首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Pseudomonas aeruginosa is commonly associated with contact lens (CL) -related eye infections, for which bacterial adhesion and biofilm formation upon hydrogel CLs is a specific risk factor. Whilst P. aeruginosa has been widely used as a model organism for initial biofilm formation on CLs, in-vitro models that closely reproduce in-vivo conditions have rarely been presented.  相似文献   

2.

Background  

Pseudomonas aeruginosa is a common pathogen in chronic respiratory tract infections. It typically makes a biofilm, which makes treatment of these infections difficult. In this study, we investigated the inhibitory effects of N-acetylcysteine (NAC) on biofilms produced by P. aeruginosa.  相似文献   

3.

Background  

Staphylococcus aureus and Pseudomonas aeruginosa are often found together in the airways of cystic fibrosis (CF) patients. It was previously shown that the P. aeruginosa exoproduct 4-hydroxy-2-heptylquinoline-N-oxide (HQNO) suppresses the growth of S. aureus and provokes the emergence of small-colony variants (SCVs). The presence of S. aureus SCVs as well as biofilms have both been associated with chronic infections in CF.  相似文献   

4.
Respiratory tract and device associated infections caused by biofilm forming Pseudomonas aeruginosa play a primary role in the pathogenesis and prognosis of cystic fibrosis (CF) diseases. The biofilm formed by these pathogens attributes to the antibiotic resistance and protection from host immune response. Once established, the pathogens respond poorly to therapeutic agents. Recently medicinal plants are largely explored as potential source of bioactive agents. In this context the present study reports the antibiofilm activity of the folkloric medicinal plant Andrographis paniculata against biofilm forming CF causative Pseudomonas aeruginosa isolated from CF sputum. P. aeruginosa was also assessed for their growth and development of the biofilm, phylogenetic relationship and antibiotic susceptibility. Antibiogram of the strains indicated that they were resistant to more than one antibiotic. Six extracts of A. paniculata showed significant antibiofilm activity. P. aeruginosa strains, KMS P03 and KMS P05, were found to be maximally inhibited by the methanol extract to an extent of 88.6 and 87.5% respectively. This is the first report on antibiofilm activity of A. paniculata extracts, and our results indicate scope for development of complementary medicine for biofilm associated infections.  相似文献   

5.

Background  

Pseudomonas aeruginosa is the leading cause of morbidity and mortality in patients with cystic fibrosis (CF). With chronicity of infection, the organism resides as a biofilm, shows multi-drug resistance, diversifies its colony morphology and becomes auxotrophic. The patients have been found to be colonized with multiple genotypes. The present work was carried out to characterize P. aeruginosa isolated from children with cystic fibrosis using phenotypic and genotypic methods.  相似文献   

6.

Background  

Elucidation of the communal behavior of microbes in mixed species biofilms may have a major impact on understanding infectious diseases and for the therapeutics. Although, the structure and the properties of monospecies biofilms and their role in disease have been extensively studied during the last decade, the interactions within mixed biofilms consisting of bacteria and fungi such as Candida spp. have not been illustrated in depth. Hence, the aim of this study was to evaluate the interspecies interactions of Pseudomonas aeruginosa and six different species of Candida comprising C. albicans, C. glabrata, C. krusei, C. tropicalis, C. parapsilosis, and C. dubliniensis in dual species biofilm development.  相似文献   

7.
8.
9.

Background  

The Burkholderia cepacia complex (Bcc) is a collection of nine genotypically distinct but phenotypically similar species. They show wide ecological diversity and include species that are used for promoting plant growth and bio-control as well species that are opportunistic pathogens of vulnerable patients. Over recent years the Bcc have emerged as problematic pathogens of the CF lung. Pseudomonas aeruginosa is another important CF pathogen. It is able to synthesise hydrogen cyanide (HCN), a potent inhibitor of cellular respiration. We have recently shown that HCN production by P. aeruginosa may have a role in CF pathogenesis. This paper describes an investigation of the ability of bacteria of the Bcc to make HCN.  相似文献   

10.
11.

Introduction

Pseudomonas aeruginosa and Acinetobacter spp. are found to be associated with biofilm and metallo-β-lactamase production and are the common causes of serious infections mainly in hospitalized patients. So, the main aims of this study were to determine the rates of biofilm production and metallo beta-lactamase production (MBL) among the strains of Pseudomonas aeruginosa and Acinetobacter spp. isolated from hospitalized patients.

Methods

A total of 85 P. aeruginosa isolates and 50 Acinetobacter spp. isolates isolated from different clinical specimens from patients admitted to Shree Birendra Hospital, Kathmandu, Nepal from July 2013 to May 2014 were included in this study. The bacterial isolates were identified with the help of biochemical tests. Modified Kirby-Bauer disc diffusion technique was used for antimicrobial susceptibility testing. Combined disc diffusion technique was used for the detection of MBL production, while Congo red agar method and tube adherence method were used for detection of biofilm production.

Results

Around 16.4% of P. aeruginosa isolates and 22% of the strains of Acinetobacter spp. were metallo β-lactamase producers. Out of 85 P. aeruginosa isolates, 23 (27.05%) were biofilm producers according to tube adherence test while, only 13 (15.29%) were biofilm producers as per Congo red agar method. Similarly, out of 50 Acinetobacter spp. 7 (14%) isolates were biofilm producers on the basis of tube adherence test, while only 5 (10%) were positive for biofilm production by Congo red agar method. Highest rates of susceptibility of P. aeruginosa as well as Acinetobacter spp. were seen toward colistin.

Conclusion

In our study, biofilm production and metallo beta-lactamase production were observed among Pseudomonas aeruginosa and Acinetobacter spp. However, no statistically significant association could be established between biofilm production and metallo beta-lactamase production.
  相似文献   

12.

Background  

Chinchillas (Chinchilla laniger) are popular as pets and are often used as laboratory animals for various studies. Pseudomonas aeruginosa is a major infectious agent that causes otitis media, pneumonia, septicaemia enteritis, and sudden death in chinchillas. This bacterium is also a leading cause of nosocomial infections in humans. To prevent propagation of P. aeruginosa infection among humans and animals, detailed characteristics of the isolates, including antibiotic susceptibility and genetic features, are needed. In this study, we surveyed P. aeruginosa distribution in chinchillas bred as pets or laboratory animals. We also characterized the isolates from these chinchillas by testing for antibiotic susceptibility and by gene analysis.  相似文献   

13.

Background  

Pseudomonas aeruginosa is an opportunistic pathogen that is the major cause of morbidity and mortality in patients with cystic fibrosis (CF). While most CF patients are thought to acquire P. aeruginosa from the environment, person-person transmissible strains have been identified in CF clinics worldwide. The molecular basis for transmissibility and colonization of the CF lung remains poorly understood.  相似文献   

14.

Background  

Although solid surface-associated biofilm development of S. oneidensis has been extensively studied in recent years, pellicles formed at the air-liquid interface are largely overlooked. The goal of this work was to understand basic requirements and mechanism of pellicle formation in S. oneidensis.  相似文献   

15.

Introduction  

SPARC is a matricellular protein, which, along with other extracellular matrix components including collagens, is commonly over-expressed in fibrotic diseases. The purpose of this study was to examine whether inhibition of SPARC can regulate collagen expression in vitro and in vivo, and subsequently attenuate fibrotic stimulation by bleomycin in mouse skin and lungs.  相似文献   

16.

Objective

To screen for the quorum-sensing (QS) inhibitors from marine-derived fungi and evaluate their anti-QS properties in Pseudomonas aeruginosa.

Results

QS inhibitory activity was found in secondary metabolites of a marine fungus Fusarium sp. Z10 using P. aeruginosa QSIS-lasI biosensor. The major active compound of this fungus was isolated by HPLC and identified as equisetin. Subinhibitory concentration of equisetin could inhibit the formation of biofilm, swarming motility, and the production of virulence factors in P. aeruginosa. The inhibition of las, PQS, and rhl system by equisetin were determined using Escherichia coli MG4/pKDT17, E.coli pEAL08-2, and E.coli pDSY, respectively. Real–time RT-PCR assays showed that equisetin could downregulate the mRNA expression of QS-related genes.

Conclusions

Equisetin proved its potential as an inhibitor against P. aeruginosa QS system and might also serve as precursor compound in development of novel therapeutics for infectious diseases by optimal design of structures.
  相似文献   

17.
Iron-limiting conditions have been reported to be prevalent in the milieu of urinary tract. In the present investigation, effect of iron on virulence of uropathogenic Pseudomonas aeruginosa in planktonic and biofilm cell mode was studied. Significant enhancement in elaboration of all the virulence traits along with increased adherence to uroepithelial cells and decreased phagocytosis of P. aeruginosa was observed following growth in iron-deplete medium. On the contrary, decrease in all these parameters except phagocytosis was observed when P. aeruginosa was grown in iron-rich medium. In vivo, P. aeruginosa grown in iron-deplete medium showed increased renal bacterial load and tissue pathology in a mouse model of ascending urinary tract infection compared with organisms grown in iron-replete medium. The results of the present study may help in understanding host–parasite interaction and in developing alternative preventive approach against P. aeruginosa induced urinary tract infections.  相似文献   

18.
Bacterial species are found primarily as residents of complex surface-associated communities, known as biofilms. Although these structures prevail in nature, bacteria still exist in planktonic lifestyle and differ from those in morphology, physiology, and metabolism. This study aimed to investigate the influence of physiological states of Pseudomonas aeruginosa and Escherichia coli in cell-to-cell interactions. Filtered supernatants obtained under planktonic and biofilm cultures of each single species were supplemented with tryptic soy broth (TSB) and used as the growth media (conditioned media) to planktonic and sessile growth of both single- and two-species cultures. Planktonic bacterial growth was examined through OD640 measurement. One-day-old biofilms were evaluated in terms of biofilm biomass (CV), respiratory activity (XTT), and CFU number. Conditioned media obtained either in biofilm or in planktonic mode of life triggered a synergistic effect on planktonic growth, mainly for E. coli single cultures growing in P. aeruginosa supernatants. Biofilms grown in the presence of P. aeruginosa biofilms-derived metabolites presented less mass and activity. These events highlight that, when developed in biofilm, P. aeruginosa release signals or metabolites able to prejudice single and binary biofilm growth of others species and of their own species. However, products released by their planktonic counterparts did not impair biofilm growth or activity. E. coli, living as planktonic or sessile cultures, released signals and metabolites or removed un-beneficial compounds which promoted the growth and activity of all the species. Our findings revealed that inter and intraspecies behaviors depend on the involved bacteria and their adopted mode of life.  相似文献   

19.

Background  

Pseudomonas aeruginosa frequently colonizes and is responsible for severe ventilator-associated pneumonia in intubated patients. A quorum-sensing (QS) circuit, depending on the production of the two QS-signaling molecules (autoinducers, AIs) 3-oxo-C12-HSL and C4-HSL, regulates the production by P. aeruginosa of several virulence factors and is required for biofilm formation. Therefore QS-inhibition has been suggested as a new target for preventive and/or therapeutic strategies. However the precise role of QS during colonization and subsequent infections of intubated patients remains unclear.  相似文献   

20.

Background  

Little is known regarding the extent or targets of phosphorylation in mycoplasmas, yet in many other bacterial species phosphorylation is known to play an important role in signaling and regulation of cellular processes. To determine the prevalence of phosphorylation in mycoplasmas, we examined the CHAPS-soluble protein fractions of Mycoplasma genitalium and Mycoplasma pneumoniae by two-dimensional gel electrophoresis (2-DE), using a combination of Pro-Q Diamond phosphoprotein stain and 33P labeling. Protein spots that were positive for phosphorylation were identified by peptide mass fingerprinting using MALDI-TOF-TOF mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号