首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Regeneration of skeletal tissues is among the most promising areas of biological repair, providing a broad spectrum of potential clinical applications. In view of the ageing population and the worldwide shortage of donor tissue, tissue engineering is expected to become a major contributor to modern medicine. Recently, embryonic stem cells (ESCs) have received extensive attention due to their distinct biological properties, namely their unlimited self-renewal capacity and their pluripotency, which have rendered them a potent cell source for various medical and tissue engineering applications. The application of embryonic stem cells to skeletal tissue engineering requires inducing thein vitro differentiation of ESCs into the osteogenic and chondrogenic lineages. Although considerable progress has been made in directing embryonic stem cell differentiation towards the osteogenic and chondrogenic lineages, there are still obstacles remaining that need to be resolved before ESCs can be used as a suitable cell source in cell and tissue therapies. In particular, the efficient differentiation of ESCsin vitro towards the desired lineage requires the development of well-defined and proficient protocols, which would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone and cartilage tissue engineering therapies. Herein, this review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESCs towards the skeletal tissuein vitro, especially the osteogenic and chondrogenic lineasges.  相似文献   

2.
In this work we describe the establishment of mesenchymal stem cells (MSCs) derived from embryonic stem cells (ESCs) and the role of bFGF in adipocyte differentiation. The totipotency of ESCs and MSCs was assessed by immunofluorescence staining and RT-PCR of totipotency factors. MSCs were successfully used to induce osteoblasts, chondrocytes and adipocytes. MSCs that differentiated into adipocytes were stimulated with and without bFGF. The OD/DNA (optical density/content of total DNA) and expression levels of the specific adipocyte genes PPARγ2 (peroxisome proliferator activated receptor γ2) and C/EBPs were higher in bFGF cells. Embryonic bodies had a higher adipocyte level compared with cells cultured in plates. These findings indicate that bFGF promotes adipocyte differentiation. MSCs may be useful cells for seeding in tissue engineering and have enormous therapeutic potential for adipose tissue engineering.  相似文献   

3.
4.
The mesenchymal stem cells (MSCs), which are derived from the mesoderm, are considered as a readily available source for tissue engineering. They have multipotent differentiation capacity and can be differentiated into various cell types. Many studies have demonstrated that the MSCs identified from amniotic membrane (AM-MSCs) and amniotic fluid (AF-MSCs) are shows advantages for many reasons, including the possibility of noninvasive isolation, multipotency, self-renewal, low immunogenicity, anti-inflammatory and nontumorigenicity properties, and minimal ethical problem. The AF-MSCs and AM-MSCs may be appropriate sources of mesenchymal stem cells for regenerative medicine, as an alternative to embryonic stem cells (ESCs). Recently, regenerative treatments such as tissue engineering and cell transplantation have shown potential in clinical applications for degenerative diseases. Therefore, amnion and MSCs derived from amnion can be applied to cell therapy in neuro-degeneration diseases. In this review, we will describe the potential of AM-MSCs and AF-MSCs, with particular focus on cures for neuronal degenerative diseases. [BMB Reports 2014; 47(3): 135-140]  相似文献   

5.
Embryonic stem cells (ESCs) have emerged as potential cell sources for tissue engineering and regeneration owing to its virtually unlimited replicative capacity and the potential to differentiate into a variety of cell types. Current differentiation strategies primarily involve various growth factor/inducer/repressor concoctions with less emphasis on the substrate. Developing biomaterials to promote stem cell proliferation and differentiation could aid in the realization of this goal. Extracellular matrix (ECM) components are important physiological regulators, and can provide cues to direct ESC expansion and differentiation. ECM undergoes constant remodeling with surrounding cells to accommodate specific developmental event. In this study, using ESC derived aggregates called embryoid bodies (EB) as a model, we characterized the biological nature of ECM in EB after exposure to different treatments: spontaneously differentiated and retinoic acid treated (denoted as SPT and RA, respectively). Next, we extracted this treatment-specific ECM by detergent decellularization methods (Triton X-100, DOC and SDS are compared). The resulting EB ECM scaffolds were seeded with undifferentiated ESCs using a novel cell seeding strategy, and the behavior of ESCs was studied. Our results showed that the optimized protocol efficiently removes cells while retaining crucial ECM and biochemical components. Decellularized ECM from SPT EB gave rise to a more favorable microenvironment for promoting ESC attachment, proliferation, and early differentiation, compared to native EB and decellularized ECM from RA EB. These findings suggest that various treatment conditions allow the formulation of unique ESC-ECM derived scaffolds to enhance ESC bioactivities, including proliferation and differentiation for tissue regeneration applications.  相似文献   

6.
Pluripotent embryonic stem cells (ESCs) are a potential source for cell‐based tissue engineering and regenerative medicine applications, but their translation into clinical use will require efficient and robust methods for promoting differentiation. Fluid shear stress, which can be readily incorporated into scalable bioreactors, may be one solution for promoting endothelial and hematopoietic phenotypes from ESCs. Here we applied laminar shear stress to differentiating ESCs using a 2D adherent parallel plate configuration to systematically investigate the effects of several mechanical parameters. Treatment similarly promoted endothelial and hematopoietic differentiation for shear stress magnitudes ranging from 1.5 to 15 dyne/cm2 and for cells seeded on collagen‐, fibronectin‐ or laminin‐coated surfaces. Extension of the treatment duration consistently induced an endothelial response, but application at later stages of differentiation was less effective at promoting hematopoietic phenotypes. Furthermore, inhibition of the FLK1 protein (a VEGF receptor) neutralized the effects of shear stress, implicating the membrane protein as a critical mediator of both endothelial and hematopoietic differentiation by applied shear. Using a systematic approach, studies such as these help elucidate the mechanisms involved in force‐mediated stem cell differentiation and inform scalable bioprocesses for cellular therapies. Biotechnol. Bioeng. 2013; 110: 1231–1242. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Embryonic stem cells (ESCs) are established from the inner cell mass of preimplantation embryos, are capable of self‐renewal, and exhibit pluripotency. Given these unique properties, ESCs are expected to have therapeutic potential in regenerative medicine and as a powerful tool for in vitro differentiation studies of stem cells. Various growth factors and extracellular matrix components regulate the pluripotency and differentiation of ESC progenies. Thus, the cell surface receptors that bind these regulatory factors are crucial for the precise regulation of stem cells. To identify membrane proteins that are involved in the regulation of pluripotent stem cells, the membrane proteins of murine ESCs cultured with or without leukemia inhibitory factor (LIF) were purified and analyzed by quantitative proteomics. 2‐D PAGE‐based analysis using fluorescently labeled proteins and shotgun‐based analysis with isotope‐labeled peptides identified 338 proteins, including transmembrane, membrane‐binding, and extracellular proteins, which were expressed specifically in pluripotent or differentiated murine ESCs. Functions of the identified proteins revealed cell adhesion molecules, channels, and receptors, which are expected to play important roles in the maintenance of murine ESC pluripotency. Membrane proteins that are expressed in pluripotent ESCs but not in differentiated cells such as Slc16a1 and Bsg could be useful for the selection of the stem cells in vitro.  相似文献   

8.
用干细胞构建组织工程化牙齿是近年来口腔医学领域的研究热点,外胚间充质干细胞是目前已知牙源性干细胞的共同前体细胞,细胞的生物学特性和成牙信号分子环境是牙齿发育与再生的核心与关键,并贯穿于牙齿形成的全过程,是研究牙组织工程最具潜力的种子细胞,明确外胚间充质干细胞成牙分化能力及相关表型特征和分化特性,对进一步深入认识牙齿发育与再生机理具有重要作用。  相似文献   

9.
10.
11.
《Cytotherapy》2014,16(7):873-880
Electronic pacemakers are the standard therapy for bradycardia-related symptoms but have shortcomings. Over the past 15 years, experimental evidence has demonstrated that gene and cell-based therapies can create a biological pacemaker. Recently, physiologically acceptable rates have been reported with an adenovirus-based approach. However, adenovirus-based protein expression does not last more than 4 weeks, which limits its clinical applicability. Cell-based platforms are potential candidates for longer expression. Currently there are two cell-based approaches being tested: (i) mesenchymal stem cells used as a suitcase for delivering pacemaker genes and (ii) pluripotent stem cells differentiated down a cardiac lineage with endogenous pacemaker activity. This review examines the current achievements in engineering a biological pacemaker, defines the patient population for whom this device would be useful and identifies the challenges still ahead before cell therapy can replace current electronic devices.  相似文献   

12.
Embryonic stem cell (ESC) derivatives are a promising cell source for cardiac cell therapy. Mechanistic studies upon cell injection in conventional animal models are limited by inefficient delivery and poor cell survival. As an alternative, we have used an engineered heart tissue (EHT) based on neonatal rat cardiomyocytes (CMs) cultivated with electrical field stimulation as an in vitro model to study cell injection. We injected (0.001, 0.01, and 0.1 million) and tracked (by qPCR and histology) undifferentiated yellow‐fluorescent protein transgenic mouse ESCs and Flk1 + /PDGFRα+ cardiac progenitor (CPs) cells, to investigate the effect of the cardiac environment on cell differentiation, as well as to test whether our in vitro model system could recapitulate the formation of teratoma‐like structures commonly observed upon in vivo ESC injection. By 8 days post‐injection, ESCs were spatially segregated from the cardiac cell population; however, ESC injection increased survival of CMs. The presence of ESCs blocked electrical conduction through the tissue, resulting in a 46% increase in the excitation threshold. Expression of mouse cardiac troponin I, was markedly increased in CP injected constructs compared to ESC injected constructs at all time points and cell doses tested. As early as 2 weeks, epithelial and ganglion‐like structures were observed in ESC injected constructs. By 4 weeks of ESC injection, teratoma‐like structures containing neural, epithelial, and connective tissue were observed in the constructs. Non‐cardiac structures were observed in the CP injected constructs only after extended culture (4 weeks) and only at high cell doses, suggesting that these cells require further enrichment or differentiation prior to transplantation. Our data indicate that the cardiac environment of host tissue and electrical field stimulation did not preferentially guide the differentiation of ESCs towards the cardiac lineage. In the same environment, injection of CP resulted in a more robust cardiac differentiation than injection of ESC. Our data demonstrate that the model‐system developed herein can be used to study the functional effects of candidate stem cells on the host myocardium, as well as to measure the residual activity of undifferentiated cells present in the mixture. Biotechnol. Bioeng. 2011; 108:704–719. © 2010 Wiley Periodicals, Inc.  相似文献   

13.
胚胎干细胞的心脏应用   总被引:2,自引:0,他引:2  
Xiao YF 《生理学报》2003,55(5):493-504
心肌梗死期间死亡的心肌细胞将由没有收缩功能的疤痕组织替代,因而极可能引起心力衰竭。对治疗心衰来说,修复死亡或损伤的心肌以及改善心功能仍面临着极大挑战。干细胞移植已在近年来的实验中用于修复损失的心肌。本文总结了近期在心肌损伤动物中实施胚胎干细胞移植的实验结果,并着重介绍对这类特定细胞的研究进展。胚胎干细胞取源于早期哺乳类胚胎的胚芽细胞,属于多功能干细胞。这类细胞具有长期增殖而不分化的能力,或台色够在培养过程中分化成包括心肌细胞在内的所有特殊体细胞。由于胚胎干细胞具有极大的增殖和分化为成熟组织的能力,它们可能成为一种潜在的很有实用价值的细胞来源,可用于对病态心脏的功能心肌再生的细胞治疗。新近的研究表明,在心肌梗死动物模型中,心肌内移植胚胎干细胞或由其分化成的心肌样细胞,能导致已损伤心肌的再生,并改善心脏功能。另外,在病毒性心肌炎小鼠中,静脉输入胚胎干细胞可明显提高生存率和减轻心肌损伤。有关人类胚胎干细胞在体外分化成心肌细胞以及这些细胞的特性,近来已有报道。然而,要在临床能应用人类胚胎干细胞或由其分化成的心肌细胞来治疗晚期心脏疾病,还必须越过大量的伦理、法律和科学上的障碍。  相似文献   

14.
Lin N  Lin J  Bo L  Weidong P  Chen S  Xu R 《Cell proliferation》2010,43(5):427-434
Objectives: Alginate scaffolds are the most frequently investigated biomaterials in tissue engineering. Tissue engineering techniques that generate liver tissue have become important for treatment of a number of liver diseases and recent studies indicate that bone marrow‐derived stem cells (BMSCs) can differentiate into hepatocyte‐like cells. The goal of the study described here, was to examine in vitro hepatic differentiation potential of BMSCs cultured in an alginate scaffold. Materials and methods: To investigate the potential of BMSCs to differentiate into hepatocyte‐like cells, we cultured BMSCs in alginate scaffolds in the presence of specific growth factors including hepatocyte growth factor, epidermal growth factor and fibroblast growth factor‐4. Results: We can demonstrate that alginate scaffolds are compatible for growth of BMSCs and when cultured in alginate scaffolds for several days they display several liver‐specific markers and functions. Specifically, they expressed genes encoding alpha‐foetoprotein, albumin (ALB), connexin 32 and CYP7A1. In addition, these BMSCs produced both ALB and urea, expressed cytokeratin‐18 (CK‐18) and were capable of glycogen storage. Percentage of CK‐18 positive cells, a marker of hepatocytes, was 56.7%. Conclusions: Our three‐dimensional alginate scaffolds were highly biocompatible with BMSCs. Furthermore, culturing induced their differentiation into hepatocyte‐like cells. Therefore, BMSCs cultured in alginate scaffolds may be applicable for hepatic tissue engineering.  相似文献   

15.
Long non-coding RNA (lncRNA) is receiving increasing attention in embryonic stem cells (ESCs) research. However, the roles of lncRNA in the differentiation of ESCs into pacemaker-like cells are still unclear. Therefore, the present study aims to explore the roles and mechanisms of lncRNA in the differentiation of ESCs into pacemaker-like cells. ESCs were cultured and induced differentiation to pacemaker-like cells. RNA sequencing was used to identify the differential expression lncRNAs during the differentiation of ESCs into pacemaker-like cells. Cell morphology observation, flow cytometry, quantitative real-time polymerase chain reaction, western blot, and immunofluorescence were used to detect the differentiation of ESCs into pacemaker-like cells. LncRNA and genes overexpression or knockdown through transfected adenovirus in the differentiation process. The fluorescence in situ hybridization (FISH) detected the lncRNA location in the differentiated ESCs. Luciferase reporter gene assay, methylation-specific PCR, chromatin immunoprecipitation assay, and RNA immunoprecipitation assay were performed to reveal the mechanism of lncRNA-regulating HCN4 expression. Rescue experiments were used to confirm that lncRNA regulates the differentiation of ESCs into pacemaker-like cells through HCN4. We cultured the ESCs and induced the differentiation of ESCs into pacemaker-like cells successfully. The expression of lncRNA RCPCD was significantly decreased in the differentiation of ESCs into pacemaker-like cells. Overexpression of RCPCD inhibited the differentiation of ESCs into pacemaker-like cells. RCPCD inhibited the expression of HCN4 by increasing HCN4 methylation at the promoter region through DNMT1, DNMT2, and DNMT3. RCPCD inhibited the differentiation of ESCs into pacemaker-like cells by inhibiting the expression of HCN4. Our results confirm the roles and mechanism of lncRNA RCPCD in the differentiation of ESCs into pacemaker-like cells, which could pave the path for the development of a cell-based biological pacemaker.Subject terms: Arrhythmias, Stem-cell research  相似文献   

16.
Embryonic stem cells (ESCs) hold great promise for therapeutic use and represent a unique tool for investigating the process of self-renewal and differentiation. The properties that make ESCs unique are their capacity of unlimited self-renewal coupled with the property of re-entering the developmental process if returned inside a blastocyst. Such plasticity enable ESCs to form all embryonic tissues including germ cells. However, these remarkable properties, at present, have been demonstrated only for mouse ESCs even if cells with somehow more limited capacities have been derived in many different species including humans. The isolation of pluripotent embryonic cells lines from human embryos marked a crucial change of perspective in evaluating the properties defining an embryonic stem cell lines moving the focus from the generation of a germ-line chimera, obviously not feasible nor desirable in human, to the capacity of these cells to differentiate both in vivo and in vitro in fully mature and functional cell types of all kinds. Therefore, ESCs properties in species different from the mouse are being reassessed and re-evaluated, in view of their potential use as experimental models for the development of clinical applications. Among the species that may play a useful role in this field, the pig has a long-standing history as a prime animal model for pre-clinical biomedical applications and therefore, pig ESCs are attracting renewed interest. In this review, we will summarize the current knowledge on this topic and will contrast the relatively limited data available in this species with the much larger wealth of information available for mouse and human ESCs, in an attempt to assess whether or not pig ESCs can actually become a useful tool in the fast growing field of cell therapy.  相似文献   

17.
Reporter embryonic stem cell (ESC) lines with tissue‐specific reporter genes may contribute to optimizing the differentiation conditions in vitro as well as trafficking transplanted cells in vivo. To optimize and monitor endothelial cell (EC) differentiation specifically, here we targeted the enhanced green fluorescent protein (EGFP) reporter gene at the junction of 5′UTR and exon2 of the endothelial specific marker gene CD144 using TALENs in human ESCs (H9) to generate a EGFP‐CD144‐reporter ESC line. The reporter cells expressed EGFP and CD144 increasingly and specifically without unexpected effects during the EC differentiation. The EC differentiation protocol was optimized and applied to EC differentiation from hiPSCs, resulting in an efficient and simplified endothelial differentiation approach. Here we created our own optimized and robust protocol for EC differentiation of hESCs and hiPSCs by generating the lineage‐specific site‐specific integration reporter cell lines, showing great potential to be applied in the fields such as trafficking gene and cell fate in vivo in preclinical animal models.  相似文献   

18.
Embryonic stem cells (ESCs) are a population of pluripotent cells which can differentiate into different cell types. However, there are few reports with regard to differentiate ESCs into epidermal cells in vitro. In this study, we aimed to investigate differentially methylated promoters involved in process of differentiation from ESCs into epidermal‐like cells (ELCs) induced by human amnion. We successfully induced ESCs into ELCs, which expressed the surface markers of CK19, CK15 and β1‐integrin. With MeDIP‐chip arrays, we identified 3435 gene promoters to be differentially methylated, involving 894 HCP (high CpG‐containing promoter), 974 ICP (intermediate CpG‐containing promoter) and 1567 LCP (low CpG‐containing promoter) among all the 17 500 DNA methylation regions of gene promoters in both ESCs and ELCs. Gene oncology and pathway analysis demonstrated that these genes were involved in all the three categories of GO enrichment analysis, including biological process, molecular function and cellular component. All these data suggested that embryonic stem cells can differentiate into epidermal‐like cells and promoter methylation is of great importance in this process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
胚胎干细胞向造血干/祖细胞定向诱导分化的研究进展   总被引:1,自引:0,他引:1  
胚胎干细胞(embryonic stem cell,ES细胞)是指由胚胎内细胞团(inner cell mass,ICM)细胞经体外抑制培养而筛选得到的细胞,具有无限增殖潜能,在体外可以向造血细胞分化,有可能为造血干细胞移植和血细胞输注开辟新的来源.此外,ES细胞向造血干/祖细胞的定向诱导分化也为阐明哺乳动物造血发育的细胞和分子机制提供了良好的体外模型.对ES细胞向造血干/祖细胞定向分化的研究进展进行了综述.  相似文献   

20.
Within the vascular endothelial growth factor (VEGF) family of five subtypes, VEGF165 secreted by endothelial cells has been identified to be the most active and widely distributed factor that plays a vital role in courses of angiogenesis, vascularization and mesenchymal cell differentiation. Hair follicle stem cells (HFSCs) can be harvested from the bulge region of the outer root sheath of the hair follicle and are adult stem cells that have multi‐directional differentiation potential. Although the research on differentiation of stem cells (such as fat stem cells and bone marrow mesenchymal stem cells) to the endothelial cells has been extensive, but the various mechanisms and functional forms are unclear. In particular, study on HFSCs’ directional differentiation into vascular endothelial cells using VEGF165 has not been reported. In this study, VEGF165 was used as induction factor to induce the differentiation from HFSCs into vascular endothelial cells, and the results showed that Notch signalling pathway might affect the differentiation efficiency of vascular endothelial cells. In addition, the in vivo transplantation experiment provided that HFSCs could promote angiogenesis, and the main function is to accelerate host‐derived neovascularization. Therefore, HFSCs could be considered as an ideal cell source for vascular tissue engineering and cell transplantation in the treatment of ischaemic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号