首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cuticle tissue homogenates (CTHs) fromCallinectes sapidus premolt cuticle bound approximately 367% more Ca2+ ions than did those from the postmolt cuticle. ThepH-stat assay which was used to comparein vitro CaCO3 nucleation times confirmed that the premolt CTHs had greater inhibitory activity than did the postmolt CTHs. This inhibitory activity was indicated by CaCO3 nucleation times in excess of control values. Premolt nucleation times exceeded those of postmolt samples by approximately 340%. A positive correlation was observed between Ca2+ binding and calcification inhibitory activity for both premolt and postmolt CTHs. Heat pretreatment of CTHs at 70°C for a 24-hr period had no significant effect on their Ca2+ binding. However, this heat pretreatment decreased their calcification inhibitory activity. Pretreatment of CTHs with Ca2+ diminished their calcification inhibitory activity. These results are consistent with a mechanism for inhibition of biocalcification by these proteins which involves their initial reversible binding to nascent calcite nuclei growth steps and kinks, rather than theirin vivo interaction with free Ca2+ ions in solution.  相似文献   

2.
We analyzed ion composition and volume of the hemolymph of Ligia pallasii in four different stages of the molt cycle using capillary electrophoresis and 3H-inulin. The main ions in the hemolymph were Na+, K+, Mg2+, Ca2+, and Cl. The Ca2+concentration increased significantly during the molt by 47% from intermolt to intramolt and by 37% from intermolt to postmolt, probably due to resorption of Ca2+ from the cuticle and sternal CaCO3 deposits. The K+ concentration increased significantly by 20% during molt. The hemolymph volume normalized to the dry mass of the animals decreased by 36% from intermolt to late premolt. This was due to a reduction in the hemolymph volume and to an increase in dry mass of the animals during premolt. A sudden increase in the hemolymph volume occurring between late premolt and intramolt served to expand the cuticle. Since the Na+, K+, Mg2+, and Cl concentrations did not change significantly from late premolt to intramolt, the increase in hemolymph volume suggests an uptake of seawater rather than freshwater. Accepted: 7 March 2000  相似文献   

3.
Organic molecules both coexist and interact with inorganic crystal lattices in biomineralizing tissues. Mineral precipitation and crystal morphology are tightly regulated by the actions of these molecules. Polyacrylamide gel electrophoresis studies on water soluble extracts from the cuticle of Callinectes sapidus (Atlantic blue crab) reveal the presence, in unmineralized nascent premolt cuticle, of proteins which are absent in the mineralized postmolt cuticle. In the present studies, homogenates from both premolt and postmolt C. sapidus cuticles have been tested for their effect on the in vitro precipitation of calcium carbonate. The role of protein in this process was determined by heat pretreatment and trypsin pretreatment of the cuticle homogenates prior to the precipitation assay. The results from these experiments indicate that proteins, with molecular weights of approximately 75,000 and between 10,000 and 20,000, concentrated in the C. sapidus premolt cuticle, inhibit calcium carbonate precipitation in vitro. The inhibitory activity of these proteins appears to be a result of specific interactions since trypsin, myoglobin, and ovalbumin are not inhibitory. The presence of lower amounts of these inhibitory proteins in C. sapidus postmolt cuticle may be responsible for the subsequent mineralization of this tissue.  相似文献   

4.
To determine if microbial species play an active role in the development of calcium carbonate (CaCO 3 ) deposits (speleothems) in cave environments, we isolated 51 culturable bacteria from a coralloid speleothem and tested their ability to dissolve and precipitate CaCO 3 . The majority of these isolates could precipitate CaCO 3 minerals; scanning electron microscopy and X-ray diffractrometry demonstrated that aragonite, calcite and vaterite were produced in this process. Due to the inability of dead cells to precipitate these minerals, this suggested that calcification requires metabolic activity. Given growth of these species on calcium acetate, but the toxicity of Ca 2+ ions to bacteria, we created a loss-of-function gene knock-out in the Ca 2+ ion efflux protein ChaA. The loss of this protein inhibited growth on media containing calcium, suggesting that the need to remove Ca 2+ ions from the cell may drive calcification. With no carbonate in the media used in the calcification studies, we used stable isotope probing with C 13 O 2 to determine whether atmospheric CO 2 could be the source of these ions. The resultant crystals were significantly enriched in this heavy isotope, suggesting that extracellular CO 2 does indeed contribute to the mineral structure. The physiological adaptation of removing toxic Ca 2+ ions by calcification, while useful in numerous environments, would be particularly beneficial to bacteria in Ca 2+ -rich cave environments. Such activity may also create the initial crystal nucleation sites that contribute to the formation of secondary CaCO 3 deposits within caves.  相似文献   

5.
Microbial carbonic anhydrase promotes carbonate deposition, which is important in the formation and evolution of global carbon cycle and geological processes. A kind of bacteria producing extracellular carbonic anhydrase was selected to study the effects of temperature, pH value and Ca2+ concentration on bacterial growth, carbonic anhydrase activity and calcification rate in this paper. The results showed that the activity of carbonic anhydrase at 30 °C was the highest, which was beneficial to the calcification reaction, calcification rate of CaCO3 was the fastest in alkaline environment with the initial pH value of 9.0. When the Ca2+ concentration was 60 mM, compared with other Ca2+ concentration, CA bacteria could grow and reproduce best, and the activity of bacteria was the highest, too low Ca2+ concentration would affect the generation of CaCO3, while too high Ca2+ concentration would seriously affect the growth of bacteria and reduce the calcification rate. Finally, the mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase was studied. Carbonic anhydrase can accelerate the hydration of CO2 into HCO3, and react with OH and Ca2+ to form CaCO3 precipitation in alkaline environment and in the presence of calcium source.  相似文献   

6.
7.
The impact of microbial activity on biofilm calcification in aquatic environments is still a matter of debate, especially in settings where ambient water has high CaCO3 mineral supersaturation. In this study, biofilms of two CO2-degassing karst-water creeks in Germany, which attain high calcite supersaturation during their course downstream, were investigated with regard to water chemistry of the biofilm microenvironment. The biofilms mainly consisted of filamentous cyanobacteria (Phormidium morphotype) and heterotrophic bacteria (including sulfate-reducing bacteria), which affect the microenvironment and produce acidic exopolymers. In situ and ex situ microelectrode measurements showed that a strong pH increase, coupled with Ca2 + consumption, occurred in light conditions at the biofilm surface, while the opposite occurred in the dark. Calcite supersaturation at the biofilm surface, calculated from ex situ Ca2 + and CO3 2? microelectrode measurements, showed that photosynthesis resulted in high omega values during illumination, while respiration slightly lowered supersaturation values in the dark, compared to values in the water column. Dissociation calculation demonstrated that the potential amount of Ca2 + binding by exopolymers would be insufficient to explain the Ca2 + loss observed, although Ca2 + complexation to exopolymers might be crucial for calcite nucleation. No spontaneous precipitation occurred on biofilm-free limestone substrates under the same condition, regardless of high supersaturation. These facts indicate that photosynthesis is a crucial mechanism to overcome the kinetic barrier for CaCO3 precipitation, even in highly supersaturated settings.  相似文献   

8.
We analyzed the ionic composition of the hemolymph of Porcellio scaber in four different stages of the molt cycle using capillary electrophoresis and calcium selective mini- and microelectrodes. The main ions in the hemolymph were K+, Ca2+, Na+, Mg+, and Cl. The values for total calcium obtained by means of capillary electrophoresis and calcium selective minielectrodes did not differ significantly from each other. In situ measurements of the free Ca2+ concentration ([Ca2+]) by means of calcium-selective microelectrodes indicated that Ca2+ is not bound in the hemolymph. During molt the [Ca2+] is significantly larger than during intermolt. The [Ca2+] increased by 13%, 19% and 18% during premolt, intramolt, and postmolt, respectively. The concentration of the other cations and of Cl decreased significantly between premolt and intramolt. Thus, the rise of the [Ca2+] in the hemolymph is not due to a general increase in all ions, but rather to the resorption of cuticular calcium. Furthermore, the results suggest that K+, Na+, Mg+, and Clare extruded from the hemolymph during and/or after posterior ecdysis. Accepted: 5 August 1997  相似文献   

9.
Calmodulin (CaM) is a highly conserved calcium (Ca2+) binding protein that transduces Ca2+ signals into downstream effects influencing a range of cellular processes, including Ca2+ homeostasis. The present study explores CaM expression when Ca2+ homeostasis is challenged during the mineralization cycle of the freshwater crayfish (Procambarus clarkii). In this paper we report the cloning of a CaM gene from axial abdominal crayfish muscle (referred to as pcCaM). The pcCaM mRNA is ubiquitously expressed but is far more abundant in excitable tissue (muscle, nerve) than in any epithelia (gill, antennal gland, digestive) suggesting that it plays a greater role in the biology of excitation than in epithelial ion transport. In muscle cells the pcCaM was colocalized on the plasma membrane with the Ca2+ ATPase (PMCA) known to regulate intracellular Ca2+ through basolateral efflux. While PMCA exhibits a greater upregulation in epithelia (than in non-epithelial tissues) during molting stages requiring transcellular Ca2+ flux (pre- and postmolt compared with intermolt), expression of pcCaM exhibited a uniform increase in epithelial and non-epithelial tissues alike. The common increase in expression of CaM in all tissues during pre- and postmolt stages (compared with intermolt) suggests that the upregulation is systemically (hormonally) mediated. Colocalization of CaM with PMCA confirms physiological findings that their regulation is linked.  相似文献   

10.
The boiled supernatant fraction from rat cerebrum contained factors which inhibited the basal activity of a Ca2+-dependent phosphodiesterase from rat cerebrum. Two inhibitory fractions were isolated by DEAE-cellulose or Sephadex chromatography and were deemed proteins, based on their sensitivity to trypsin digestion. The inhibitory fractions eluted from DEAE-cellulose columns prior to the Ca2+-dependent activator protein. The inhibitory factors, unlike the activator protein, were stable to heat treatment under alkaline conditions. The inhibitory factors caused both an increase in Km for cyclic GMP and a decrease in V. In the presence of calcium ions and purified activator protein, the Ca2+-dependent phosphodiesterase was not inhibited by the factors, but instead was slightly stimulated. The inhibitory factors caused a slight apparent stimulation of a Ca2+-independent phosphodiesterase from rat cerebrum but this proved instead to be a nonspecific stabilizing effect which was mimicked by bovine serum albumin. After prolonged alkaline treatment, the purified activator protein caused a modest Ca2+-independent activation of Ca2+-dependent phosphodiesterase. The inhibitory factors antagonized the activation of Ca2+-dependent phosphodiesterase by alkaline treated activator protein or by lysophosphatidylcholine. The inhibitory factors had no effect on activity of trypsinized Ca2+-dependent phosphodiesterase. Of various other proteins, only casein mimicked the effects of the inhibitory factors on phosphodiesterase activity.  相似文献   

11.
Before moulting, terrestrial isopods resorb calcium carbonate (CaCO3) from the posterior cuticle and store it in sternal deposits. These consist mainly of amorphous calcium carbonate (ACC) spherules that develop within the ecdysial space between the anterior sternal epithelium and the old cuticle. Ions that occur in the moulting fluid, including those required for mineral deposition, are transported from the hemolymph into the ecdysial space by the anterior sternal epithelial cells. The cationic composition of the moulting fluid probably affects mineral deposition and may provide information on the ion-transport activity of the sternal epithelial cells. This study presents the concentrations of inorganic cations within the moulting fluid of the anterior sternites during the late premoult and intramoult stages. The most abundant cation is Na+ followed by Mg2+, Ca2+ and K+. The concentrations of these ions do not change significantly between the stages whereas the mean pH changed from 8.2 to 6.9 units between mineral deposition in late premoult, and resorption in intramoult, respectively. Measurements of the transepithelial potential show that there is little driving force for passive movements of calcium across the anterior sternal epithelium. The results suggest a possible role of magnesium ions in ACC formation, and a contribution of pH changes to CaCO3 precipitation and dissolution.  相似文献   

12.
In this study, we numerically analyzed the nonlinear Ca2+-dependent gating dynamics of a single, nonconducting inositol 1,4,5-trisphosphate receptor (IP3R) channel, using an exact and fully stochastic simulation algorithm that includes channel gating, Ca2+ buffering, and Ca2+ diffusion. The IP3R is a ubiquitous intracellular Ca2+ release channel that plays an important role in the formation of complex spatiotemporal Ca2+ signals such as waves and oscillations. Dynamic subfemtoliter Ca2+ microdomains reveal low copy numbers of Ca2+ ions, buffer molecules, and IP3Rs, and stochastic fluctuations arising from molecular interactions and diffusion do not average out. In contrast to models treating calcium dynamics deterministically, the stochastic approach accounts for this molecular noise. We varied Ca2+ diffusion coefficients and buffer reaction rates to tune the autocorrelation properties of Ca2+ noise and found a distinct relation between the autocorrelation time τac, the mean channel open and close times, and the resulting IP3R open probability PO. We observed an increased PO for shorter noise autocorrelation times, caused by increasing channel open times and decreasing close times. In a pure diffusion model the effects become apparent at elevated calcium concentrations, e.g., at [Ca2+] = 25 μM, τac = 0.082 ms, the IP3R open probability increased by ≈20% and mean open times increased by ≈4 ms, compared to a zero noise model. We identified the inactivating Ca2+ binding site of IP3R subunits as the primarily noise-susceptible element of the De Young and Keizer model. Short Ca2+ noise autocorrelation times decrease the probability of Ca2+ association and consequently increase IP3R activity. These results suggest a functional role of local calcium noise properties on calcium-regulated target molecules such as the ubiquitous IP3R. This finding may stimulate novel experimental approaches analyzing the role of calcium noise properties on microdomain behavior.  相似文献   

13.
The effect of metal ions on human activated Factor X (Factor Xa) hydrolysis of the chromogenic substrate benzoyl-Ile-Glu-Gly-Arg-p-nitroanilide (S2222) was studied utilizing initial rate enzyme kinetics. The divalent metal ions Ca2+, Mn2+, and Mg2+ enhanced Factor Xa amidolytic activity with Km values of 30 μm, 20 μm, and 1.4 mm, respectively. Na+ activation of Factor Xa amidolytic activity was also found. The Km for Na+ activation was 0.31 m. Both the divalent metal ions and Na+ increased the affinity of Factor Xa for S2222 and had no effect on the maximal velocity of the reaction. Other monovalent cations were unable to activate Factor Xa. However, K+ was a competitive inhibitor of the Na+ activation (Ki = 0.14 m). Lanthanide ions inhibited Factor Xa amidolytic activity. Gd3+ inhibition of Factor Xa hydrolysis of S2222 was noncompetitive and had a Ki of 3 μm. The lanthanide ion inhibition could not be reversed by Ca2+ even when Ca2+ was present in a 1000-fold excess over its Km indicating nonidentity of the Factor Xa lanthanide and Ca2+ binding sites. It is concluded that the Factor Xa Ca2+ binding sites have characteristics different from those previously described for the Factor X molecule and that Mg2+, Na+, and K+ may be physiological regulators of Factor Xa activity.  相似文献   

14.
The inositol 1,4,5-trisphosphate receptor/channel (IP3R) is a major regulator of intracellular Ca2+ signaling, and liberates Ca2+ ions from the endoplasmic reticulum in response to binding at cytosolic sites for both IP3 and Ca2+. Although the steady-state gating properties of the IP3R have been extensively studied and modeled under conditions of fixed [IP3] and [Ca2+], little is known about how Ca2+ flux through a channel may modulate the gating of that same channel by feedback onto activating and inhibitory Ca2+ binding sites. We thus simulated the dynamics of Ca2+ self-feedback on monomeric and tetrameric IP3R models. A major conclusion is that self-activation depends crucially on stationary cytosolic Ca2+ buffers that slow the collapse of the local [Ca2+] microdomain after closure. This promotes burst-like reopenings by the rebinding of Ca2+ to the activating site; whereas inhibitory actions are substantially independent of stationary buffers but are strongly dependent on the location of the inhibitory Ca2+ binding site on the IP3R in relation to the channel pore.  相似文献   

15.
Anticoagulation factor I (ACF I) from the venom of Agkistrodon acutus forms a 1:1 complex with activated coagulation factor X (FXa) in a Ca2+-dependent fashion and thereby prolongs the clotting time. In the present study, the dependence of the binding of ACF I with FXa on the concentration of Ca2+ ions was quantitatively analyzed by HPLC, and the result showed that the maximal binding of ACF I to FXa occurred at concentration of Ca2+ ions of about 1 mM. The binding of Ca2+ ions to ACF I was investigated by equilibrium dialysis and two Ca2+-binding sites with different affinities were identified. At pH 7.6, the apparent association constants K1 and K2 for these two sites were (1.8 ± 0.5) × 105 and (2.7 ± 0.6) × 104 M–1 (mean ± SE, n = 4), respectively. It was evident from the observation of Ca2+-induced changes in the intrinsic fluorescence of ACF I that ACF I underwent a conformational change upon binding of Ca2+ ions. The occupation of both Ca2+-binding sites in ACF I required a concentration of Ca2+ ions of about 1 mM, which is equal to the effective concentration of Ca2+ ions required both for maximal binding of ACF I to FXa and for the maximal enhancement of emission fluorescence of ACF I. It could be deduced from these results that the occupation of both Ca2+-binding sites in ACF I with Ca2+ ions and subsequent conformational rearrangement might be essential for the binding of ACF I to FXa.  相似文献   

16.
1. Neuromuscular properties of the lobster dactyl opener were studied at different stages of the molt cycle.2. Excitatory junctional potentials (EJPs) were found to be significantly larger in hard-shelled premolt lobsters than in soft-shelled postmolt animals.3. Inhibitory junctional potentials (IJPs) were larger in postmolt claw preparations than in premolt ones.4. Excitatory transmission was also monitored during superfusion with plasma samples obtained from lobsters in vartious stages of the molt cycle (postmolt = AB; intennolt = C; premolt = D2).5. D2 plasma increased EJP amplitude by an average of 28% relative to baseline levels (in saline), while AB plasma reduced EJP size by an average of 6%.6. Premolt and postmolt plasma produced opposite effects on quantal content (m); D2; plasma increased m by a mean of 39%, whereas AB plasma caused a mean reduction by 10%, which suggests that humoral factors may act presynaptically to alter transmitter release.7. These results provide evidence of neuromuscular plasticity in the opener muscle during the molt cycle, and are consistent with changes in claw-opening behavior seen during this cycle.  相似文献   

17.
The capacity of various metal ions to support activation of bovine factor IX, by the coagulant protein of Russell's Viper venom, has been examined. The following metal ions, at concentrations which saturate their effect, promoted activation of factor IX, at approximately equal efficiency: Ca2+, Mn2+, Sr2+, and Co2+, Other metal ions, i.e., Ba2+, and Mg2+, at saturating concentrations, led to a maximum rate of activation of factor IX of 25%, compared to Ca2+, The lanthanides, Gd2+, and Tb3+, also promoted activation in this system, at maximal rates of approximately 15%, compared to Ca2+, In this study, it was also discovered that the esterase activity of bovine factor IXa was dependent upon the presence of metal ions. Utilizing α-N-benzoyl-l-arginine ethyl ester as the substrate, steady state kinetic analysis in the absence of metal ion indicated that the Km and Vmax for this substrate was 20 mm and 2.9 μmol substrate cleaved min?1 mg?1 of factor IXa, respectively, at pH 8.0 and 30 °C. In the presence of optimal concentrations of Ca2+, Mn2+, Mg2+, Sr2+, and Ba2+, the Vmax values for this same substrate increased to 6.7, 5.9, 5.0, 5.0, and 3.7 μmol cleaved min?1 mg?1 of factor IXa, respectively. None of these metal ions had an affect on the Km value of this substrate.  相似文献   

18.
CuCl2 non-comepetitively inhibited the hydrolysis of cyclic GMP and cyclic AMP by the activator-dependent phosphodiesterase from bovine heart in the presence of 5 mM Mg2+, 10 μM Ca2+ and phosphodiesterase activator with Ki values of approximately 2 μM for both substrates. CuCl2 inhibition was also non-competitive with Mg2+, Ca2+ and phosphodiesterase activator. Dialysis demonstrated that CuCl2 inhibition in reversible. Treatment of the enzyme with p-hydroxymercuribenzoate resulted in the loss of enzyme activity, suggesting the presence of sulfhydryl groups essential for enzyme activity. The inhibitory activity of CuCl2 was not additive with that p-hydroxymercuribenzoate, therefore CuCl2 may inhibit enzyme activity by binding to one or more essential sulfhydryl groups. CuCl2 also inhibited the hydrolysis of cyclic AMP by the cyclic AMP-specific phosphodiesterase from bovine heart with an I50 value of 18 μM. Several effects of Cu2+ are discussed which have been noted in other studies and might be due, in part, to changes in cyclic nucleotide levels following alterations in phosphodiesterase activity.  相似文献   

19.
The H+-translocating inorganic pyrophosphatase (H+-PPase) associated with vesicles of the vacuolar membrane (tonoplast) isolated from beet (Beta vulgaris L.) is subject to direct inhibition by Ca2+ and a number of other divalent cations (Co2+, Mn2+, Zn2+). By contrast, the H+-translocating ATPase (H+-ATPase) located on the same membrane is insensitive to Ca2+. Here we examine the mechanism and feasibility of regulation of the vacuolar H+-PPase by cytosolic free Ca2+ under the conditions thought to prevail in vivo with respect to Mg2+, inorganic pyrophosphate (PPi), and pH. The minimal reaction scheme that satisfactorily describes the effects of elevated Ca2+ or CaPPi on the enzyme is one that invokes equilibrium binding of substrate (Mg2PPi) at one site, inhibitory binding of Mg2PPi to a lower-affinity second site, binding of activator (Mg2+) at a third site, and direct binding of Ca2+ or CaPPi to a fourth site. Changes in enzyme activity in response to selective manipulation of either Ca2+ or CaPPi are explicable only if Ca2+, rather than CaPPi, is the inhibitory ligand. This conclusion is supported by the finding that CaPPi fails to mimic substrate in protection of the enzyme from inhibition by N-ethylmaleimide. Furthermore, the reaction scheme quantitatively and independently predicts the observed noncompetitive effects of free Ca2+ on the substrate concentration dependence of H+-PPase activity. The results are discussed in relation to the previous proposal that CaPPi is the principal inhibitory ligand of the vacuolar H+-PPase (M. Maeshima [1991] Eur J Biochem 196: 11-17) and the possibility that in vivo modulation of cytosolic free Ca2+ might constitute a specific mechanism for selective regulation of this enzyme, and consequently for stabilization of PPi levels in the cytoplasm of plant cells.  相似文献   

20.
This study investigated the functional roles of the N-terminal Ca2+ ion-binding sites, in terms of enzyme catalysis and stability, of peptidylarginine deiminase 4 (PAD4). Amino acid residues located in the N-terminal Ca2+-binding site of PAD4 were mutated to disrupt the binding of Ca2+ ions. Kinetic data suggest that Asp155, Asp157 and Asp179, which directly coordinate Ca3 and Ca4, are essential for catalysis in PAD4. For D155A, D157A and D179A, the k cat/K m,BAEE values were 0.02, 0.63 and 0.01 s−1mM−1 (20.8 s−1mM−1 for WT), respectively. Asn153 and Asp176 are directly coordinated with Ca3 and indirectly coordinated with Ca5 via a water molecule. However, N153A displayed low enzymatic activity with a k cat value of 0.3 s−1 (13.3 s−1 for wild-type), whereas D176A retained some catalytic power with a k cat of 9.7 s−1. Asp168 is the direct ligand for Ca5, and Ca5 coordination by Glu252 is mediated by two water molecules. However, mutation of these two residues to Ala did not cause a reduction in the k cat/K m,BAEE values, which indicates that the binding of Ca5 may not be required for PAD4 enzymatic activity. The possible conformational changes of these PAD4 mutants were examined. Thermal stability analysis of the PAD4 mutants in the absence or presence of Ca2+ indicated that the conformational stability of the enzyme is highly dependent on Ca2+ ions. In addition, the results of urea-induced denaturation for the N153, D155, D157 and D179 series mutants further suggest that the binding of Ca2+ ions in the N-terminal Ca2+-binding site stabilizes the overall conformational stability of PAD4. Therefore, our data strongly suggest that the N-terminal Ca2+ ions play critical roles in the full activation of the PAD4 enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号