首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular links between cell cycle control and the regulation of programmed cell death are largely unknown in plants. Here we studied the relationship between the cell cycle and elicitor-induced cell death using synchronized tobacco BY-2 cells. Flow cytometry and fluorescence microscopy of nuclear DNA, and RNA gel-blot analyses of cell cycle-related genes revealed that the proteinaceous elicitor cryptogein induced cell cycle arrest at the G1 or G2 phase before the induction of cell death. Furthermore, the patterns of cell death induction and defence-related genes were different in different phases of the cell cycle. Constitutive treatment with cryptogein induced cell cycle arrest and cell death at the G1 or G2 phase. With transient treatment for 2 h, cell cycle arrest and cell death were only induced by treatment with the elicitor during the S or G1 phase. By contrast, the elicitor-induced production of reactive oxygen species was observed during all phases of the cell cycle. These results indicate that although recognition of the elicitor signal is cell cycle-independent, the induction of cell cycle arrest and cell death depends on the phase of the cell cycle.  相似文献   

2.
Flow cytometric (FC) analysis was applied to determine changes at cellular level during the cultivation of hybridoma cell line MN12 in a suspension batch culture. The relative cell size, cytoplasmic and membrane IgG content and the viability were monitored. Besides, the specificity of the cytoplasmic and membrane IgG was ascertained by means of a synthetic peptide containing the antigenic epitope recognized by the antibody. Cell size was found to increase during the exponential growth phase. The viability as determined by FC follows a similar pattern with the viability data obtained by the conventional trypan blue exclusion test. The relative cytoplasmic and membrane IgG contents were high during the exponential growth and low during stationary phase. Measurement of cell cycle distribution and the antibody content in the culture fluid, indicated that the major part of the cytoplasmic IgG is secreted by cells in the G1-phase. It is concluded that flow cytometry is a useful tool to characterize hybridoma cell lines in a suspension batch culture.  相似文献   

3.
The P388 lymphocytic leukemia and the L1210 lymphoid leukemia are used as test systems for putative cytotoxic drugs. These leukemias are also used to investigate the perturbation of cell cycle progression of various chemical compounds in more detail. There is little information on the normal growth kinetics in vivo of these leukemias. In the present report we therefore present the results from growth kinetic studies of P388 and L1210 leukemic cells growing in ascites form in mice. We used 3H-TdR autoradiography, DNA flow cytometry and the stathmokinetic method. During exponential growth both leukemias showed a growth fraction of unity. Whereas no significant cell loss was observed during the early growth phase of P388 cells, cell loss was indicated by a discrepancy between potential and actual doubling times during exponential growth of L1210 cells. During the phase of growth retardation, the proportion of G1 and G2 cells increased at the expence of a reduced S phase fraction in the P388 leukemia, whereas only small changes in cell cycle distributions were seen with time after inoculation of L1210 cells. An increasing discrepancy in the reduction of the S phase fraction and the 3H-TdRLI was seen in the P388 cells with time after inoculation. Thus, a majority of P388 cells with S phase DNA content were unlabelled during the late phase of growth restriction, indicating resting cells in S phase. A good correlation was found between the 3H-TdR LI and S phase fraction throughout the life history of L1210 cells, revealing considerable differences in in vivo growth kinetics between the two leukemias. Such differences should be considered when evaluating test results.  相似文献   

4.
Use of the metachromatic dye, acridine orange, to stain cells in suspension for flow cytometry allows for the simultaneous measurement of DNA and RNA content in individual cells. The relative RNA content as a function of total cellular nucleic acid content [alpha r = RNA/(RNA + DNA)] is a constant value, characteristic for particular cell lines during their exponential growth under optimal conditions. This ratio can be estimated for the G1A, G1B, S, and G2 + M cell cycle compartments. Changes in growth rate or the addition of antitumor drugs induces characteristic changes in the ratio either evenly throughout or at a particular phase of the cell cycle. Under such conditions, measurement of cellular DNA and RNA content provides a sensitive assay of any deviation from balanced cell growth. Unbalanced growth caused by suboptimal culture conditions or as a result of incubation with various antitumor agents is illustrated. Examples of unbalanced growth which are not correlated with cell viability as measured by cell clonogenicity are discussed.  相似文献   

5.
We have studied the possible correlation between nuclear glutathione distribution and the progression of the cell cycle. The former was studied by confocal microscopy using 5-chloromethyl fluorescein diacetate and the latter by flow cytometry and protein expression of Id2 and p107. In proliferating cells, when 41% of them were in the S+G(2)/M phase of the cell cycle GSH was located mainly in the nucleus. When cells reached confluence (G(0)/G(1)) GSH was localized in the cytoplasm with a perinuclear distribution. The nucleus/cytoplasm fluorescence ratio for GSH reached a maximal mean value of 4.2 +/- 0.8 at 6 h after cell plating. A ratio higher than 2 was maintained during exponential cell growth. In the G(0)/G(1) phase of the cell cycle, the nucleus/cytoplasm GSH ratio decreased to values close to 1. We report here that cells concentrate GSH in the nucleus in the early phases of cell growth, when most of the cells are in an active division phase, and that GSH redistributes uniformly between the nucleus and the cytoplasm when cells reach confluence.  相似文献   

6.
Quantitative, correlated determinations of DNA, RNA, and protein, as well as RNA to DNA and RNA to protein ratios, were performed on three-color stained cells using a multiwavelength-excitation flow cytometer. DNA-bound Hoechst 33342 (blue), protein-fluorescein isothiocyanate (green), and RNA-bound pyronin Y (red) fluorescence measurements were correlated as each stained cell intersected three spatially separated laser beams. The analytical scheme provided sensitive and accurate fluorescence determinations by minimizing the effects of overlap in the spectral characteristics of the three dyes. Computer analysis was used to generate two-parameter contour density profiles as well as to obtain numerical data for subpopulations delineated on the basis of cellular DNA content. Such determinations allowed for analysis of RNA to DNA and RNA to protein ratios for cells within particular regions of the cell cycle. The technique was used to study the interrelationship of DNA, RNA, and protein contents in exponentially growing Chinese hamster ovary cells as well as in cell populations progressing the cell cycle after release from arrest in G1 phase. The sensitivity of the method for early detection of conditions of unbalanced growth is demonstrated in the comparison of the differential effects of the cycle-perturbing agent, adriamycin, on cells treated either during exponential growth or while reversibly arrested in G1 phase.  相似文献   

7.
The flow-cytometric (FCM) analysis of bivariate DNA/lgG distributions has been conducted to study the cell cycle kinetics and monoclonal antibody (MAb) production during perfusion culture of hybridoma cells. Three different perfusion rates were employed to demonstrate the dependency of MAb synthesis and secretion on cell cycle and growth rate. The results showed that, during the rapid growth period of perfusion culture, the level of intracellular igG contents of hybridoma cells changed significantly at each perfusion rate, while the DNA histograms showing cell cycle phases were almost constant. Meanwhile, during the reduced growth period of perfusion culture, the fraction of cells in the S phase decreased, and the fraction cells in the G1/G0 phase increased with decreasing growth rate. The fraction of cells in the G2/M phase was relatively constant during the whole period of perfusion culture. Positive correlation was found between mean intracellular IgG contents and the specific MAb production rate, suggesting that the deletion of intracellular IgG contents by a flow cytometer could be used as a good indicator for the prediction of changes in specific MAb productivity following manipulation of the culture condition. (c) 1994 John Wiley & Sons, Inc.  相似文献   

8.
Flow cytometry was used to measure cell cycle parameters in Solanum aviculare plant cell suspensions. Methods for bromodeoxyuridine (BrdU) labeling of plant nuclei were developed so that cell cycle times and the proportion of cells participating in growth could be determined as a function of culture time and conditions. The percentage of cells active in the cell cycle at 25 degrees C decreased from 52% to 19% within 7.6 d of culture; presence of a relatively large proportion of non-active cells was reflected in the results for culture growth. While the maximum specific growth rate of the suspensions at 25 degrees C was 0.34 d-1 (doubling time: 2.0 d), the specific growth rate of active cells was significantly greater at 0.67 d-1, corresponding to a cell cycle time of 1.0 d. A simple model of culture growth based on exponential and linear growth kinetics and the assumption of constant cell cycle time was found to predict with reasonable accuracy the proportion of active cells in the population as a function of time. Reducing the temperature to 17 degrees C lowered the culture growth rate but prolonged the exponential growth phase compared with 25 degrees C; the percentage of cells participating in the cell cycle was also higher. Exposure of plant cells to different agitation intensities in shake flasks had a pronounced effect on the distribution of cells within the cell cycle. The proportion of cells in S phase was 1.8 times higher at a shaker speed of 160 rpm than at 100 rpm, while the frequency of G0 + G1 cells decreased by up to 27%. Because of the significant levels of intraculture heterogeneity in suspended plant cell systems, flow cytometry is of particular value in characterizing culture properties and behavior.  相似文献   

9.
The mitotic shake-off method revealed the remarkable variation of radiosensitivity of HeLa cells during the cell cycle: M phase shows the greatest radiosensitivity and late S phase the greatest radioresistance. This method harvests all M-phase cells with a round shape, making it impossible to further subdivide M-phase cells. Recently, the fluorescent ubiquitination-based cell cycle indicator (Fucci) was developed; this system basically causes cells in G(1) to emit red fluorescence and other cells to emit green fluorescence. Because the green fluorescence rapidly disappears at late M phase, two-dimensional flow cytometry analysis can usually detect a green(high)/red(low) fraction including S-, G(2)- and early M-phase cells but not a transitional fraction between green(high)/red(low) and green(low)/red(low) including late M-phase cells. However, combining the shake-off method concentrated the transitional fraction, which enabled us to separate early and late M-phase cells without using any drugs. Here we demonstrate for the first time that cells in early M phase are more radiosensitive than those in late M phase, implying that early M phase is the most radiosensitive sub-phase during the cell cycle.  相似文献   

10.
The G2 index of the yeast Cryptococcus neoformans determined by laser scanning cytometer was 2-3 times higher than the budding index during transition to the stationary phase of the culture, indicating that buds emerged in the G2 phase of the cell cycle. To clarify whether buds also emerge in G2 during exponential growth of the culture, DNA content for each cell was measured with a fluorescence microscope equipped with a photomultiplier. The DNA content of cells having tiny buds varied rather widely, depending on growth phases and strains used. Typically, buds of C. neoformans emerged soon after initiation of DNA synthesis in the early exponential phase. However, bud emergence was delayed to G2 during transition to the stationary phase, and in the early stationary phase budding scarcely occurred, although roughly half of the cells completed DNA synthesis. Thus, the timing of budding in C. neoformans was actually shifted to later cell cycle points with progression of the growth phase of the culture.  相似文献   

11.
Six human colon carcinoma cell lines were induced to enter stationary phase of growth by nutrient deprivation and cell crowding. Growth kinetics parameters (cell number, flow cytometric analysis of DNA distribution, and labelling and mitotic indices) were measured sequentially for all lines during the various stages of in vitro growth. Our results demonstrated that a substantial fraction of cells (9-18%) were located in G2 phase when they changed from an exponential to a stationary mode of growth. Moreover, a large number of cells in stationary phase of growth had an S-phase DNA content, as determined by flow cytometry, but failed to incorporate radioactive DNA precursors (up to 15-fold difference). To substantiate these findings, cells in stationary phase of growth were induced to enter exponential growth by re-seeding in fresh medium at a lower density. Subsequently observed changes in DNA-compartment distribution, and in labelling and mitotic indices were those expected from cells that had been arrested at different stages of the cycle during their previous stationary phase. Thus, the non-proliferating quiescent state (Q), traditionally located 'somewhere' in G1 phase, appears to be composed also of cells that can be arrested at other stages of the cycle (Qs and QG2). Although the proportion of such cells is rather small, their contribution to the growth kinetics behaviour of human in vivo tumours will become apparent following 'recruiting' or 'synchronizing' clinical manoeuvres and will prevent the formation of a clear-cut wave of synchronized cells.  相似文献   

12.
糖蛋白(Glycoprotein, G)作为鲤春病毒血症病毒(Spring Virernia of Carp Virus, SVCV)主要的抗原蛋白, 已成为现阶段SVCV病毒检测、抗体制备以及疫苗研制的热点。为了对其进行酵母表面展示, 研究以SVCV-shlj1分离株基因组为模板, 通过RT-PCR技术, 体外扩增获得SVCV表面糖蛋白的基因开放阅读框(1530 bp)片段, 将其克隆至酵母表面展示载体pYD1, 构建重组质粒pYD1-G。利用电转化方法将重组质粒pYD1-G导入酿酒酵母EBY100感受态细胞, 经YNB选择培养基筛选和菌液PCR的鉴定, 挑选出阳性转化子(命名为EBY100-pYD1-G), 对其进行2%半乳糖诱导。利用细胞免疫荧光和流式细胞仪检测G蛋白的酵母表面展示情况。细胞免疫荧光结果显示, 诱导后的酵母细胞EBY100-pYD1-G能产生特异性红色荧光, 且随着诱导时间的增加, 红色荧光的酵母细胞所占比例不断增加, 各组之间差异显著(P< 0.05)。流式细胞仪检测结果显示, 酵母细胞的荧光强度与诱导时间呈正比, 其中诱导48h与72h的酵母细胞荧光强度不存在显著差异, 基本趋于稳定不变的状态。因此, 选取诱导48h为酵母表面展示的最佳诱导时间。上述研究结果表明SVCV的G蛋白已经成功展示于酿酒酵母细胞表面, 研究为鲤春病毒血症酵母口服疫苗的研发奠定了前期基础。  相似文献   

13.
The 55-6 murine B cell hybridoma line not constitutively expressing CD40 was treated with increasing amounts of intact anti-mouse surface immunoglobulin G antibody (anti-mIgG) either not preincubated or preincubated for 48 h with lipopolysaccharide (LPS). In vitro, cross-linking of surface immunoglobulin G (sIgG) with the whole molecule of anti-IgG antibodies induced the expression of CD69, CD40, and CD19 surface antigens on 55-6 cells. The effect of sIgG ligation was dose-dependent, and preincubation with LPS enhanced their responsiveness to anti-mIgG stimulation. The expression of these surface molecules reached the maximum value during the first part of the cell cycle, corresponding to the position of the G1 peak of the DNA distribution. Stimulation of cells with anti-mIgG did not induce changes either in the number of viable cells or in the fraction of cells undergoing proliferation (mitosis). However, preincubation of 55-6 cells with LPS for 48 h before stimulation with anti-mIgG increased both the maximum specific growth rate (micromax) and the percentage of cells in the G2/M phase, in comparison with non-preincubated cells. Moreover, on cells preincubated with LPS prior to anti-mIgG treatment, specific IgG2a production rate was enhanced significantly compared to that obtained in control cultures. The correlation between the antibody production rate and the amount of IgG that is detectable on the cell surface was analyzed by flow cytometry. A good correlation between secreted and surface IgG was observed, and the results of cell cycle analyses demonstrated that the 55-6 hybridoma cell line has a substantially higher sIgG content in G1 phase.  相似文献   

14.
Growth control is investigated in detail in fed and unfed HeLa-S3 suspension cultures. Two-step acridine orange staining and flow cytometric analysis indicated declines in cellular red fluorescence (proportional to RNA content) of 40-50% between exponential and plateau phase in both culture types. Cellular green fluorescence (DNA content) assessed simultaneously indicates an increment of cells with Gi-DNA content in plateau phase in the unfed cultures, while fed cultures show a brief increment in G1-phase cells in the transition phase followed by a recovery in plateau phase to a value similar to that of exponential cultures. Temporal declines in the 3H-thymidine pulse-labeling index are observed in both culture systems. These data along with the flow cytometry data indicate a distinct G1-arrest in the unfed plateau cultures and suggest a random arrest of cells about the cell cycle in fed plateau cultures. Acidic acridine orange staining and flow cytometric analysis furthermore indicate the occurrence of a quiescent population comprising approximately 345 of the total cells and consisting of both dead and viable cells in plateau phase unfed cultures. In contrast, fed plateau cultures show approximately 14% quiescent, mostly dead cells. Also, both culture systems show temporal declines in the clonogenic index and a longer cell-cycle transit time in plateau phase relative to exponential phase. These findings confirm earlier work which indicates that the environment has a profound influence on the mode of growth control for mammalian cells in vitro.  相似文献   

15.
Concentration-dependent effects of potassium dichromate on the cell cycle   总被引:1,自引:0,他引:1  
Hexavalent chromium is found to be a strong mutagen, and it also is a potential carcinogen in man. DNA flow cytometry, growth measurements, and determinations of mitotic index show that 1-2 microM K2Cr2O7 produces a prolongation of the G2 phase of the cell cycle in NHIK 3025 cells. By increasing the chromate concentrations (greater than 2 microM K2Cr2O7) the cells are also arrested in G2 phase. We have found, using synchronized cells and measuring cell cycle time, that the most chromate-sensitive part of the cell cycle is S phase. This phase is also somewhat prolonged, and the cells became arrested in early S phase at high toxic K2Cr2O7 concentrations (8 microM). Our results thus indicate that K2Cr2O7 has an effect within S phase--maybe on DNA/RNA synthesis--and also interferes with processes necessary for progression through the G2 phase.  相似文献   

16.
The metachromatic fluorochrome acridine orange was used to differentially stain DNA and RNA in Chinese hamster ovary (CHO) cells and in mitogen-stimulated human lymphocytes during their progression through the cell cycle. Green and red fluorescence of individual cells, representing cellular DNA and RNA, respectively, was measured by flow cytometry. CHO cells were synchronized by selective detachment at mitosis. Their rate of progression through G1 and subsequently through S phase correlated with the content of stainable RNA. The mean duration of the G1 phase was 5.2 hours for cells with high RNA content (highest 25 percentile population) and 8.1 hours for cells with low RNA (lowest 25 percentile). The duration of S phase was 5.9 and 7.5 hours for high- and low-RNA, 25 percentile subpopulations, respectively. Lymphocytes synchronized at the G1/S boundary by hydroxyurea or 5-fluorodeoxyuridine showed extremely high intercellular variation with respect to content of stainable RNA. After release from the block they traversed S phase at rates linearly proportional to the content of stainable RNA. The duration of S phase was five hours for cells with high RNA-, six to nine hours for cells with moderate RNA- and up to 27 hours for cells with minimal RNA-content. The data suggest that the rate of progression through the cell cycle of individual cells within a population may be correlated with the number of ribosomes per cell.  相似文献   

17.
Sensitivity of flow cytometric data to variations in cell cycle parameters   总被引:1,自引:0,他引:1  
We investigated to what extent flow cytometric DNA histograms are informative of cell cycle parameters. We created a computer program to simulate cell cycle progression in a generic and flexible way. Various scenarios, characterized by different models and distributions of cell cycle phase transit times, have been analysed in order to obtain the percentages of cells in the different cell cycle phases during exponential growth and their time course after mitotic block. Cell percentages during exponential growth were insensitive to intercell variability in phase transit times and thus can be employed to estimate the relative mean phase transit times, even in the presence of non-cycling cells. However, this information is ambiguous if re-entry of such cells into the cycling status is permitted. The stathmokinetic outline gives the mean phase transit times, but also provides information about the spread, but not the form, of the phase transit time distributions, being particularly sensitive to the spread of G1 phase duration. The stathmokinetic outline also helps distinguish between scenarios considering only cycling cells, those forecasting a fraction of definitively non-cycling cells and those admitting a G0 status with first-order output kinetics.  相似文献   

18.
19.
RNA dependence in the cell cycle of V79 cells   总被引:1,自引:0,他引:1  
The cell cycle of V79 Chinese hamster lung cells synchronized by hydroxyurea was investigated by flow cytometry. The metachromatic fluorochrome acridine orange was used to differentially stain DNA and RNA of V79 cells. Green and red fluorescence from individual cells, representing cellular DNA and RNA, respectively, was measured by flow cytometry. Periodic changes of cellular DNA and RNA contents were observed over nine cell cycles. The duration of G1, S, and G2 + M phases of synchronized V79 cells whose RNA content was close to that of the cells in balanced growth was 3, 4.5, and 1.5 hours, respectively. The duration of G1 and S phases of cells containing RNA above a certain threshold was inversely proportional to the RNA content. The RNA content of cells containing RNA above the normal level regressed to normal after a few generations. Coefficients of variation for RNA content were significantly larger than those for DNA. An explanation for the decay of synchrony in a synchronized cell population is proposed.  相似文献   

20.
BrdU-Hoechst flow cytometry was employed to study the proliferation kinetics of blood lymphocytes from patients with Fanconi anemia (FA). Compared to controls, untreated FA lymphocytes show normal response to PHA stimulation, normal G0/G1 exit rates, and normal first S-phase durations. The G2 phase of the first cell cycle, however, is severely prolonged, and 24% of the recruited population become arrested during the first chromosome cycle (S, G2/M phases). The delay suffered during G2 appears to be compensated in part by a subsequent G1 phase duration that is unusually short for postnatal human cells (3.7 +/- 0.5 hrs). In analogy to what has been observed in other cell systems after experimental delays of the chromosome cycle, we therefore postulate that at least some FA cells enter their second growth phase without prior completion of the delayed chromosome cycle. Renewed replication would ensue in such cells without prior passing through mitosis and cytokinesis, leading to endoreduplication, which is a frequent finding in the FA syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号