首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Inoue  C Ishii 《Mutation research》1984,125(2):185-194
Seven different mutants that show high sensitivity to MMS killing were isolated and mapped at different loci. One group, mms-(SA1), mms-(SA2) and mms-(SA6), showed high sensitivity to MMS but not to UV or gamma-rays. Another group, mms-(SA4) and mms-(SA5), showed extremely high sensitivity to UV and MMS. And mms-(SA3) and mms-(SA7) were moderately sensitive to both UV and MMS. Mms-(SA4) and mms-(SA1) were identified as alleles of uvs-2 and mus-7, respectively, which had been previously isolated. The mms-(SA1), mms-(SA6) and mms-(SA7) strains were barren in homozygous crosses, and the mms-(SA5) strain was barren in heterozygous crosses. The mms-(SA1), mms-(SA3) and mms-(SA5) strains showed high sensitivity to histidine. In summary, at least two new loci involved in the repair of MMS damage have been identified. The possibility that some of these new mutants are in new repair pathways is suggested.  相似文献   

2.

We have previously generated strains of Staphylococcus aureus SA003 resistant to its specific phage ɸSA012 through a long-term coevolution experiment. However, the DNA mutations responsible for the phenotypic change of phage resistance are unknown. Whole-genome analysis revealed eight genes that acquired mutations: six point mutations (five missense mutations and one nonsense mutation) and two deletions. Complementation of the phage-resistant strains by the wild-type alleles showed that five genes were linked to phage adsorption of ɸSA012, and two mutated host genes were linked to the inhibition of post-adsorption. Unlike ɸSA012, infection by ɸSA039, a close relative of ɸSA012, onto early coevolved phage-resistant SA003 (SA003R2) was impaired drastically. Here, we identified that ɸSA012 and ɸSA039 adsorb to the cell surface S. aureus SA003 through a different mechanism. ɸSA012 requires the backbone of wall teichoic acids (WTA), while ɸSA039 requires both backbone and the β-GlcNAc residue. In silico analysis of the ɸSA039 genome revealed that several proteins in the tail and baseplate region were different from ɸSA012. The difference in tail and baseplate proteins might be the factor for specificity difference between ɸSA012 and ɸSA039.

  相似文献   

3.
A L-methionine- D, L-sulfoximine-resistant mutant of the cyanobacterium Anabaena variabilis, strain SA1, excreted the ammonium ion generated from N(2) reduction. In order to determine the biochemical basis for the NH(4)(+)-excretion phenotype, glutamine synthetase (GS) was purified from both the parent strain SA0 and from the mutant. GS from strain SA0 (SA0-GS) had a pH optimum of 7.5, while the pH optimum for GS from strain SA1 (SA1-GS) was 6.8. SA1-GS required Mn(+2) for optimum activity, while SA0-GS was Mg(+2) dependent. SA0-GS had the following apparent K(m) values at pH 7.5: glutamate, 1.7 m M; NH(4)(+), 0.015 m M; ATP, 0.13 m M. The apparent K(m) for substrates was significantly higher for SA1-GS at its optimum pH (glutamate, 9.2 m M; NH(4)(+), 12.4 m M; ATP, 0.17 m M). The amino acids alanine, aspartate, cystine, glycine, and serine inhibited SA1-GS less severely than the SA0-GS. The nucleotide sequences of glnA (encoding glutamine synthetase) from strains SA0 and SA1 were identical except for a single nucleotide substitution that resulted in a Y183C mutation in SA1-GS. The kinetic properties of SA1-GS isolated from E. coli or Klebsiella oxytoca glnA mutants carrying the A. variabilis SA1 glnA gene were also similar to SA1-GS isolated from A. variabilis strain SA1. These results show that the NH(4)(+)-excretion phenotype of A. variabilis strain SA1 is a direct consequence of structural changes in SA1-GS induced by the Y183C mutation, which elevated the K(m) values for NH(4)(+) and glutamate, and thus limited the assimilation of NH(4)(+) generated by N(2) reduction. These properties and the altered divalent cation-mediated stability of A. variabilis SA1-GS demonstrate the importance of Y183 for NH(4)(+) binding and metal ion coordination.  相似文献   

4.
Stearic acid (SA) is highly soluble in structurally diverse solvents. SA/solvent packing within a (24.8 A)3 cubic volume explains the stoichiometry of SA solubility at multiple temperatures in multiple solvents. In the absence of solvent, the cubic volume contains 25 molecules at van der Waals distances from each other. At 55 degrees C, SA occupied half the cubic volume in saturated solution of four structurally diverse solvents. Below 4% SA/volume (e.g. in acetonitrile), the head and foot of each SA molecules on average is more than one solvent molecule away from the head and foot of a neighboring SA molecule. At 50% SA/cubic volume, -CH2- groups on SA molecules are separated from neighboring -CH2- groups on SA molecules by a monolayer of solvent molecules. Lowering the temperature from 55 to 25 degrees C, the volume fraction of SA decreased by a factor of 2 (or more) for every 6 degrees C. Lowering temperature increased the relative number of column of solvent molecules in the cubic phase, and correspondingly, the distance between SA molecules within the cubic volume increased. In three of five solvents, molecular mechanics calculations demonstrated the van der Waals stabilization that occurs from SA/SA affinity in the absence of solvent is similar in magnitude to the van der Waals stabilization from SA/solvent affinity. Methyl-t-butyl ether was less stabilized than hexane, acetone or methanol because the more bulky molecules packed less efficiently within the cubic volume. The most efficient/most stable packing however was still as columns of solvent between columns of SA. The efficiency and stability of SA and solvent packing optimal within the (24.8 A)3 cubic volume. Between 100 and 8% SA, multiple SA molecules present within the cubic volume function as SA aggregates. Both inter- and intra-cubic (phase) volume properties of SA aggregates coexist. Although acetonitrile and SA at the molecular level are both rod shaped, acetonitrile disrupted the packing of SA molecules within the cubic phase. The disrupted packing explains the much lower solubility of SA in acetonitrile than in the other solvents. The same molecular structures (e.g. methanol) can either stabilize or disrupt the packing of aggregated SA molecules, depending upon temperature. The mechanisms of aggregation within cubic volumes could also occur with structurally more complicated lipids. Aggregation and dispersion from such cubic phases could also be present in more complex chemical and/or macromolecular environments.  相似文献   

5.
It is well recognized that salicylic acid (SA) acts as a natural signaling molecule involved in both local and systemic plant defense responses upon attacks by pathogens. Recently, cellular SA receptors and a number of SA-related phloem-mobile signals were identified. Here, we compare the old and up-to-date concepts of plant defense signaling events involving SA. Finally, the crosstalk between intracellular and extracellular SA signaling events leading to long-distance spread of signals was outlined by focusing on the modes of both the short- and long-distance signaling events involving the actions of SA. For the above purpose, two distinct conceptual models for local SA perception and signaling mechanisms in the intracellular and extracellular paths (referred to as models i and ii, respectively) were proposed. In addition to two local SA perception models, we propose that the long-distance SA action could be attributed to three different modes, namely, (iii) local increase in SA followed by transport of SA and SA intermediates, (iv) systemic propagation of SA-derived signals with both chemical and electrical natures without direct movement of SA, and (v) integrated crosstalk allowing alternately repeated secondary signal propagation and biosynthesis of SA and/or conversion of inert SA intermediates to free SA finally contributing to the systemic spread of SA-derived signals. We review here that the long-distance SA signaling events (models iii–v), inevitably involve the mechanisms described in the local signaling models (models i and ii) as the key pieces of the crosstalk.  相似文献   

6.
Salicylic Acid in Rice (Biosynthesis,Conjugation, and Possible Role)   总被引:23,自引:5,他引:18       下载免费PDF全文
Salicylic acid (SA) is a natural inducer of disease resistance in some dicotyledonous plants. Rice seedlings (Oryza sativa L.) had the highest levels of SA among all plants tested for SA content (between 0.01 and 37.19 [mu]g/g fresh weight). The second leaf of rice seedlings had slightly lower SA levels than any younger leaves. To investigate the role of SA in rice disease resistance, we examined the levels of SA in rice (cv M-201) after inoculation with bacterial and fungal pathogens. SA levels did not increase after inoculation with either the avirulent pathogen Pseudomonas syringae D20 or with the rice pathogens Magnaporthe grisea, the causal agent of rice blast, and Rhizoctonia solani, the causal agent of sheath blight. However, leaf SA levels in 28 rice varieties showed a correlation with generalized blast resistance, indicating that SA may play a role as a constitutive defense compound. Biosynthesis and metabolism of SA in rice was studied and compared to that of tobacco. Rice shoots converted [14C]cinnamic acid to SA and the lignin precursors p-coumaric and ferulic acids, whereas [14C]benzoic acid was readily converted to SA. The data suggest that in rice, as in tobacco, SA is synthesized from cinnamic acid via benzoic acid. In rice shoots, SA is largely present as a free acid; however, exogenously supplied SA was converted to [beta]-O-D-glucosylSA by an SA-inducible glucosyltransferase (SA-GTase). A 7-fold induction of SA-GTase activity was observed after 6 h of feeding 1 mM SA. Both rice roots and shoots showed similar patterns of SA-GTase induction by SA, with maximal induction after feeding with 1 mM SA.  相似文献   

7.
14C-salicylic acid (SA) was used to monitor SA metabolism and its regulation in tobacco cell suspension culture. Two SA concentrations (20 microM and 200 microM) were used for comparison. SA was quickly taken up in both treatments, and the 200 microM-treated cells absorbed approximately 15 times that of 20 microM-treated cells within 5 min. More than 85% and 50% of the absorbed SA were excreted in free form to the culture medium within 5 h from cells treated with 200 microM and 20 microM SA, respectively. SA excretion was significantly inhibited by EGTA and the inhibition could be reversed by the addition of exogenous Ca2+ to the culture medium in the 200 microM SA treatment. However, EGTA had little or no effect on SA excretion in the 20 microM SA treatment. The data suggest that tobacco suspension-cultured cells may contain both Ca2+-dependent and Ca2+-independent pathways for SA excretion. Reduced glutathione (an active oxygen species scavenger), staurosporine (a protein kinase inhibitor), and cycloheximide (an inhibitor of de novo protein synthesis) also blocked intracellular SA excretion to the culture medium in the 200 microM but not in the 20 microM SA treatment. These data support the existence of alternative SA excretion pathways in tobacco suspension-cultured cells. Tobacco cells may use both Ca2+-dependent and Ca2+-independent excretion pathways to cope with different intracellular SA status, and the pathway influenced by EGTA, reduced glutathione, staurosporine, and cycloheximide is activated by SA at 200 microM, but not at 20 microM.  相似文献   

8.
Role of salicylic acid in plant abiotic stress   总被引:1,自引:0,他引:1  
Salicylic acid (SA) plays many roles in plant physiology. Besides pathogenesis-related resistance, SA is involved in the response to abiotic stress. However, the effects of SA on plant resistance to abiotic stress were found contradictionary, and the actual role of SA in abiotic stress remains unresolved. Generally, deficiency of SA or a very high level of SA increase the plant susceptibility to abiotic stress. The optimal levels for the highest stress tolerance range from 0.1 mM to 0.5 mM for most plants. But the role of SA at a certain level in moderate and severe abiotic stress may be different. This can be attributed to redox regulations in plant cells. In this paper, we discuss the relationship between reactive oxygen species (ROS) and SA, and propose a subsequent intracellular signal transduction network of SA and ROS under abiotic stress. Anti-stress substances besides antioxidant enzymes induced by SA are also summarized.  相似文献   

9.
Salicylic acid (SA) has been proposed to be an endogenous signalfor systemic acquired resistance to infection by pathogens inplants. In general, most SA is found in an inactive form asSA ß-glucoside (SAG). SAG seems to be a storage formof SA from which bioactive SA can be generated. Recent reportsindicate that ß-glucosidase might be involved in regulatingthe signaling activity of phytohormones. Therefore, it seemslikely that SA ß-glucosidase, the enzyme that hydrolyzesSAG to yield free SA, might also play an important role by regulatingthe level of free SA. Since hydrolysis of SAG seems to occurin intercellular spaces, we attempted to isolate SA ß-glucosidaseactivity from the intercellular spaces of SA-treated tobaccoleaves, where we found considerable amounts of the enzymaticactivity. Furthermore, increased levels of SA and SA ß-glucosidaseactivity were found in the leaves after treatment with exogenousSA. The role of SA ß-glucosidase in plant defensesystems is discussed. (Received November 15, 1994; Accepted January 20, 1995)  相似文献   

10.
Growth parameters and cadmium accumulation were investigated in alfalfa seedlings treated with 10 μM salicylic acid (SA) at the beginning of seed imbibition. Shoot and root growths were accelerated by SA treatment and suppressed by Cd both in presence and absence of SA. Cd accumulation was stimulated by SA in alfalfa seedlings in dependence of the treatment duration. K, Mg, Ca and Fe contents in roots are decreased in the presence of Cd alone, while SA induces a decrease of Mg, Ca and Fe. Shoot K, Mg and Ca concentrations are increased by Cd only in the absence of SA, while SA induces also an increase of these concentrations, but only in the absence of Cd. High negative correlation of Cd concentration with K and Ca concentrations in root indicates a competition for the same carrier not regulated by SA. Positive correlation between Cd and Mg concentrations in shoots, which is decreased by SA pre-treatment, together with the increase of positive correlation between Cd and Fe concentrations in shoots under the influence of SA, indicates a possible mechanism of SA action through maintenance of ionic homeostasis.  相似文献   

11.
水杨酸对黄瓜子叶表皮气孔开度的调节作用   总被引:1,自引:0,他引:1  
以黄瓜品种中农203(Cucumis sativus L.cv.Zhongnong 203)幼苗为试材,采用SA溶液根部施用和子叶表皮浸泡两种方式,显微观测了不同外源水杨酸(Salicylic acid,SA)溶液处理对其子叶表皮气孔开度的影响,以探讨SA与气孔运动的关系.结果表明:SA子叶表皮浸泡或根部施用后,气孔运动的趋势是随着SA浓度增加而孔径逐渐变小,且SA磷酸缓冲液的作用效果与SA水溶液相似.随着处理时间的延长,气孔开度逐渐变小,且气孔开度与SA处理时间达极显著(r=-0.962**)或显著(r=-0.914*)负相关.溶液低pH值,增强了SA对气孔开度的抑制作用,且SA浓度越高作用越明显;0.1 mmol/L SA处理后,pH为8、7、6溶液的气孔开度抑制率分别为90.2%、93.8%和96.3%,即SA溶液对气孔开度的抑制率随着溶液pH降低而升高.可见,外源SA能够促进气孔关闭,其作用随着SA浓度升高、处理时间延长和溶液pH值降低而增强,相对于磷酸缓冲液,以蒸馏水作为溶剂的SA溶液促进气孔关闭的作用更大.  相似文献   

12.
Nie H  He A  Zheng J  Xu S  Li J  Han CC 《Biomacromolecules》2008,9(5):1362-1365
As a natural biopolymer, sodium alginate (SA) has been widely used in the biomedical field in the form of powder, liquid, gel, and compact solid, but not in the form of nanofiber. Electrospinning is an effective method to fabricate nanofibers. However, electrospinning of SA from its aqueous solution is still a challenge. In this study, an effort has been made to solve this problem and find the key reasons that hinder the electrospinning of alginate aqueous solution. Through this research, it was found that pure SA nanofibers could be fabricated successfully by introducing a strong polar cosolvent, glycerol, into the SA aqueous solutions. The study on the properties of the modified SA solution showed that increasing glycerol content increased the viscosity of the SA solution greatly and, meanwhile, decreased the surface tension and the conductivity of the SA solution. The rheological results indicated that the increase in glycerol content could result in the enhanced entanglements of SA chains. Two schematic molecular models were proposed to depict the change of SA chain conformation in aqueous solution with and without glycerol. The main contribution of glycerol to the electrospinning process is to improve the flexibility and entanglement of SA chains by disrupting the strong inter- and intramolecular hydrogen bondings among SA chains, then forming new hydrogen bondings with SA chains.  相似文献   

13.
14.
Systemic induction of pathogenesis-related (PR) proteins in tobacco, which occurs during the hypersensitive response to tobacco mosaic virus (TMV), may be caused by a minimum 10-fold systemic increase in endogenous levels of salicylic acid (SA). This rise in SA parallels PR-1 protein induction and occurs in TMV-resistant Xanthi-nc tobacco carrying the N gene, but not in TMV-susceptible (nn) tobacco. By feeding SA to excised leaves of Xanthi-nc (NN) tobacco, we have shown that the observed increase in endogenous SA levels is sufficient for the systemic induction of PR-1 proteins. TMV infection became systemic and Xanthi-nc plants failed to accumulate PR-1 proteins at 32 degrees C. This loss of hypersensitive response at high temperature was associated with an inability to accumulate SA. However, spraying leaves with SA induced PR-1 proteins at both 24 and 32 degrees C. SA is most likely exported from the primary site of infection to the uninfected tissues. A computer model predicts that SA should move rapidly in phloem. When leaves of Xanthi-nc tobacco were excised 24 hr after TMV inoculation and exudates from the cut petioles were collected, the increase in endogenous SA in TMV-inoculated leaves paralleled SA levels in exudates. Exudation and leaf accumulation of SA were proportional to TMV concentration and were higher in light than in darkness. Different components of TMV were compared for their ability to induce SA accumulation and exudation: three different aggregation states of coat protein failed to induce SA, but unencapsidated viral RNA elicited SA accumulation in leaves and phloem. These results further support the hypothesis that SA acts as an endogenous signal that triggers local and systemic induction of PR-1 proteins and, possibly, some components of systemic acquired resistance in NN tobacco.  相似文献   

15.
Lateral projections of neurofilaments (NF) called sidearms (SA) affect axon stability and caliber. SA phosphorylation is thought to modulate inter-NF distance and interactions between NF and other subcellular organelles. SA were probed by atomic force microscopy (AFM) and dynamic light scattering (DLS) as a function of phosphorylation and ATP content. DLS shows SA are larger when phosphorylated, and AFM shows four unfoldable domains in SA regardless of phosphorylation state or the presence of ATP. However, the native phosphorylated SA requires three-fold higher force to unfold by AFM than dephosphorylated SA, suggesting a less pliant as well as larger structure when phosphorylated.  相似文献   

16.
The effects of pre-treatment of salicylic acid (SA) and pathogen inoculation, Rhizoctonia solani on proline accumulation, and enzymes activities were investigated in green bean leaves and roots. The plants were grown in greenhouse conditions, and were soil drenched with SA treatments, with and without pathogen inoculation. It was observed that the highest level of free proline accumulation in leaves was in Rhizoctonia?+?400?μM SA treatment, followed by Rhizoctonia?+?200?μM SA treatment. When comparing free proline content in leaves and roots, treated with SA and Rhizoctonia?+?SA, to their controls, the accumulation levels in Rhizoctonia?+?400?μM SA treatments were significantly higher than controls. When the enzyme activities with Rhizoctonia?+?SA treatment were compared to their solely applied SA treatments, the levels of β-1,4-glucanase and chitinase activities were lower than SA treatments alone. However, the free proline accumulation in leaves was higher in Rhizoctonia?+?400?μM SA treatment than in sole SA treatments.  相似文献   

17.
ABSTRACT: BACKGROUND: Scapula alata (SA) is a known complication of breast surgery associated with palsy of serratus anterior, but is seldom mentioned. We evaluated the risk factors associated with SA and the relationship of SA with ipsilateral shoulder/arm morbidity in a series of patients enrolled in a trial of post-surgery radiotherapy (RT). METHODS: The trial randomized women with completely resected stage I-II breast cancer to short-course image guided RT, vs. conventional RT. SA, arm volume and shoulder-arm mobility were measured prior to RT and at 1-3 months post-RT. Shoulder/arm morbidities were computed as post-RT percent change relatively to pre-RT measurements. RESULTS: Of 119 evaluable patients, 13 (=10.9%) had pre-RT SA. Age younger than 50 years old, body mass index less than 25 kg/m2, and axillary lymph node dissection, with odds ratios of 4.8 (P=0.009), 6.1 (P=0.016), and 6.1 (P=0.005), respectively. Randomization group was not significant. At 1-3 months post-RT, mean arm volume increased by 4.1% (P=0.036) and abduction decreased by 8.6% (P=0.046) among SA patients, but not among non SA patients. SA resolved in 8, persisted in 5, and appeared in 1 patient. CONCLUSION: Relationship of SA with lower body mass index suggests that SA might have been underestimated in overweight patients. Despite apparent resolution of SA in most patients, pre-RT SA portended an increased risk of shoulder/arm morbidity. We argue that SA warrants further investigation. Incidentally, the observation of SA occurring after RT in one patient represents the second case of post-RT SA reported in the literature.  相似文献   

18.
Shulaev V  Leon J  Raskin I 《The Plant cell》1995,7(10):1691-1701
Salicylic acid (SA) is a likely endogenous signal in the development of systemic acquired resistance (SAR) in some dicotyledonous plants. In tobacco mosaic virus (TMV)-resistant Xanthi-nc tobacco, SA levels increase systemically following the inoculation of a single leaf with TMV. To determine the extent to which systemic increases in SA result from SA export from the inoculated leaf, SA produced in TMV-inoculated or healthy leaves was noninvasively labeled with 18O2. Spatial and temporal distribution of 18O-SA indicated that most of the SA detected in the healthy tissues was synthesized in the inoculated leaf. No significant increase in the activity of benzoic acid 2-hydroxylase, the last enzyme involved in SA biosynthesis, was detected in upper uninoculated leaves, although the basal level of enzyme activity was relatively high. No increases in SA level, pathogenesis-related PR-1 gene expression, or TMV resistance in the upper uninoculated leaf were observed if the TMV-inoculated leaf was detached up to 60 hr after inoculation. Apart from the inoculated tissues, the highest increase in SA was observed in the leaf located directly above the inoculated leaf. The systemic SA increase observed during SAR may be explained by phloem transport of SA from the inoculation sites.  相似文献   

19.
Salicylic acid (SA) is a likely endogenous regulator of localized and systemic disease resistance in plants. During the hypersensitive response of Nicotiana tabacum L. cv Xanthi-nc to tobacco mosaic virus (TMV), SA levels rise dramatically. We studied SA biosynthesis in healthy and TMV-inoculated tobacco by monitoring the levels of SA and its likely precursors in extracts of leaves and cell suspensions. In TMV-inoculated leaves, stimulation of SA accumulation is accompanied by a corresponding increase in the levels of benzoic acid. 14C-Tracer studies with cell suspensions and mock-or TMV-inoculated leaves indicate that the label moves from trans-cinnamic acid to SA via benzoic acid. In healthy and TMV-inoculated tobacco leaves, benzoic acid induced SA accumulation. o-Coumaric acid, which was previously reported as a possible precursor of SA in other species, did not increase SA levels in tobacco. In healthy tobacco tissue, the specific activity of newly formed SA was equal to that of the supplied [14C]benzoic acid, whereas in TMV-inoculated leaves some isotope dilution was observed, presumably because of the increase in the pool of endogenous benzoic acid. We observed accumulation of pathogen-esis-related-1 proteins and increased resistance to TMV in benzoic acid- but not in o-coumaric acid-treated tobacco leaves. This is consistent with benzoic acid being the immediate precursor of SA. We conclude that in healthy and virus-inoculated tobacco, SA is formed from cinnamic acid via benzoic acid.  相似文献   

20.
The mechanism of stomatal closing by salicylic acid (SA) has been investigated. The addition of 1 mM SA to fully opened stomata resulted in a significant reduction of 75% in stomatal aperture. Stomata in the treatment of SA with EGTA closed as observed in the treatment of SA. However, the addition of catalase with SA completely inhibited stomatal closing. Stomatal closing induced by SA was also reduced by Ca2+. To understand the relation bewteen stomatal closing by SA and catalase activity, the effect of SA on catalse activity and the effect of AT (catalase inhibitor) on stomatal closing was investigated. SA inhibited 32% of catalase activity. Stomata in isolated epidermis floated on an incubation solution containing 0.1 mM AT closed from 9.6 μm to 3.2 μm after 1 hour. SA stimulated K+ efflux as much as the twice of the control in isolated strips. SA inhibited 53% of photosynthetic activity at the light intensity of 1000 μmole m2 s1 on SA infiltrated leaves. A similar result was found on stomatal conductance in SA infiltrated leaves. These results indicate that SA inhibit catalase activity and increase the concentration of H2O2 in guard cell cytoplasm. H2O2 oxidize the plasma membrane and increase the membrane permeability of K+. The mass efflux of K+ induce the loss of turgor pressure and lead to stomatal closing. The inhibition of photosynthetic activity by SA suggests that stomatal closing by SA is also related with the decrease of photosynthetic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号