首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Ribosomal RNA synthesis in mitochondria of Neurospora crassa   总被引:10,自引:0,他引:10  
Ribosomal RNA synthesis in Neurospora crassa mitochondria has been investigated by continuous labeling with [5-3H]uracil and pulse-chase experiments. A short-lived 32 S mitochondrial RNA was detected, along with two other short-lived components; one slightly larger than large subunit ribosomal RNA, and the other slightly larger than small subunit ribosomal RNA. The experiments give support to the possibility that 32 S RNA is the precursor of large and small subunit ribosomal RNA's. Both mature ribosomal RNA's compete with 32 S RNA in hybridization to mitochondrial DNA. Quantitative results from such hybridization-competition experiments along with measurements of electrophoretic mobility have been used to construct a molecular size model for synthesis of mitochondrial ribosomal RNA's. The large molecular weight precursor (32 S) of both ribosomal RNA's appears to be 2.4 × 106 daltons in size. Maturation to large subunit RNA (1.28 × 106 daltons) is assumed to involve an intermediate ~1.6 × 106 daltons in size, while cleavage to form small subunit RNA (0.72 × 106 daltons) presumably involves a 0.9 × 106 dalton intermediate. In the maturation process ~22% of the precursor molecule is lost. As is the case for ribosomal RNA's, the mitochondrial precursor RNA has a strikingly low G + C content.  相似文献   

3.
On the origin of plastids   总被引:1,自引:0,他引:1  
The buoyant density in CsCl of ribosomes from chloroplasts of the green algaChlorella pyrenoidosa and two species of higher plants,Pisum sativum andChenopodium album, has been studied. From the relative protein content it was calculated that 70S ribosomes from chloroplasts are much smaller than 80S cytoplasmic ribosomes (3.0–3.1×106 and 4.0×106 daltons) and slightly larger than 70S ribosomes from abcteriaE. coli 2.5×106 daltons). Chloroplast ribosomes from pea seedlings were analyzed by two-dimensional polyacrylamide gel electrophoresis. They appear to contain 71 proteins. This indicates that chloroplast ribosomes contain a larger number of proteins than do the ribosomes fromE. coli and other species of Enterobacteriaceae. Further study will permit a probable evaluation of the validity of Mereschkowsky's hypothesis that the photosynthetic plastids of eukaryotic plant cells are the evolutionary descendants of endosymbiotic blue-green algae.  相似文献   

4.
The arrangement of the genes and spacers has been analyzed in ribosomal DNA of Xenopus laevis and Xenopus mulleri by heteroduplex mapping and visualization of ribosomal RNA-DNA hybrids. Heterologous reassoeiated molecules show a characteristic pattern in which two perfectly duplexed regions, whose lengths are those predicted by the known lengths of the 18 S and 28 S genes, are separated by a small substitution loop of about 0.23 × 106 daltons and a large region of partial homology which averages 3.24 × 106 daltons. These mismatched regions are entirely consistent with the known sequence divergence previously described (Brown et al., 1972) for the transcribed and non-transcribed spacer regions of the two rDNAs, respectively. Hybrids of X. laevis rDNA with 18 S and 28 S rRNA contain two duplex regions of the expected lengths for the 18 S and 28 S genes separated by 0.49 × 106 daltons of single-strand DNA. This latter value is the length of the transcribed spacer region between the 18 S and 28 S RNAs that has been measured within the 40 S RNA precursor molecule by secondary structure mapping (Wellauer &; Dawid, personal communication). There is also a longer single-strand region separating one 18 S + 28 S gene set from the next; this is considered to be mainly non-transcribed spacer.We conclude that the 18 S and 28 S genes are separated by about 0.5 × 106 daltons of DNA of which about half is homologous in the two Xenopus species. This region is part of the transcribed spacer. In addition, the longer non-transcribed spacer can be seen to have some homology between the two species; the location of this homology is fairly reproducible between molecules and has been carefully documented by contour length measurements.  相似文献   

5.
The concentration of triarimol giving ca 50% inhibition of growth was different for each of 3 species of Chlorella [C. emersonii, 1 mg/l. (1.5 × 10?6 M), C. ellipsoidea 10 mg/l. (3 × 10?5 M), C. sorokiniana, 2 mg/l. (6 × 10?6 M)]. The total lipid of 3 species of Chlorella grown in a culture medium containing triarimol were analysed for chlorophyll, fatty acids and sterol composition. Growth rates were studied in the presence of different concentrations of triarimol. The growth rates of the 3 species were differentially inhibited by triarimol. The growth of Chlorella sorokiniana was 50% inhibited by 2 mg/l. triarimol but 20 mg/l. did not produce a cessation of growth. The greatest inhibition of growth rates and chlorophyll content was observed in Chlorella emersonii. The quantity of unsaturated fatty acids was increased by triarimol treatment in all 3 species of Chlorella. Triarimol strongly inhibited 14α-demethylation in Chlorella emersonii, and C. ellipsoidea and less in C. sorokiniana, resulting in accumulation of 14α-methyl sterols. Triarimol also inhibited the second alkylation of the side chain in C. ellipsoidea and C. emersonii. The introduction of the 22-double bond was inhibited in all 3 species of Chlorella studied. Although some differences were apparent, the effect of triarimol was quite similar to that of triparanol and AY-9944 in these 3 species of Chlorella.  相似文献   

6.
The rotifer, Brachionus calyciflorus, was grown with two algae species (Chlorella sp. and Scenedesmus obliquus) at different concentrations (0.1, 1 and 10 × 106 cells ml−1). The body size (lorica biovolume) of individual rotifer and their egg size were measured when the populations were roughly in the exponential phase of population growth. The body size of the rotifers differed significantly (P < 0.05) among the two algae species used, however this effect was not observed for egg size. The body size of rotifers fed on higher densities of Chlorella sp. (10 × 106 cells ml−1) was significantly larger than for those fed on lower and medium densities (0.1 and 1 × 106 cells ml−1). Body size and egg size of rotifers fed with different amounts of Scenedesmus did not differ significantly. The egg size was significantly larger at higher food level of Chlorella. A significantly positive correlation was observed between the adult rotifer body size and their egg size.  相似文献   

7.
RNA extracted by cold phenol from the large cytoplasmic ribosomal subunit of the trypanosomatid flagellate Crithidia fasciculata and analyzed by polyacrylamide gel electrophoresis at 4 °C consisted of one species with a molecular weight of 1.3 × 106 (relative to ribosomal RNA from E. coli MRE 600). When extracted with hot phenol (65 °C), the large ribosomal subunit gave rise to two components with molecular weights of 0.72 and 0.56 × 106. On heating for 60 s, followed by rapid cooling, the single cold-phenol-extracted 1.30 × 106-dalton species completely dissociated into two components of molecular weights 0.72 and 0.56 × 106, present in equimolar amounts. When analyzed by polyacrylamide-agarose gel electrophoresis in the presence of SDS, RNA extracted by cold phenol from the large cytoplasmic ribosomal subunit consisted of three components of molecular weights 1.3, 0.72, and 0.56 × 106, present in apparently equimolar amounts. RNA from the small cytoplasmic ribosomal subunit consisted of one species with a molecular weight of 0.84 × 106, independent of extraction or analytical conditions. It is proposed that under high salt and low temperature conditions, the large ribosomal RNA molecule is held together by its secondary structure, and that denaturing extraction or analytical conditions reveal an otherwise “hidden” lesion present in the molecule in vivo.  相似文献   

8.
A fragmentation process occurs in 26 S ribosomal RNA of mature cytoplasmic ribosomes of Musca carnaria. It consists of the sequential appearance of three “hidden breaks” that fragment 26 S rRNA (Mr = 1.42 × 106) into four pieces with approximate molecular weights of 0.68 × 106, 0.35 × 106, 0.29 × 106 and 0.096 × 106, respectively. This fragmentation was not observed in 17 S rRNA (Mr = 0.74 × 106).Extremely mild treatment of newly assembled ribosomes with pancreatic RNAase reproduces the 26 S rRNA fragmentation phenomenon in vitro in the same way as it occurs in vivo.This evidence is discussed in relation to the secondary structure of 26 S rRNA and its binding with specific ribosomal proteins.  相似文献   

9.
The electrophoretic mobilities of DNA, ribosomal RNAs, and pulse-labeled RNAs were compared on polyacrylamide gels polymerized at temperatures from 4 to 35°C and subjected to electrophoresis at a fixed temperature. DNA migrated the same distance irrespective of polymerization temperature, the ribosomal RNAs, and the major pulse-labeled species (a putative rRNA precursor) migrated more rapidly in gels polymerized at higher temperatures. The linearity of the migration versus the log of the molecular weight remained for the five rRNA species used, but the extrapolated molecular weight of the putative precursor ranged from 1.8 × 106 to 2.5 × 106 depending on polymerization temperatures. By varying polymerization temperatures, the optimal resolution of various groups of RNA species can be obtained. The results are explained in terms of polymerization temperature effects on gel structure as well as nucleic acid conformation.  相似文献   

10.
Ribosomal RNA and precursor ribosomal RNA from at least one representative of each vertebrate class have been analyzed by electron microscopic secondary structure mapping. Reproducible patterns of hairpin loops were found in both 28 S ribosomal and precursor ribosomal RNA, whereas almost all the 18 S ribosomal RNA molecules lack secondary structure under the spreading conditions used. The precursor ribosomal RNA of all species analyzed have a common design. The 28 S ribosomal RNA is located at or near the presumed 5′-end and is separated from the 18 S ribosomal RNA region by the internal spacer region. In addition there is an external spacer region at the 3′-end of all precursor ribosomal RNA molecules. Changes in the length of these spacer regions are mainly responsible for the increase in size of the precursor ribosomal RNA during vertebrate evolution. In cold blooded vertebrates the precursor contains two short spacer regions; in birds the precursor bears a long internal and a short external spacer region, and in mammals it has two long spacer regions. The molecular weights, as determined from the electron micrographs, are 2·6 to 2·8 × 106 for the precursor ribosomal RNA of cold blooded vertebrates, 3·7 to 3·9 × 106 for the precursor of birds, and 4·2 to 4·7 × 106 for the mammalian precursor. Ribosomal RNA and precursor ribosomal RNA of mammals have a higher proportion of secondary structure loops when compared to lower vertebrates. This observation was confirmed by digesting ribosomal RNAs and precursor ribosomal RNAs with single-strandspecific S1 nuclease in aqueous solution. Analysis of the double-stranded, S1-resistant fragments indicates that there is a direct relationship between the hairpin loops seen in the electron microscope and secondary structure in aqueous solution.  相似文献   

11.
Isolation of ribosomal RNA precursors from Physarum polycephalum   总被引:2,自引:0,他引:2  
Ribosomal RNA synthesis in Physarum polycephalum was studied by labeling intact microplasmodia with [3H]uridine. Labeled, high-molecular-weight RNA species were found in a 30,000 S structure released by phenol extraction at room temperature. RNA was released from the structure by further phenol extraction at 65–70 °C. If the labeling period was 15 min or longer, the labeled RNA was seen by polyacrylamide gel electrophoresis to be of two major types, a heterodisperse collection of 45-35 S molecules and a 26 S species. If the labeling was carried out for 30 min in the presence of cycloheximide, the major labeled species had an electrophoretic mobility corresponding to 40 S. Studies of the labeling kinetics, methylation, and base composition of these RNA molecules indicate that they are precursors to ribosomal RNA. The molecular weights of the homogeneous 40 and 26 S precursors are 3.0 × 106 and 1.45 × 106 daltons, respectively, in comparison with molecular weights of 1.29 × 106 and 0.68 × 106 daltons for the completed ribosomal RNA's.  相似文献   

12.
13.
The cytoplasmic and chloroplast ribosomes from the marine diatom Cylindrotheca fusiformis were isolated and characterized. The cytoplasmic ribosomes sedimented in sucrose at 84S and dissociated into subunits of 64S and 42S in the absence of Mg2+. It contained ribosomal RNAs with molecular weights of 1.31×106 and 0.70×106. The chloroplast ribosomes sedimented at 70S only in the presence of high Mg2+ concentrations (25–100 mM). No stable subunits were routinely observed and at very high levels of Mg2+ (>100 mM) the 70S species was converted to a form sedimenting at 55S. At 4°C ribosomal RNAs with molecular weights of 1.1×106 and 0.40×106 were detected on polyacrylamide gel electrophoresis. When the RNAs were resolved at room temperature the large molecular weight component disappeared while RNA with molecular weights of 0.65×106 and 0.53×106 were observed. Apparently the large chloroplast RNAs dissociated into two pieces of unequal molecular weight. These properties of the diatom's chloroplast ribosomes are very similar to those of the counter parts in unicellular green algae, which suggests that both types of algae have a common phylogenetic ancestor.  相似文献   

14.
The approximate sizes of heterogeneous nuclear (HnRNA) and cytoplasmic RNA of sea urchin embryos were determined by DMSO density gradient centrifugation and acrylamide-formamide gel electrophoresis. The data suggest that the sizes of these molecules are smaller than those estimated under nondenaturing conditions. The size of most of the nuclear RNA ranges from 0.5 to 3 × 106 daltons, while that of the cytoplasmic RNA ranges from 0.1 to 2 × 106 daltons. Both nuclear and cytoplasmic RNA of sea urchin embryos may have a minor fraction (5–10%) of very large species with molecular weights up to 4 to 5 × 106 daltons.The idea that the size of HnRNA may be larger in organisms higher on the evolutionary scale is discussed.  相似文献   

15.
Incorporation of 32P into mature chloroplast rRNA species of MW 1.1 × 101 and 0.56 × 106 has been followed in Euglena gracilis by pulse and pulse chase experiments. Mature rRNA species have precursors of MW 1.16 × 106 ± 0.01 × 106 and 0.64 × 106 ± 0.01 × 106 resp. These precursors have base composition and hydridization properties similar to those of the mature, rRNA species. No evidence of a single common precursor to these molecules was found. Rifampicin did not affect the synthesis of chloroplast rRNA.  相似文献   

16.
S R Weiss  H E Varmus  J M Bishop 《Cell》1977,12(4):983-992
The genome of avian sarcoma virus (ASV) contains four known genes: gag, encoding structural proteins of the viral core; pol, encoding the viral RNA-directed DNA polymerase; env, encoding the glycoprotein(s) of the viral envelope; and src, which is responsible for neoplastic transformation of the host cell. We have located these genes on virus-specific RNAs in cells productively infected with both nondefective and defective strains of ASV by using molecular hybridization with DNAs complementary to specific portions of the ASV genome.The cytoplasm of cells producing nondefective ASV contains three species of polyadenylated virus-specific RNA, each of which has chemical polarity identical to that of the viral genome. The largest species has a molecular weight of 3.3 × 106 daltons and a sedimentation coefficient of 38S, encodes all four viral genes, and is probably identical to the viral genome. A second species has a molecular weight of 1.8 × 106 daltons and a sedimentation coefficient of 28S, and encodes the 3′ half of the viral genome, including env, src and a genetically silent region known as “c.” The smallest species has a molecular weight of 1.2 × 106 daltons and a sedimentation coefficient of 21S, and encodes only src and “c.” All three species of virus-specific RNA contain nucleotide sequences at least partially homologous to a sequence of 101 nucleotides found at the extreme 5′ end of the ASV genome. This sequence may not be present in the portions of the ASV genome which encode the 28S and 21S virus-specific RNAs, and hence may be joined to these RNAs during their maturation from precursor molecules.The size and genetic composition of virus-specific RNAs in cells producing defective deletion mutants reflect the nature of the deletion. Deletions of either src or env eliminate the 28S virus-specific RNA, leaving a 21S RNA (which contains either env and “c” in the case of src deletions or src and “c” in the case of env deletions) and a 35S RNA which is probably identical to the viral genome.Based on these and related results, we propose a model for viral gene expression which conforms to previous suggestions that eucaryotic cells initiate translations only at the 5′ termini of messenger RNAs.  相似文献   

17.
18.
Nucleic acids isolated from dormant and germinated Botryodiplodia theobromae pycnidiospores contain five distinct species of RNA. They include two ribosomal species, two ribosomal-associated species and transfer RNAs. Sedimentation coefficients of 25.1S and 18S were obtained for the two ribosomal RNA species and 5.8S and 5S for the two ribosomal-associated RNA components. Molecular weights of 1.20, 0.67, 0.054 and 0.035x106 daltons were obtained after formaldehyde treatment and electrophoresis on polyacrylamide gels for these same four RNAs. Methylated nucleotides were present in the transfer RNAs and large and small ribosomal RNAs; in contrast 5.8S and 5S RNAs contained few methylated nucleotides. In addition to the 5 distinct RNA species, polyadenylate-containing RNA was isolated from both dormant and germinated spores.Published with the approval of the Director as paper no. 5006, Journal Series, Nebraska Agricultural Experiment Station. The work was conducted under Nebraska Agricultural Experiment Station Project no. 21-17.  相似文献   

19.
20.
大型海藻富含多种活性物质,具有抗衰老等生物活性;轮虫是良好的潜在抗衰老研究模式生物。本研究以褶皱臂尾轮虫(Brachionus plicatilis)作为实验对象,研究了不同浓度的大型海藻龙须菜抽提液(0,250,500,750,1000 mg/L)和不同浓度的食物(蛋白核小球藻和普通小球藻)对褶皱臂尾轮虫生命表参数的影响。结果表明:与对照组相比,食物浓度为1.0×10~6个/mL蛋白核小球藻时,不同浓度龙须菜抽提液对轮虫产卵数、平均寿命、净生长率以及世代时间有显著促进效应(P0.05);轮虫平均产卵数及寿命在龙须菜抽提液浓度750 mg/L处达到最高,分别为16只和13.9d(P0.05)。食物浓度为2.0×10~6个/mL普通小球藻时,轮虫平均产卵数和寿命在抽提液浓度为500 mg/L处达到最高,分别为16只和13.6d(P0.05),轮虫平均寿命和净生长率均有显著提高(P0.05)。相同龙须菜抽提液浓度下,食物浓度为1.0×10~6个/mL蛋白核小球藻下轮虫的净生长率、世代时间均显著高于食物浓度为2.0×10~6个/mL蛋白核小球藻培养的轮虫(P0.05);食物浓度为2.0×10~6个/mL时,普通小球藻培养轮虫的净生长率和世代时间均显著高于蛋白核小球藻实验组(P0.05)。交互作用分析显示,龙须菜抽提液与小球藻的交互作用对褶皱臂尾轮虫的内禀增长率有显著影响(P0.05)。研究结果表明,大型海藻龙须菜抽提液对褶皱臂尾轮虫的生长与生殖有促进作用,延长轮虫寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号