed marked differences in their ability to induce ROS showing specificity of the response. Thus, initial TMV-plant cell interactions that lead to early ROS induction occur outside the plasma membrane in an event requiring specific CP epitopes.  相似文献   

8.
Infectious material was formed at an early stage, and migrated into the mesophyll from the epidermis of tobacco leaves (Nicotiana tabacum cv. Samsun NN) during the period of 1 to 3 hours after inoculation with tobacco mosaic virus (TMV). The activity of membrane-bound Mg2+-activated ATPase from the mesophyll was stimulated two to four times within 30 minutes after inoculation with 1.0 microgram per milliliter of TMV. Maximum TMV stimulation of membrane-bound Mg2+-activated ATPase activity in epidermis and mesophyll was observed at 0.5 and 3.0 hours after inoculation, respectively. This stimulation was also observed with ultraviolet irradiated TMV (only RNA was destroyed), whereas, the stimulation was not observed with heat-irradiated TMV (both coat and RNA were destroyed). Stimulation equal to that of TMV was observed by inoculation with cucumber green mottle mosaic virus and to a lesser extent with cucumber mosaic virus.

These results illustrate that the stimulus resulting from inoculation with TMV transfers to underlying cells faster than the migration of TMV particles. This stimulus might be closely correlated to the structure of virus, but not to the infectivity of virus.

  相似文献   

9.
Treatment of tobacco mosaic virus (TMV) RNA with T1 RNase under mild conditions cuts the RNA molecule into a large number of fragments, only a few of which may be specifically recognized by disks of TMV protein. It has been shown elsewhere that these specifically recognized RNA fragments are a part of the coat protein cistron, the portion coding for amino acids 95 to 129 of the coat protein. It is reported that different size classes of partially uncoated virus particles were prepared by limited reconstitution between TMV RNA and protein or by partial stripping of intact virus with DMSO. Both procedures produce nucleoprotein rods in which the 5'-terminal portion of the RNA is encapsidated and the 3'-terminal region is free. The free and the encapsidated portions of the RNA were each tested for the ability to give rise to the aforesaid specifically recognized fragments of the coat protein cistron upon partial T1 RNase digestion. It was found that only the 3'-terminal third of the virus particle need to be uncoated in order to expose the portion of the RNA molecule from which these fragments are derived. We conclude, therefore, that the coat protein cistron is situated upon the 3'-terminal third of the RNA chain, i.e. within 2000 nucleotides of the 3'-end.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号