首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli is one of the most used host microorganism for the production of recombinant products, such as heterologous proteins and plasmids. However, genetic, physiological and environmental factors influence the plasmid replication and cloned gene expression in a highly complex way. To control and optimize the recombinant expression system performance, it is very important to understand this complexity. Therefore, the development of rapid, highly sensitive and economic analytical methodologies, which enable the simultaneous characterization of the heterologous product synthesis and physiologic cell behavior under a variety of culture conditions, is highly desirable. For that, the metabolic profile of recombinant E. coli cultures producing the pVAX‐lacZ plasmid model was analyzed by rapid, economic and high‐throughput Fourier Transform Mid‐Infrared (FT‐MIR) spectroscopy. The main goal of the present work is to show as the simultaneous multivariate data analysis by principal component analysis (PCA) and direct spectral analysis could represent a very interesting tool to monitor E. coli culture processes and acquire relevant information according to current quality regulatory guidelines. While PCA allowed capturing the energetic metabolic state of the cell, e.g. by identifying different C‐sources consumption phases, direct FT‐MIR spectral analysis allowed obtaining valuable biochemical and metabolic information along the cell culture, e.g. lipids, RNA, protein synthesis and turnover metabolism. The information achieved by spectral multivariate data and direct spectral analyses complement each other and may contribute to understand the complex interrelationships between the recombinant cell metabolism and the bioprocess environment towards more economic and robust processes design according to Quality by Design framework. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:285–298, 2017  相似文献   

2.
In order to release host cells from plasmid‐mediated increases in metabolic load and high gene dosages, we developed a plasmid‐free, T7‐based E. coli expression system in which the target gene is site‐specifically integrated into the genome of the host. With this system, plasmid‐loss, a source of instability for conventional expression systems, was eliminated. At the same time, system leakiness, a challenging problem with recombinant systems, was minimized. The efficiency of the T7 RNA polymerase compensates for low gene dosage and provides high rates of recombinant gene expression without fatal consequences to host metabolism. Relative to conventional pET systems, this system permits improved process stability and increases the host cell's capacity for recombinant gene expression, resulting in higher product yields. The stability of the plasmid‐free system was proven in chemostat cultivation for 40 generations in a non‐induced and for 10 generations in a fully induced state. For this reason plasmid‐free systems benefit the development of continuous production processes with E. coli. However, time and effort of the more complex cloning procedure have to be considered in relation to the advantages of plasmid‐free systems in upstream‐processing. Biotechnol. Bioeng. 2010. 105: 786–794. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
4.
Escherichia coli has been the host organism most frequently investigated for efficient recombinant protein production. However, the production of a foreign protein in recombinant E. coli often leads to growth deterioration and elevated secretion of acetic acid. Such observed phenomena have been widely linked with cell stress responses and metabolic burdens originated particularly from the increased energy demand. In this study, flux balance analysis and dynamic flux balance analysis were applied to investigate the observed growth physiology of recombinant E. coli, incorporating the proteome allocation theory and an adjustable maintenance energy level (ATPM) to capture the proteomic and energetic burdens introduced by recombinant protein synthesis. Model predictions of biomass growth, substrate consumption, acetate excretion, and protein production with two different strains were in good agreement with the experimental data, indicating that the constraint on the available proteomic resource and the change in ATPM might be important contributors governing the growth physiology of recombinant strains. The modeling framework developed in this work, currently with several limitations to overcome, offers a starting point for the development of a practical, model-based tool to guide metabolic engineering decisions for boosting recombinant protein production.  相似文献   

5.
6.
Pichia pastoris has become one of the major microorganisms for the production of proteins in recent years. This development was mainly driven by the readily available genetic tools and the ease of high‐cell density cultivations using methanol (or methanol/glycerol mixtures) as inducer and carbon source. To overcome the observed limitations of methanol use such as high heat development, cell lysis, and explosion hazard, we here revisited the possibility to produce proteins with P. pastoris using glucose as sole carbon source. Using a recombinant P. pastoris strain in glucose limited fed‐batch cultivations, very high‐cell densities were reached (more than 200 gCDW L?1) resulting in a recombinant protein titer of about 6.5 g L?1. To investigate the impact of recombinant protein production and high‐cell density fermentation on the metabolism of P. pastoris, we used 13C‐tracer‐based metabolic flux analysis in batch and fed‐batch experiments. At a controlled growth rate of 0.12 h?1 in fed‐batch experiments an increased TCA cycle flux of 1.1 mmol g?1 h?1 compared to 0.7 mmol g?1 h?1 for the recombinant and reference strains, respectively, suggest a limited but significant flux rerouting of carbon and energy resources. This change in flux is most likely causal to protein synthesis. In summary, the results highlight the potential of glucose as carbon and energy source, enabling high biomass concentrations and protein titers. The insights into the operation of metabolism during recombinant protein production might guide strain design and fermentation development. Biotechnol. Bioeng. 2010;107: 357–368. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
Aims: Escherichia coli has emerged as a viable heterologous host for the production of complex, polyketide natural compounds. In this study, polyketide biosynthesis was compared between different E. coli strains for the purpose of better understanding and improving heterologous production. Methods and Results: Both B and K‐12 E. coli strains were genetically modified to support heterologous polyketide biosynthesis [specifically, 6‐deoxyerythronolide B (6dEB)]. Polyketide production was analysed using a helper plasmid designed to overcome rare codon usage within E. coli. Each strain was analysed for recombinant protein production, precursor consumption, by‐product production, and 6dEB biosynthesis. Of the strains tested for biosynthesis, 6dEB production was greatest for E. coli B strains. When comparing biosynthetic improvements as a function of mRNA stability vs codon bias, increased 6dEB titres were observed when additional rare codon tRNA molecules were provided. Conclusions: Escherichia coli B strains and the use of tRNA supplementation led to improved 6dEB polyketide titres. Significance and Impact of the Study: Given the medicinal potential and growing field of polyketide heterologous biosynthesis, the current study provides insight into host‐specific genetic backgrounds and gene expression parameters aiding polyketide production through E. coli.  相似文献   

8.
Liver‐directed gene therapy has become a promising treatment for many liver diseases. In this study, we constructed a multi‐functional targeting molecule, which maintains targeting, endosome‐escaping, and DNA‐binding abilities for gene delivery. Two single oligonucleotide chains of Melittin (M) were synthesized. The full‐length cDNA encoding anti‐hepatic asialoglycoprotein receptor scFv C1 (C1) was purified from C1/pIT2. The GAL4 (G) gene was amplified from pSW50‐Gal4 by polymerase chain reaction. M, C1 and G were inserted into plasmid pGC4C26H to product the recombinant plasmid pGC‐C1MG. The fused gene C1MG was subsequently subcloned into plasmid pET32c to product the recombinant plasmid C1MG/pET32c and expressed in Escherichia coli BL21. The scFv‐Mel‐Gal4 triple fusion protein (C1MG) was purified with a Ni2+ chelating HiTrap HP column. The fusion protein C1MG of roughly 64 kD was expressed in inclusion bodies; 4.5 mg/ml C1MG was prepared with Ni2+ column purification. Western blot and immunohistochemistry showed the antigen‐binding ability of C1MG to the cell surface of the liver‐derived cell line and liver tissue slices. Hemolysis testing showed that C1MG maintained membrane‐disrupting activity. DNA‐binding capacity was substantiated by luciferase assay, suggesting that C1MG could deliver the DNA into cells efficiently on the basis of C1MG. Successful expression of C1MG was achieved in E. coli, and C1MG recombinant protein confers targeting, endosome‐escaping and DNA‐binding capacity, which makes it probable to further study its liver‐specific DNA delivery efficacy in vivo. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Metabolic network models describing growth of Escherichia coli on glucose, glycerol and acetate were derived from a genome scale model of E. coli. One of the uncertainties in the metabolic networks is the exact stoichiometry of energy generating and consuming processes. Accurate estimation of biomass and product yields requires correct information on the ATP stoichiometry. The unknown ATP stoichiometry parameters of the constructed E. coli network were estimated from experimental data of eight different aerobic chemostat experiments carried out with E. coli MG1655, grown at different dilution rates (0.025, 0.05, 0.1, and 0.3 h?1) and on different carbon substrates (glucose, glycerol, and acetate). Proper estimation of the ATP stoichiometry requires proper information on the biomass composition of the organism as well as accurate assessment of net conversion rates under well‐defined conditions. For this purpose a growth rate dependent biomass composition was derived, based on measurements and literature data. After incorporation of the growth rate dependent biomass composition in a metabolic network model, an effective P/O ratio of 1.49 ± 0.26 mol of ATP/mol of O, KX (growth dependent maintenance) of 0.46 ± 0.27 mol of ATP/C‐mol of biomass and mATP (growth independent maintenance) of 0.075 ± 0.015 mol of ATP/C‐mol of biomass/h were estimated using a newly developed Comprehensive Data Reconciliation (CDR) method, assuming that the three energetic parameters were independent of the growth rate and the used substrate. The resulting metabolic network model only requires the specific rate of growth, µ, as an input in order to accurately predict all other fluxes and yields. Biotechnol. Bioeng. 2010;107: 369–381. © 2010 Wiley Periodicals, Inc.  相似文献   

10.
Production of monoclonal antibodies (mAbs) receives considerable attention in the pharmaceutical industry. There has been an increasing interest in the expression of mAbs in Escherichia coli for analytical and therapeutic applications in recent years. Here, a modular synthetic biology approach is developed to rationally engineer E. coli by designing three functional modules to facilitate high‐titer production of immunoglobulin G (IgG). First, a bicistronic expression system is constructed and the expression of the key genes in the pyruvate metabolism is tuned by the technologies of synthetic sRNA translational repression and gene overexpression, thus enhancing the cellular material and energy metabolism of E. coli for IgG biosynthesis (module 1). Second, to prevent the IgG biodegradation by proteases, the expression of a number of key proteases is identified and inhibited via synthetic sRNAs (module 2). Third, molecular chaperones are co‐expressed to promote the secretion and folding of IgG (module 3). Synergistic integration of the three modules into the resulting recombinant E. coli results in a yield of the full‐length IgG ≈150 mg L?1 in a 5L fed‐batch bioreactor. The modular synthetic biology approach could be of general use in the production of recombinant mAbs.  相似文献   

11.
Herein, we report the development of a microbial bioprocess for high‐level production of 5‐aminolevulinic acid (5‐ALA), a valuable non‐proteinogenic amino acid with multiple applications in medical, agricultural, and food industries, using Escherichia coli as a cell factory. We first implemented the Shemin (i.e., C4) pathway for heterologous 5‐ALA biosynthesis in E. coli. To reduce, but not to abolish, the carbon flux toward essential tetrapyrrole/porphyrin biosynthesis, we applied clustered regularly interspersed short palindromic repeats interference (CRISPRi) to repress hemB expression, leading to extracellular 5‐ALA accumulation. We then applied metabolic engineering strategies to direct more dissimilated carbon flux toward the key precursor of succinyl‐CoA for enhanced 5‐ALA biosynthesis. Using these engineered E. coli strains for bioreactor cultivation, we successfully demonstrated high‐level 5‐ALA biosynthesis from glycerol (~30 g L?1) under both microaerobic and aerobic conditions, achieving up to 5.95 g L?1 (36.9% of the theoretical maximum yield) and 6.93 g L?1 (50.9% of the theoretical maximum yield) 5‐ALA, respectively. This study represents one of the most effective bio‐based production of 5‐ALA from a structurally unrelated carbon to date, highlighting the importance of integrated strain engineering and bioprocessing strategies to enhance bio‐based production.  相似文献   

12.
Metabolic burden as a consequence of overexpression of target gene in a recombinant strain of E. coli 1727 has been analyzed with respect to maintenance energy coefficient (m). The values of m for the host, uninduced recombinant and IPTG induced recombinant were determined to be 0.12, 0.17 and 0.32 g.g-1.h-1 respectively. Transient plasmid instability and nearly 33% fall in maximum specific growth rate were observed under conditions of enhanced requirements for maintenance energy.  相似文献   

13.
Metabolic flux distributions of recombinant Escherichia coli BL21 expressing human-like collagen were determined by means of a stoichiometric network and metabolic balancing. At the batch growth stage, the fluxes of the pentose phosphate pathway were higher than the fluxes of the fed-batch growth phase and the production stage. After the temperature was increased, there was a substantially elevated energy demand for synthesizing human-like collagen and heat-shock proteins, which resulted in changes in metabolic fluxes. The activities of the Embden-Meyerhof-Parnas pathway and the tricarboxylic acid cycle were significantly enhanced, leading to a reduction in the fluxes of the pentose phosphate pathway and other anabolic pathways. The temperature upshift also caused an increase in NADPH production by isocitrate dehydrogenase in the tricarboxylic acid cycle. The metabolic model predicted the involvement of a transhydrogenase that generates additional NADH from NADPH, thereby increasing ATP regeneration in the respiratory chain. These data indicated that the maintenance energy for cellular activity increased with the increase in biomass in fed-batch culture, and that cell growth and synthesis of human-like collagen could clearly represent the changes in metabolic fluxes. At the production stage, more NADPH was used to synthesize human-like collagen than for maintaining cellular activity, cell growth, and cell propagation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
3‐amino‐benzoic acid (3AB) is an important building block molecule for production of a wide range of important compounds such as natural products with various biological activities. In the present study, we established a microbial biosynthetic system for de novo 3AB production from the simple substrate glucose. First, the active 3AB biosynthetic pathway was reconstituted in the bacterium Escherichia coli, which resulted in the production of 1.5 mg/L 3AB. In an effort to improve the production, an E. coliE. coli co‐culture system was engineered to modularize the biosynthetic pathway between an upstream strain and an downstream strain. Specifically, the upstream biosynthetic module was contained in a fixed E. coli strain, whereas a series of E. coli strains were engineered to accommodate the downstream biosynthetic module and screened for optimal production performance. The best co‐culture system was found to improve 3AB production by 15 fold, compared to the mono‐culture approach. Further engineering of the co‐culture system resulted in biosynthesis of 48 mg/L 3AB. Our results demonstrate co‐culture engineering can be a powerful new approach in the broad field of metabolic engineering.  相似文献   

15.
The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S‐transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine‐containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7‐triazacyclononane (tacn). The use of this tag‐tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli‐expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP‐1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI‐TOF MS analysis of the cleaved products from the DAP‐1 digestion of the recombinant N‐terminally tagged proteins confirmed the complete removal of the tag within 4‐12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn‐based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli‐expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
When bacteria are cultured in medium with multiple carbon substrates, they frequently consume these substrates simultaneously. Building on recent advances in the understanding of metabolic coordination exhibited by Escherichia coli cells through cAMP‐Crp signaling, we show that this signaling system responds to the total carbon‐uptake flux when substrates are co‐utilized and derive a mathematical formula that accurately predicts the resulting growth rate, based only on the growth rates on individual substrates.  相似文献   

17.
Heterologous production of naringenin, a valuable flavonoid with various biotechnological applications, was well studied in the model organisms such as Escherichia coli or Saccharomyces cerevisiae. In this study, a synergistic co‐culture system was developed for the production of naringenin from xylose by engineering microorganism. A long metabolic pathway was reconstructed in the co‐culture system by metabolic engineering. In addition, the critical gene of 4‐coumaroyl‐CoA ligase (4CL) was simultaneously integrated into the yeast genome as well as a multi‐copy free plasmid for increasing enzyme activity. On this basis, some factors related with fermentation process were considered in this study, including fermented medium, inoculation size and the inoculation ratio of two microbes. A yield of 21.16 ± 0.41 mg/L naringenin was produced in this optimized co‐culture system, which was nearly eight fold to that of the mono‐culture of yeast. This is the first time for the biosynthesis of naringenin in the co‐culture system of S. cerevisiae and E. coli from xylose, which lays a foundation for future study on production of flavonoid.  相似文献   

18.
A possible reason for the complexity of the signals produced by bioluminescent biosensors might be self‐organization of the cells. In order to verify this possibility, bioluminescence images of cultures of lux gene reporter Escherichia coli were recorded for several hours after being placed into 8–10 mm diameter cylindrical containers. It was found that luminous cells distribute near the three‐phase contact line, forming irregular azimuthal waves. As we show, space–time plots of quasi‐one‐dimensional bioluminescence measured along the contact line can be simulated by reaction–diffusion–chemotaxis equations, in which the reaction term for the cells is a logistic (autocatalytic) growth function. It was found that the growth rate of the luminous cells (~0.02 s?1) is >100 times higher than the growth rate of E. coli. We provide an explanation for this result by assuming that E. coli exhibits considerable respiratory flexibility (the ability of oxygen‐induced switching from one metabolic pathway to another). According to the simple two‐state model presented here, the number of oxic (luminous) cells grows at the expense of anoxic (dark) cells, whereas the total number of (oxic and anoxic) cells remains unchanged. It is conjectured that the corresponding reaction–diffusion–chemotaxis model for bioluminescence pattern formation can be considered as a model for the energy‐taxis and metabolic self‐organization in the population of the metabolically flexible bacteria under hypoxic conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
d ‐Alanyl‐d ‐alanine carboxypeptidase DacC is important for synthesis and stabilization of the peptidoglycan layer of Escherichia coli. In this work, dacC of E. coli BL21 (DE3) was successfully deleted, and the effects of this deletion on extracellular protein production in E. coli were investigated. The extracellular activities and fluorescence value of recombinant amylase, green fluorescent protein, and α‐galactosidase of the deletion mutants were increased by 82.3, 29.1, and 37.7%, respectively, compared with that of control cells. The outer membrane permeability and intracellular soluble peptidoglycan accumulation of deletion mutant were also enhanced compared with those of control cells, respectively. Based on fluorescence‐assisted cell sorting analyses, we found that the morphology of the E. coli deletion mutant cells was altered compared with that of control cells. Local transparent bulges in the poles of the E. coli mutant with deletion of the dacC gene were found by transmission electron microscopy analysis. These bulges in the poles could explain the improvement in the production of extracellular protein by the E. coli mutant with deletion of the dacC gene. These findings provide important insights into the extracellular production of proteins using E. coli as microbial cell factories.  相似文献   

20.
Mycoplasma pneumoniae, a threatening pathogen with a minimal genome, is a model organism for bacterial systems biology for which substantial experimental information is available. With the goal of understanding the complex interactions underlying its metabolism, we analyzed and characterized the metabolic network of M. pneumoniae in great detail, integrating data from different omics analyses under a range of conditions into a constraint‐based model backbone. Iterating model predictions, hypothesis generation, experimental testing, and model refinement, we accurately curated the network and quantitatively explored the energy metabolism. In contrast to other bacteria, M. pneumoniae uses most of its energy for maintenance tasks instead of growth. We show that in highly linear networks the prediction of flux distributions for different growth times allows analysis of time‐dependent changes, albeit using a static model. By performing an in silico knock‐out study as well as analyzing flux distributions in single and double mutant phenotypes, we demonstrated that the model accurately represents the metabolism of M. pneumoniae. The experimentally validated model provides a solid basis for understanding its metabolic regulatory mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号