首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 760 毫秒
1.
2.
3.

Nitric oxide (NO) is an important signaling molecule that plays a pivotal role in stress tolerance. To study the role of NO in drought tolerance and elucidate the underlying mechanisms, NO (0 and 100 μM) was applied to drought-treated soybean plants. Drought stress was imposed by PEG (5% (W/V) of PEG 6000. Nitric oxide improved growth of soybean plants under drought as evidenced by enhanced dry weight (30%). Nitric oxide caused a remarkable increase in activities of catalase and superoxide dismutase (SOD) and SOD expression (14.8-fold), which led to a significant decline in malondealdehyde content under drought conditions. Nitric oxide induced proline biosynthesis due to enhancing pyrroline-5- carboxylate synthetase (P5CS) expression (43.66-fold). The growth-promoting effect of NO application in soybean plants was concomitant with change in metabolic profile (phenolic acid and flavonoid compounds). Nitric oxide up-regulated of phenylalanine ammonia-lyase (PAL) expression in drought-treated plants and may influence on the phenylpropanoid production. Nitric oxide increased salicylic acid (SA) content in soybean plants under stress. So, NO and SA are jointly responsible for boosted tolerance to drought stress in soybean plants. The decrease in unsaturated fatty acid through NO application might reflect a reduction in oxidative damage. These results propose a multifaceted contribution of NO through regulation of physiological and metabolic processes in response to drought stress.

  相似文献   

4.
5.
LOS5/ABA3 gene encoding molybdenum cofactor sulphurase is involved in aldehyde oxidase (AO) activity in Arabidopsis, which indirectly regulates ABA biosynthesis and increased stress tolerance. Here, we used a constitutive super promoter to drive LOS5/ABA3 overexpression in soybean (Glycine max L.) to enhance drought tolerance in growth chamber and field conditions. Expression of LOS5/ABA3 was up‐regulated by drought stress, which led to increasing AO activity and then a notable increase in ABA accumulation. Transgenic soybean under drought stress had reduced water loss by decreased stomatal aperture size and transpiration rate, which alleviated leaf wilting and maintained higher relative water content. Exposed to drought stress, transgenic soybean exhibited reduced cell membrane damage by reducing electrolyte leakage and production of malondialdehyde and promoting proline accumulation and antioxidant enzyme activities. Also, overexpression of LOS5/ABA3 enhanced expression of stress‐up‐regulated genes. Furthermore, the seed yield of transgenic plants is at least 21% higher than that of wide‐type plants under drought stress conditions in the field. These data suggest that overexpression of LOS5/ABA3 could improve drought tolerance in transgenic soybean via enhanced ABA accumulation, which could activate expression of stress‐up‐regulated genes and cause a series of physiological and biochemical resistant responses.  相似文献   

6.
Several mechanisms have been proposed for plant growth-promoting rhizobacteria (PGPR)-mediated drought stress tolerance in plants, but little is known about the molecular pathways involved in the drought tolerance promoted by PGPR. We, therefore, aim to study the differential gene response between Pseudomonas putida strain FBKV2 and maize interaction under drought stress using Illumina sequencing. RNA Seq libraries were generated from leaf tissue of maize seedlings with and without strain FBKV2 subjected to drought stress. The libraries were mapped with maize genome database for the identification of differentially expressed genes (DEGs). The expression studies confirmed the downregulation of ethylene biosynthesis (ET), abscisic acid (ABA) and auxin signaling, superoxide dismutase, catalase, and peroxidase in FBKV2-inoculated seedlings. On the other hand, genes involved in β-alanine and choline biosynthesis, heat shock proteins, and late embryogenesis abundant (LEA) proteins were upregulated, which could act as key elements in the drought tolerance conferred by P. putida strain FBKV2. Another remarkable expression was observed in genes encoding benzoxazinoid (BX) biosynthesis which act as the chemoattractant, which was further confirmed by gfp-labeled P. putida strain FBKV2 root colonization studies. Overall, these results indicate that secretion of BXs attracted P. putida strain FBKV2 resulted in root colonization and mediated drought tolerance by modulating metabolic, signaling, and stress-responsive genes.  相似文献   

7.
Two plant growth promoting rhizobacteria (PGPR) Pseudomonas putida NBRIRA and Bacillus amyloliquefaciens NBRISN13 with ability to tolerate abiotic stress along with multiple PGP traits like ACC deaminase activity, minerals solubilisation, hormones production, biofilm formation, siderophore activity were evaluated for their synergistic effect to ameliorate drought stress in chickpea. Earlier we have reported both the strains individually for their PGP attributes and stress amelioration in host plants. The present study explains in detail the possibilities and benefits of utilizing these 2 PGPR in consortium for improving the chickpea growth under control and drought stressed condition. In vitro results clearly demonstrate that both the PGPR strains are compatible to each other and their synergistic growth enhances the PGP attributes. Greenhouse experiments were conducted to evaluate the effect of inoculation of both strains individually and consortia in drought tolerant and sensitive cultivars (BG362 and P1003). The growth parameters were observed significantly higher in consortium as compared to individual PGPR. Colonization of both PGPR in chickpea rhizosphere has been visualized by using gfp labeling. Apart from growth parameters, defense enzymes, soil enzymes and microbial diversity were significantly modulated in individually PGPR and in consortia inoculated plants. Negative effects of drought stress has been ameliorated and apparently seen by higher biomass and reversal of stress indicators in chickpea cultivars treated with PGPR individually or in consortia. Findings from the present study demonstrate that synergistic application has better potential to improve plant growth promotion under drought stress conditions.  相似文献   

8.
Main conclusion

Transgenic rice expressing pigeonpea Cc CDR conferred high-level tolerance to different abiotic stresses. The multiple stress tolerance observed in CcCDR -transgenic lines is attributed to the modulation of ABA-dependent and-independent signalling-pathway genes.

Stable transgenic plants expressing Cajanus cajan cold and drought regulatory protein encoding gene (CcCDR), under the control of CaMV35S and rd29A promoters, have been generated in indica rice. Different transgenic lines of CcCDR, when subjected to drought, salt, and cold stresses, exhibited higher seed germination, seedling survival rates, shoot length, root length, and enhanced plant biomass when compared with the untransformed control plants. Furthermore, transgenic plants disclosed higher leaf chlorophyll content, proline, reducing sugars, SOD, and catalase activities, besides lower levels of MDA. Localization studies revealed that the CcCDR-GFP fusion protein was mainly present in the nucleus of transformed cells of rice. The CcCDR transgenics were found hypersensitive to abscisic acid (ABA) and showed reduced seed germination rates as compared to that of control plants. When the transgenic plants were exposed to drought and salt stresses at vegetative and reproductive stages, they revealed larger panicles and higher number of filled grains compared to the untransformed control plants. Under similar stress conditions, the expression levels of P5CS, bZIP, DREB, OsLEA3, and CIPK genes, involved in ABA-dependent and-independent signal transduction pathways, were found higher in the transgenic plants than the control plants. The overall results amply demonstrate that the transgenic rice expressing CcCDR bestows high-level tolerance to drought, salt, and cold stress conditions. Accordingly, the CcCDR might be deployed as a promising candidate gene for improving the multiple stress tolerance of diverse crop plants.

  相似文献   

9.
In the climate change scenario the drought has been diagnosed as major stress affecting crop productivity. This review demonstrates some recent findings on the amelioration of drought stress. Nanoparticles, synthetic growth regulators viz. Trinexapac-ethyl, and Biochar addition helps to economize the water budget of plants, enhances the bioavailability of water and nutrients as well as overcomes drought induced osmotic and oxidative stresses. Besides ABA, SA and JA are also involved in inducing tolerance to drought stress through modulation of physiological and biochemical processes in plants. Plant growth promoting rhizobacteria (PGPR) offer new opportunities in agricultural biotechnology. These beneficial microorganisms colonize the rhizosphere/endo-rhizosphere of plants and impart drought tolerance by improving root architechture, enhancing water use efficiency, producing exopolysaccharides, phytohormones viz, ABA, SA and IAA and volatile compounds. Further PGPR also play positive role in combating osmotic and oxidative stresses induced by drought stress through enhancing the accumulation of osmolytes, antioxidants and upregulation or down regulation of stress responsive genes. In transgenic plants stress inducible genes enhanced abiotic stress tolerance by encoding key enzymes regulating biosynthesis of compatible solutes. The role of genes/cDNAs encoding proteins involved in regulating other genes/proteins, signal transduction process and strategies to improve drought stress tolerance have also been discussed.  相似文献   

10.
11.
12.

Under the stressed conditions plant growth-promoting rhizobacteria (PGPR) are able to stimulate plant growth through several mechanisms, including antioxidants alleviation, regulation of stress responsive genes and phytohormones etc. Present study is conducted to investigate the impact of Paenibacillus lentimorbus B-30488 inoculation on salinity and drought stress mitigation in Arabidopsis thaliana through modulation in defense enzymes, phyto-hormones and root system architecture associated gene expression profiling. In vitro experiments clearly demonstrated the role of B-30488 in stimulating the root length, branches, lateral root formation and biomass under salinity and drought stress. The inoculation of B-30488 modulated the phytohormones levels to protect the plants from salinity and drought stress. Similarly, defence enzymes were also activated under the stressed conditions, but B-30488 inoculation reduced the antioxidants content during salinity and drought stress as compared to their respective controls. Microscopy results showed decrease in lateral roots hair formation under both stresses and B-30488 inoculation not only mitigate but also enhanced the lateral root formation. Gene expression analysis through real time polymerase chain reaction (RT-PCR) showed modulated expression of several genes related to root development, stress and lateral root formation in B-30488 inoculated seedlings. Results based on the present study, B-30488 is also involved in alteration root architecture, its growth regulation via modulation in phytohormones and genes expression and overall significant improvement in plant growth under stress conditions.

  相似文献   

13.
Both the plant growth promoting rhizobacteria (PGPR) and plant growth regulators (PGR) exert beneficial effects on plant growth even under stress, but combined effect of both of them has not been evaluated yet. Present investigation was aimed to determine the responses of 2 chickpea varieties (differing in drought tolerance) to 3 PGPR viz. Bacillus subtilis, Bacillus thuringiensis and Bacillus megaterium and PGR (SA and Putrescine) on physiology of chickpea grown in sandy soil. The PGR, Salicylic acid (SA) and Putrescine (Put) were sprayed on the seedling 20 days after germination. Results revealed, synergistic effects of PGPR and PGR on chlorophyll, protein and sugar contents. Addition of PGR to PGPR inoculated plants assisted the plant in osmoregulation and amelioration of oxidative stresses and in induction of new proteins. Combined application of PGR and PGPR decreased lipid peroxidation more effectively but increased the leaf area. It is inferred that PGPR and PGR work synergistically to promote growth of plants under moisture and nutrient deficit condition of sandy soil. Since, SA induces Systemic Acquired Resistance (SAR) in plants hence the addition of SA along with PGPR may render the plant more productive and better tolerant to diseases/pathogen attack.  相似文献   

14.
15.
In this report we address the changes in the expression of the genes involved in ROS scavenging and ethylene biosynthesis induced by the inoculation of plant growth-promoting rhizobacteria (PGPR) isolated from potato rhizosphere. The two Bacillus isolates used in this investigation had earlier demonstrated a striking influence on potato tuberization. These isolates showed enhanced 1-aminocyclopropane-1-carboxylic acid deaminase activity, phosphate solubilization, and siderophore production. Potato plants inoculated with these PGPR isolates were subjected to salt, drought, and heavy-metal stresses. The enhanced mRNA expression levels of the various ROS-scavenging enzymes and higher proline content in tubers induced by PGPR-treated plants contributed to increased plant tolerance to these abiotic stresses. Furthermore, the photosynthetic performance indices of PGPR-inoculated plants clearly exhibited a positive influence of these bacterial strains on the PSII photochemistry of the plants. Overall, these results suggest that the PGPR isolates used in this study are able to confer abiotic stress tolerance in potato plants.  相似文献   

16.
MicroRNAs are small non-coding regulatory RNA molecules that play an important role in the modulation of gene expression during various environmental stresses. Pseudomonas putida RA, a plant growth promoting rhizobacteria (PGPR) colonizes the root surface of plants improving their growth and development during abiotic stresses modulating the expression of stress-responsive genes; however, the impact of RA on stress responsive-miRNA remains elusive. The present study was an attempt to delineate the role of PGPR in modulating stress responsive-miRNAs in a tolerant desi chickpea genotype exposed to drought and salt stresses. The existence of variable expression patterns of individual miRNAs and their target genes under these stresses at different time points indicate a distinct miRNA-mediated perception and response mechanisms operating under these stresses in the presence or absence of RA in chickpea.  相似文献   

17.
Drought is one of the key restraints to agricultural productivity worldwide and is expected to increase further. Drought stress accompanied by reduction in precipitation pose major challenges to future food safety. Strategies should be develop to enhance drought tolerance in crops like chickpea and wheat, in order to enhance their growth and yield. Drought tolerance strategies are costly and time consuming however, recent studies specify that plant growth promoting rhizobacteria (PGPR) and plant growth regulators (PGRs) can help plants to withstand under harsh environmental condition and enable plants to cope with drought stress. PGPR can act as biofertilizer and bioenhancer for different legumes and non-legumes. The use of PGPR and symbiotic microorganisms, may be valuable in developing strategies to assist water conservation in plants. The use of PGPR has been confirmed to be an ecologically sound way of enhancing crop yields by facilitating plant growth through direct or indirect mechanism. The mechanisms of PGPR for water conservation include secretion of exopolysaccharides, biofilm formation, alternation in phytohormone content, improvement in sugar concentration, enhancing availability of micro- and macronutrients and changes in plant functional traits. Similarly, plant growth regulators (PGRs) are specially noticed in actively growing tissues under stress conditions and have been associated in the control of cell division, embryogenesis, root formation, fruit development and ripening, and reactions to biotic and abiotic stresses and upholding water conservation status in plants. Previous studies also suggest that plant metabolites interact with plant physiology under stress condition and impart drought tolerance. Metabolites like, sugars, amino acids, organic acid and polyols play a key role in drought tolerance of crop plants grown under stress condition. It is concluded from the present study that PGRs in combination with PGPR consortium can be an effective formulation to promote plant growth and maintenance of plant turgidity under drought stress. This review is a compilation of the effect of drought stress on crop plants and described interactions between PGPR/PGRs and plant development, knowledge of water conservation and stress release strategies of PGPR and PGRs and the role of plant metabolites in drought tolerance of crop plants. This review also bridges the gaps that summarizes the mechanism of action of PGPR for drought tolerance of crop plants and sustainability of agriculture and applicability of these beneficial rhizobacteria in different agro-ecosystems under drought stress.  相似文献   

18.
Arabidopsis thaliana acyl‐CoA‐binding protein 2 (ACBP2) is a stress‐responsive protein that is also important in embryogenesis. Here, we assign a role for ACBP2 in abscisic acid (ABA) signalling during seed germination, seedling development and the drought response. ACBP2 was induced by ABA and drought, and transgenic Arabidopsis overexpressing ACBP2 (ACBP2‐OXs) showed increased sensitivity to ABA treatment during germination and seedling development. ACBP2‐OXs also displayed improved drought tolerance and ABA‐mediated reactive oxygen species (ROS) production in guard cells, thereby promoting stomatal closure, reducing water loss and enhancing drought tolerance. In contrast, acbp2 mutant plants showed decreased sensitivity to ABA in root development and were more sensitive to drought stress. RNA analyses revealed that ACBP2 overexpression up‐regulated the expression of Respiratory Burst Oxidase Homolog D (AtrbohD) and AtrbohF, two NAD(P)H oxidases essential for ABA‐mediated ROS production, whereas the expression of Hypersensitive to ABA1 (HAB1), an important negative regulator in ABA signalling, was down‐regulated. In addition, transgenic plants expressing ACBP2pro:GUS showed beta‐glucuronidase (GUS) staining in guard cells, confirming a role for ACBP2 at the stomata. These observations support a positive role for ACBP2 in promoting ABA signalling in germination, seedling development and the drought response.  相似文献   

19.
20.
Arbuscular mycorrhizal (AM) symbiosis and plant-growth-promoting rhizobacterium (PGPR) can alleviate the effects of water stress in plants, but it is unknown whether these benefits can be maintained at elevated CO2. Therefore, we carried out a study where seedlings of Lactuca sativa were inoculated with the AM fungus (AMF) Glomus intraradices N.C. Schenk & G.S. Sm. or the PGPR Pseudomonas mendocina Palleroni and subjected to two levels of watering and two levels of atmospheric CO2 to ascertain their effects on plant physiological parameters and gene expression of one PIP aquaporin in roots. The inoculation with PGPR produced the greatest growth in lettuce plants under all assayed treatments as well as the highest foliar potassium concentration and leaf relative water content under elevated [CO2] and drought. However, under such conditions, the PIP2 gene expression remained almost unchanged. G. intraradices increased significantly the AMF colonization, foliar phosphorus concentration and leaf relative water content in plants grown under drought and elevated [CO2]. Under drought and elevated [CO2], the plants inoculated with G. intraradices showed enhanced expression of the PIP2 gene as compared to P. mendocina or control plants. Our results suggest that both microbial inoculation treatments could help to alleviate drought at elevated [CO2]. However, the PIP2 gene expression was increased only by the AMF but not by the PGPR under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号