首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 307 毫秒
1.
We recently reported that diacylglycerol kinase (DGK) α enhanced tumor necrosis factor-α (TNF-α)-induced activation of nuclear factor-κB (NF-κB). However, the signaling pathway between DGKα and NF-κB remains unclear. Here, we found that small interfering RNA-mediated knockdown of DGKα strongly attenuated protein kinase C (PKC) ζ-dependent phosphorylation of a large subunit of NF-κB, p65/RelA, at Ser311 but not PKCζ-independent phosphorylation at Ser468 or Ser536. Moreover, knockdown and overexpression of PKCζ suppressed and synergistically enhanced DGKα-mediated NF-κB activation, respectively. These results strongly suggest that DGKα positively regulates TNF-α-dependent NF-κB activation via the PKCζ-mediated Ser311 phosphorylation of p65/RelA.  相似文献   

2.
Zusammenfassung DiploiderL. alpinus Schleich. exSer., mit 2n=12, ist in den Alpen in Österreich im ganzen Gebiet verbreitet, stellenweise auf den Almwiesen häufig. In den westlichen Teilen habe ich auf ähnlichen Standorten morphologisch parallele tetraploide Formen mit 2n=24 gefunden — wahrscheinlich Ökomorphosen der veränderlichen und plastischen ArtLotus corniculatus L. Durch ihr Vorkommen schließen sich beide Typen aus und treten auch nirgends gemeinsam auf.Für die Gesamtcharakteristik der ArtL. alpinus Schleich. exSer. wird es notwendig sein, noch eine Reihe von Populationen aus verschiedenen Teilen des Areals zytologisch zu untersuchen, die Verbreitung genauer zu bestimmen und einige Merkmale durch langfristige Versuche zu untersuchen.  相似文献   

3.
Bone mechanotransduction is vital for skeletal integrity. Osteocytes are thought to be the cellular structures that sense physical forces and transform these signals into a biological response. The Wnt/β-catenin signaling pathway has been identified as one of the signaling pathways that is activated in response to mechanical loading, but the molecular events that lead to an activation of this pathway in osteocytes are not well understood. We assessed whether nitric oxide, focal adhesion kinase, and/or the phosphatidyl inositol-3 kinase/Akt signaling pathway mediate loading-induced β-catenin pathway activation in MLO-Y4 osteocytes. We found that mechanical stimulation by pulsating fluid flow (PFF, 0.7 ± 0.3 Pa, 5 Hz) for 30 min induced β-catenin stabilization and activation of the Wnt/β-catenin signaling pathway. The PFF-induced stabilization of β-catenin and activation of the β-catenin signaling pathway was abolished by adding focal kinase inhibitor FAK inhibitor-14 (50 μM), or phosphatidyl inositol-3 kinase inhibitor LY-294002 (50 μM). Addition of nitric oxide synthase inhibitor l-NAME (1.0 mM) also abolished PFF-induced stabilization of β-catenin. This suggests that mechanical loading activates the β-catenin signaling pathway by a mechanism involving nitric oxide, focal adhesion kinase, and the Akt signaling pathway. These data provide a framework for understanding the role of β-catenin in mechanical adaptation of bone.  相似文献   

4.
Mechanical loading of bone induces interstitial fluid flow, leading to fluid shear stress (FSS) of osteoblasts. FSS rapidly increases the intracellular calcium concentration ([Ca(2+)]) and nitric oxide (NO) synthesis in osteoblasts and activates the protein kinase Akt. Activated Akt stimulates osteoblast proliferation and survival, but the mechanism(s) leading to Akt activation is not well defined. Using pharmacological and genetic approaches in primary human and mouse osteoblasts and mouse MC3T3 osteoblast-like cells, we found that Akt activation by FSS occurred through two parallel pathways; one required calcium stimulation of NO synthase and NO/cGMP/protein kinase G II-dependent activation of Src, and the other required calcium activation of FAK and Src, independent of NO. Both pathways cooperated to increase PI3K-dependent Akt phosphorylation and were necessary for FSS to induce nuclear translocation of β-catenin, c-fos, and cox-2 gene expression and osteoblast proliferation. These data explain how mechanical stimulation of osteoblasts leads to increased signaling through a growth regulatory pathway essential for maintaining skeletal integrity.  相似文献   

5.
Immunocytochemical demonstration of protein kinase C (PKC) subspecies (, , ) was carried out in Pacinian corpuscles of rat hind feet using monoclonal or polyclonal antibodies against each of these subspecies. The inner core cells and lamellae and the Schwann cell cytoplasm of the nerve fiber innervating the corpuscle were strongly positive for PKC -immunoreactivity (IR). In contrast, the axon terminal and the outer core did not display any positive -IR. Very weak PKC -IR was detected in the ultraterminal region of the axon terminal, while the trunk region showed no immunoreactivity. Very faint PKC -IR was found also in the lamellar cells located at the periphery of the inner core and the endoneurial fibroblasts in the intermediate layer. PKC -IR was not detected in any part of the corpuscle. The strong PKC -IR in the inner core and the presence of absence of PKC -, -, and -IR in the axon terminal are discussed from the point of view of the functional aspects of each part.  相似文献   

6.
Previously, tau protein kinase I/glycogen synthase kinase-3/kinase FA(TPKI/GSK-3/FA) was identified as a brain microtubule-associated tau kinase possibly involved in the Alzheimer disease-like phosphorylation of tau. In this report, we find that the TPKI/GSK-3/FA can be stimulated to phosphorylate brain tau up to 8.5 mol of phosphates per mol of protein by heparin, a polyanion compound. Tryptic digestion of32P-labeled tau followed by high-performance liquid chromatography and high-voltage electrophoresis/thin-layer chromatography reveals 12 phosphopeptides. Phosphoamino acid analysis together with sequential manual Edman degradation and peptide sequence analysis further reveals that TPKI/GSK-3//FA after heparin potentiation phosphorylates tau on sites of Ser199, Thr231, Ser235, Ser262, Ser396, and Ser400, which are potential sites abnormally phosphorylated in Alzheimer tau and potent sites responsible for reducing microtubule binding possibly involved in neuronal degeneration. The results provide initial evidence that TPKI/GSK-3/FA after heparin potentiation may represent one of the most potent systems possibly involved in the abnormal phosphorylation of PHF-tau and neuronal degeneration in Alzheimer disease brains.Abbreviations FA the activating factor of type 1 protein phosphatase - GSK-3 glycogen synthase kinase-3 - TPKI tau protein kinase I - SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis - PHF paired helical filaments - HPLC high-performance liquid chromatography  相似文献   

7.
Morphological transition (yeast-hyphal and white–opaque) is an important biological process in the life cycle of pathogenic yeast, Candida albicans and is a major determinant of virulence. Earlier reports show that the amino sugar, N-acetylglucosamine (GlcNAc) induces white to opaque switching in this pathogen. We report here a new contributor to this switching phenomenon, namely N-acetylglucosamine kinase or HXK1, the first enzyme of the GlcNAc catabolic cascade. Microarray profile analysis of wild type vs. hxk1 mutant cells grown under switching inducing condition showed upregulation of opaque specific and cell wall specific genes along genes involved in the oxidative metabolism. Further, our qRT-PCR and immunoblot analysis revealed that the expression levels of Wor1, a master regulator of the white–opaque switching phenomenon remained unaltered during this HXK1 mediated transition. Thus the derepression of opaque specific gene expression observed in hxk1 mutant could be uncoupled to the expression of WOR1. Moreover, this regulation via HXK1 is independent of Ras1, a major regulator of morphogenetic transition and probably independent of MTL locus too. These results extend our understanding of multifarious roles of metabolic enzymes like Hxk1 and suggest an adaptive mechanism during host–pathogen interactions.  相似文献   

8.
Phosphoinositide (PI) phosphatases such as the SH2 domain-containing inositol 5-phosphatases 1/2 (SHIP1 and 2) are important signalling enzymes in human physiopathology. SHIP1/2 interact with a large number of immune and growth factor receptors. Tyrosine phosphorylation of SHIP1/2 has been considered to be the determining regulatory modification. However, here we present a hypothesis, based on recent key publications, highlighting the determining role of Ser/Thr phosphorylation in regulating several key properties of SHIP1/2. Since a subunit of the Ser/Thr phosphatase PP2A has been shown to interact with SHIP2, a putative mechanism for reversing SHIP2 Ser/Thr phosphorylation can be anticipated. PI phosphatases are potential target molecules in human diseases, particularly, but not exclusively, in cancer and diabetes. Therefore, this novel regulatory mechanism deserves further attention in the hunt for discovering novel or complementary therapeutic strategies. This mechanism may be more broadly involved in regulating PI signalling in the case of synaptojanin1 or the phosphatase, tensin homolog, deleted on chromosome TEN.  相似文献   

9.
Vaccinia-related kinase 1 (VRK1) is a novel serine/threonine kinase that plays an important role in cell proliferation. However, little is known about the upstream regulators of VRK1 activity. Here we provide evidence for a role of protein kinase Cδ (PKCδ) in the regulation of murine VRK1. We show that PKCδ interacts with VRK1, phosphorylates the Ser-355 residue in the putative regulatory region, and negatively regulates its kinase activity in vitro. Intriguingly, PKCδ-induced cell death was facilitated by phosphorylation of VRK1 when cells were exposed to a DNA-damaging agent. In addition, p53 played a critical role in the regulation of DNA damage-induced cell death accompanied by PKCδ-mediated modulation of VRK1. In p53-deficient cells, PKCδ-mediated phosphorylation of VRK1 had no effect on cell viability. However, cells overexpressing p53 exhibited significant reduction of cell viability when cotransfected with both VRK1 and PKCδ. Taken together, these results indicate that PKCδ regulates phosphorylation and down-regulation of VRK1, thereby contributing to cell cycle arrest and apoptotic cell death in a p53-dependent manner.  相似文献   

10.
Hyperphosphorylation of tau is a hallmark of Alzheimer's disease and other tauopathies. Although the mechanisms underlying hyperphosphorylation are not fully understood, cellular stresses such as impaired energy metabolism are thought to influence the signalling cascade. The AMPK (AMP-activated protein kinase)-related kinases MARK (microtubule-associated protein-regulating kinase/microtubule affinity-regulating kinase) and BRSK (brain-specific kinase) have been implicated in tau phosphorylation, but are insensitive to activation by cellular stress. In the present study, we show that AMPK itself phosphorylates tau on a number of sites, including Ser2?2 and Ser3??, altering microtubule binding of tau. In primary mouse cortical neurons, CaMKKβ (Ca2+/calmodulin-dependent protein kinase kinase β) activation of AMPK in response to Aβ (amyloid-β peptide)-(1-42) leads to increased phosphorylation of tau at Ser2?2/Ser3?? and Ser33??. Activation of AMPK by Aβ-(1-42) is inhibited by memantine, a partial antagonist of the NMDA (N-methyl-D-aspartate) receptor and currently licensed for the treatment of Alzheimer's disease. These findings identify a pathway in which Aβ-(1-42) activates CaMKKβ and AMPK via the NMDA receptor, suggesting the possibility that AMPK plays a role in the pathophysiological phosphorylation of tau.  相似文献   

11.
To clarify the mechanism for substrate recognition of α-aminoadipate aminotransferase (AAA-AT) from Thermus thermophilus, the crystal structure of AAA-AT complexed with N-(5′-phosphopyridoxyl)-l-glutamate (PPE) was determined at 1.67 Å resolution. The crystal structure revealed that PPE is recognized by amino acid residues the same as those seen in N-(5′-phosphopyridoxyl)-l-α-aminoadipate (PPA) recognition; however, to bind the γ-carboxyl group of Glu at a fixed position, the Cα atom of the Glu moiety moves 0.80 Å toward the γ-carboxyl group in the PPE complex. Markedly decreased activity for Asp can be explained by the shortness of the aspartyl side chain to be recognized by Arg23 and further dislocation of the Cα atom of bound Asp. Site-directed mutagenesis revealed that Arg23 has dual functions for reaction, (i) recognition of γ (δ)-carboxyl group of Glu (AAA) and (ii) rearrangement of α2 helix by changing the interacting partners to place the hydrophobic substrate at the suitable position.  相似文献   

12.
13.
The signaling switch of β2-adrenergic and μ(1) -opioid receptors from stimulatory G-protein (G(αs) ) to inhibitory G-protein (G(αi) ) (and vice versa) influences adenylyl cyclase (AC) and extracellular-regulated kinase (ERK)1/2 activation. Post-translational modifications, including dephosphorylation of G(αs) , enhance opioid receptor coupling to G(αs) . In the present study, we substituted the Ser/Thr residues of G(αs) at the α3/β5 and α4/β6 loops aiming to study the role of G(αs) lacking Ser/Thr phosphorylation with respect to AC sensitization and mitogen-activated protein kinase activation. Isoproterenol increased the cAMP concentration (EC(50) = 22.8 ± 3.4 μm) in G(αs) -transfected S49 cyc- cells but not in nontransfected cells. However, there was no significant difference between the G(αs) -wild-type (wt) and mutants. Morphine (10 μm) inhibited AC activity more efficiently in cyc- compared to G(αs) -wt introduced cells (P < 0.05); however, we did not find a notable difference between G(αs) -wt and mutants. Interestingly, G(αs) -wt transfected cells showed more sensitization with respect to AC after chronic morphine compared to nontransfected cells (101 ± 12% versus 34 ± 6%; P < 0.001); μ1-opioid receptor interacted with G(αs) , and both co-immunoprecipitated after chronic morphine exposure. Furthermore, mutation of T270A and S272A (P < 0.01), as well as T270A, S272A and S261A (P < 0.05), in α3/β5, resulted in a higher level of AC supersensitization. ERK1/2 phosphorylation was rapidly induced by isoproterenol (by 9.5 ± 2.4-fold) and morphine (22 ± 2.2-fold) in G(αs) -transfected cells; mutations of α3/β5 and α4/β6 did not affect the pattern or extent of mitogen-activated protein kinase activation. The findings of the present study show that G(αs) interacts with the μ1-opioid receptor, and the Ser/Thr mutation to Ala at the α3/β5 loop of G(αs) enhances morphine-induced AC sensitization. In addition, G(αs) was required for the rapid phosphorylation of ERK1/2 by isoproterenol but not morphine.  相似文献   

14.
The eukaryotic-type serine/threonine kinase StkP from Streptococcus pneumoniae is an important signal-transduction element that regulates the expression of numerous pneumococcal genes. We have expressed the extracellular C-terminal domain of StkP kinase (C-StkP), elaborated a three-dimensional structural model and performed a spectroscopical characterization of its structure and stability. Biophysical experiments show that C-StkP binds to synthetic samples of the cell wall peptidoglycan (PGN) and to β-lactam antibiotics, which mimic the terminal portions of the PGN stem peptide. This is the first experimental report on the recognition of a minimal PGN unit by a PASTA-containing kinase, suggesting that non-crosslinked PGN may act as a signal for StkP function and pointing to this protein as an interesting target for β-lactam antibiotics.  相似文献   

15.
Summary An artificial bifunctional enzyme, -glutamyl kinase/-glutamyl phosphate reductase, was obtained by fusing the Escherichia coli genes proA and proB. The proB gene was fused to the 5-end of the proA gene with a linker encoding five amino acids. When expressed in E. coli enhanced intracellular concentrations of proline were observed. At 0.6 M NaCl the growth rates for the strain carrying the fusion enzyme and a control harbouring a plasmid encoding the wild-type enzymes were 320 and 530 min, respectively.  相似文献   

16.
17.
Deoxycytidine kinase (dCK) is a key enzyme in the salvage of deoxynucleosides and in the activation of several anticancer and antiviral nucleoside analogues. We recently showed that dCK was activated in vivo by phosphorylation of Ser-74. However, the protein kinase responsible was not identified. Ser-74 is located downstream a Glu-rich region, presenting similarity with the consensus phosphorylation motif of casein kinase 1 (CKI), and particularly of CKI δ. We showed that recombinant CKI δ phosphorylated several residues of bacterially overexpressed dCK: Ser-74, but also Ser-11, Ser-15, and Thr-72. Phosphorylation of dCK by CKI δ correlated with increased activity reaching at least 4-fold. Site-directed mutagenesis demonstrated that only Ser-74 phosphorylation was involved in dCK activation by CKI δ, strengthening the key role of this residue in the control of dCK activity. However, neither CKI δ inhibitors nor CKI δ siRNA-mediated knock-down modified Ser-74 phosphorylation or dCK activity in cultured cells. Moreover, these approaches did not prevent dCK activation induced by treatments enhancing Ser-74 phosphorylation. Taken together, the data preclude a role of CKI δ in the regulation of dCK activity in vivo. Nevertheless, phosphorylation of dCK by CKI δ could be a useful tool for elucidating the influence of Ser-74 phosphorylation on the structure-activity relationships in the enzyme.  相似文献   

18.
The WNK kinases are a recently discovered family of serine-threonine kinases that have been shown to play an essential role in the regulation of electrolyte homeostasis, lntronic deletions in the WNK1 gene resuk in its overexpression and lead to pseudohypoaldosteronism type Ⅱ, a disease with salt-sensitive hypertension and hyperkalemia. This review focuses on the recent evidence elucidating the structure of the kinase domain of WNK1 and functions of these kinases in normal and disease physiology. Their functions have implications for understanding the biochemical mechanism that could lead to the retention or insertion of proteins in the plasma membrane. The WNK kinases may be able to influence ion homeostasis through its effects on synaptotagmin function.  相似文献   

19.
Lu SX  Liu H  Knowles SM  Li J  Ma L  Tobin EM  Lin C 《Plant physiology》2011,157(3):1537-1545
Circadian rhythms are autoregulatory, endogenous rhythms with a period of approximately 24 h. A wide variety of physiological and molecular processes are regulated by the circadian clock in organisms ranging from bacteria to humans. Phosphorylation of clock proteins plays a critical role in generating proper circadian rhythms. Casein Kinase2 (CK2) is an evolutionarily conserved serine/threonine protein kinase composed of two catalytic α-subunits and two regulatory β-subunits. Although most of the molecular components responsible for circadian function are not conserved between kingdoms, CK2 is a well-conserved clock component modulating the stability and subcellular localization of essential clock proteins. Here, we examined the effects of a cka1a2a3 triple mutant on the Arabidopsis (Arabidopsis thaliana) circadian clock. Loss-of-function mutations in three nuclear-localized CK2α subunits result in period lengthening of various circadian output rhythms and central clock gene expression, demonstrating that the cka1a2a3 triple mutant affects the pace of the circadian clock. Additionally, the cka1a2a3 triple mutant has reduced levels of CK2 kinase activity and CIRCADIAN CLOCK ASSOCIATED1 phosphorylation in vitro. Finally, we found that the photoperiodic flowering response, which is regulated by circadian rhythms, was reduced in the cka1a2a3 triple mutant and that the plants flowered later under long-day conditions. These data demonstrate that CK2α subunits are important components of the Arabidopsis circadian system and their effects on rhythms are in part due to their phosphorylation of CIRCADIAN CLOCK ASSOCIATED1.  相似文献   

20.
We previously demonstrated that αB-crystallin and protease-activated receptor (PAR) are involved in protection of astrocytes against C2-ceramide- and staurosporine-induced cell death [Li et al. (2009) J. Neurochem.110, 1433-1444]. Here, we further investigated the mechanism of cytoprotection by αB-crystallin. Our current data revealed that after down-regulation of αB-crystallin by siRNA, cell death caused by C2-ceramide and staurosporine is increased. Furthermore, we investigated the mechanism of cytoprotection of astrocytes by intracellular αB-crystallin. Application of specific inhibitors of p38 and extracellular regulated kinase (ERK) abrogates the protection of astrocytes by over-expression of αB-crystallin. Thus, p38 and ERK contribute to protective processes by αB-crystallin. To reveal the molecular mechanism of αB-crystallin-mediated cytoprotection, we mimicked phosphorylation or unphosphorylation of αB-crystallin. In these experiments, we found that the phosphorylation of αB-crystallin at Ser45 and Ser59 is required for protection. Ser19 phosphorylation of αB-crystallin does not contribute to protection. Moreover, we detected that PAR-2 activation increases the phosphorylation level of αB-crystallin at Ser59, but does not affect the expression level of αB-crystallin. Thus, endogenous αB-crystallin has protective capacity employing a mechanism, which involves regulation of the phosphorylation status of αB-crystallin and p38 and ERK activity. Moreover, we report that PAR-2 activation evokes the phosphorylation of αB-crystallin to increase astrocytes survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号