首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel N-substituted hydrazide derivatives were synthesized by reacting atranorin, a compound with a natural depside structure (1), with a range of hydrazines. The natural product and 12 new analogues (213) were investigated for inhibition of α-glucosidase. The N-substituted hydrazide derivatives showed more potent inhibition than the original. The experimental results were confirmed by docking analysis. This study suggests that these compounds are promising molecules for diabetes therapy. Molecular dynamics simulations were carried out with compound 2 demonstrating the best docking model using Gromac during simulation up to 20 ns to explore the stability of the complex ligand-protein. Furthermore, the activity of all synthetic compounds 213 against a normal cell line HEK293, used for assessing their cytotoxicity, was evaluated.  相似文献   

2.
A series of hydroxychalcone derivatives have been designed, synthesized and evaluated for human xanthine oxidase (XO) inhibitory activity. Most of the tested compounds acted moderate XO inhibition with IC50 values in the micromolar rang. Molecular docking and kinetic studies have been performed to explain the binding modes of XO with the selected compounds. In addition, in vitro antioxidant screening results indicated that some of the hydroxychalcones possessed good anti-free radical activities. Furthermore, the preferred compounds 16 and 18 were able to significantly inhibit hepatic xanthine oxidase activity and reduced serum uric acid level of hyperuricemic mice in vivo. In summary, compounds 16 and 18 with balanced activities of antioxidant, XO inhibition and serum uric acid reduction, which are promising candidates for the treatment of hyperuricemia and gout.  相似文献   

3.
Xanthine oxidase (XO) is a critical source of reactive oxygen species (ROS) that contribute to vascular inflammation. Binding of XO to vascular endothelial cell glycosaminoglycans (GAGs) results in significant resistance to inhibition by traditional pyrazolopyrimidine-based inhibitors such as allopurinol. Therefore, we compared the extent of XO inhibition (free and GAG-bound) by allopurinol to that by febuxostat, a newly approved nonpurine XO-specific inhibitor. In solution, febuxostat was 1000-fold more potent than allopurinol at inhibiting XO-dependent uric acid formation (IC50 = 1.8 nM vs 2.9 μM). Association of XO with heparin-Sepharose 6B (HS6B-XO) had minimal effect on the inhibition of uric acid formation by febuxostat (IC50 = 4.4 nM) while further limiting the effect of allopurinol (IC50 = 64 μM). Kinetic analysis of febuxostat inhibition revealed Ki values of 0.96 (free) and 0.92 nM (HS6B-XO), confirming equivalent inhibition for both free and GAG-immobilized enzyme. When XO was bound to endothelial cell GAGs, complete enzyme inhibition was observed with 25 nM febuxostat, whereas no more than 80% inhibition was seen with either allopurinol or oxypurinol, even at concentrations above those tolerated clinically. The superior potency for inhibition of endothelium-associated XO is predictive of a significant role for febuxostat in investigating pathological states in which XO-derived ROS are contributive and traditional XO inhibitors are only slightly effective.  相似文献   

4.

Objectives

Oxidative stress plays an important role in the pathogenesis of multiple sclerosis (MS). Though reactive oxygen species (ROS) are produced by various mechanisms, xanthine oxidase (XO) is a major enzyme generating ROS in the context of inflammation. The objectives of this study were to investigate the involvement of XO in the pathogenesis of MS and to develop a potent new therapy for MS based on the inhibition of ROS.

Methods

XO were assessed in a model of MS: experimental autoimmune encephalomyelitis (EAE). The contribution of XO-generated ROS to the pathogenesis of EAE was assessed by treating EAE mice with a novel XO inhibitor, febuxostat. The efficacy of febuxostat was also examined in in vitro studies.

Results

We showed for the first time that the expression and the activity of XO were increased dramatically within the central nervous system of EAE mice as compared to naïve mice. Furthermore, prophylactic administration of febuxostat, a XO inhibitor, markedly reduced the clinical signs of EAE. Both in vivo and in vitro studies showed infiltrating macrophages and microglia as the major sources of excess XO production, and febuxostat significantly suppressed ROS generation from these cells. Inflammatory cellular infiltration and glial activation in the spinal cord of EAE mice were inhibited by the treatment with febuxostat. Importantly, therapeutic efficacy was observed not only in mice with relapsing-remitting EAE but also in mice with secondary progressive EAE by preventing axonal loss and demyelination.

Conclusion

These results highlight the implication of XO in EAE pathogenesis and suggest XO as a target for MS treatment and febuxostat as a promising therapeutic option for MS neuropathology.  相似文献   

5.
A new series of N-acylhydrazone derivatives of 2-mercaptobenzimidazole (2-MBI) has been synthesized through S-alkylation with 1-bromotetradecane and N-alkylation with ethyl-2-chloroacetate. The resulting ester was synthetically modified through hydrazine hydrate to acyl hydrazide which was condensed with aromatic aldehydes to afford the title N-acylhydrazones (4-17). Chemical structures of the newly synthesized compounds have been confirmed through mass, FT-IR and 1HNMR techniques. In vitro free radical scavenging and α-glucosidase inhibition activities of the compounds were investigated with reference to the standard ascorbic acid and acarbose, respectively. Amongst the target compounds, 13 showed the highest inhibition in DPPH scavenging assay (IC50 = 131.50 µM) and α-glucosidase inhibition potential (IC50 = 352 µg/ml). We extended our investigations to explore the mechanism of enzyme inhibition and conducted docking analysis by using Molecular Operating Environment (MOE 2016.08). A homology model for α-glucosidase was constructed and validated using Ramachandran plot. Docking studies were also carried out on human intestinal α-glucosidases. In view of the importance of the nucleus involved, the synthesized compounds might find extensive medicinal applications as reported in the literature.  相似文献   

6.
In this study, a series of B-ring fluoro substituted bis-chalcone derivatives were synthesized by Claisen-Schmidt condensation reactions and evaluated for their ability to inhibit xanthine oxidase (XO) and growth inhibitory activity against MCF-7 and Caco-2 human cancer cell lines, in vitro. According to the results obtained, the bis-chalcone with fluoro group at the 2 (4b) or 2,5-position (4g) of B-ring were found to be potent inhibitors of the enzyme with IC50 values in the low micromolar range. The effects of these compounds were about 7 fold higher than allopurinol. The binding modes of the bis-chalcone derivatives in the active site of xanthine oxidase were explained using molecular docking calculations. Also, compound 4g and 4h showed in vitro growth inhibitory activity against a panel of two human cancer cell lines 1.9 and 6.8 μM of IC50 values, respectively.  相似文献   

7.
New hydroxamic acid, hydrazide and amide derivatives of ciprofloxacin in addition to their analogues of levofloxacin were prepared and identified by different spectroscopic techniques. Some of the prepared compounds revealed good activity against the urease splitting bacteria, Proteus mirabilis. The urease inhibitory activity was investigated using indophenol method. Most of the tested compounds showed better activity than the reference acetohydroxamic acid (AHA). The ciprofloxacin hydrazide derivative 3a and levofloxacin hydroxamic acid 7 experienced the highest activity (IC50 = 1.22 μM and 2.20 μM, respectively). Molecular docking study revealed high spontaneous binding ability of the tested compounds to the active site of urease.  相似文献   

8.
In search of better α-glucosidase inhibitors, a series of bis-indolylmethane sulfonohydrazides derivatives (1-14) were synthesized and evaluated for their α-glucosidase inhibitory potential. All derivatives exhibited outstanding α-glucosidase inhibition with IC50 values ranging between 0.10 ± 0.05 to 5.1 ± 0.05 μM when compared with standard drug acarbose having IC50 value 856.28 ± 3.15 μM. Among the series, analog 7 (0.10 ± 0.05 μM) with tri-chloro substitution on phenyl ring was identified as the most potent inhibitor of α-glucosidase (∼ 8500 times). The structure activity relationship has been also established. Molecular docking studies were also performed to help understand the binding interaction of the most active analogs with receptors. From the docking studies, it was observed that all the active bis-indolylmethane sulfonohydrazides derivatives showed considerable binding interactions within the active site (acarbose inhibition site) of α-glucosidase. We also evaluated toxicity of all derivatives and found none of them are toxic.  相似文献   

9.
Novel series of some triazolo[4,3-b]pyridazine derivatives were designed and synthesized. All the newly synthesized compounds were evaluated for their cytotoxic activity at 10−5 M concentration towards 60 cancer cell lines according to USA NCI protocol. Most of the synthesized compounds showed good activity against SR (leukemia) cell panel. The most active compounds, 2f and 4a were subjected for further evaluation at a five dose level screening and their efficacy for c-Met kinase inhibition was determined in vitro. Binding mode of these derivatives was explored via molecular docking.  相似文献   

10.
A novel series of benzimidazole derivatives were prepared starting from o-phenylenediamine and 4-nitro-o-phenylenediamine with iminoester hydrochlorides. Acidic proton in benzimidazole was exchanged with ethyl bromoacetate, then ethyl ester group was transformed into hydrazide group. Cyclization using CS2/KOH leads to the corresponding 1,3,4-oxadiazole derivative, which was treated with phenyl isothiocyanate resulted in carbothioamide group, respectively. As the target compounds, triazole derivative was obtained under basic condition and thiadiazole derivative was obtained under acidic condition from cyclization of carbothioamide group. Most reactions were conducted using both the microwave and conventional methods to compare yields and reaction times. All compounds obtained in this study were investigated for α-glucosidase inhibitor activity. Compounds 6a, 8a, 4b, 5b, 6b and 7b were potent inhibitors with IC50 values ranging from 10.49 to 158.2 μM. This has described a new class of α-glucosidase inhibitors. Molecular docking studies were done for all compounds to identify important binding modes responsible for inhibition activity of α-glucosidase.  相似文献   

11.
Current study is based on the biology-oriented drug synthesis (BIODS) of S-naproxen (NSAID) derivatives and the evaluation of their urease inhibitory potential. In this regard, a variety of S-naproxen derivatives 239 including hydrazide 1, Schiff bases 221, aroyl substituted hydrazides 2224, sulfohydrazides 2534, 2-mercapto oxadiazole 35, phenacyl substituted 2-mercapto oxadiazoles 3639 were synthesized under the umbrella of BIODS by simple chemical transformation of its pharmacophoric carboxylic group. Compounds 139 were evaluated for in vitro urease inhibitory activity and most of them showed good to moderate inhibitory potential in the range of IC50 = 14.01 ± 0.23–76.43 ± 0.8 µM as compared to standard acetohydroxamic acid (IC50 = 27.0 ± 0.5 µM). Limited structure-activity relationship (SAR) was established in order to rationalize the participation of varying groups (R) in the inhibitory potential of compounds. Molecular docking study on all active compounds was also carried out to decipher the interactions detail of the ligand with the receptors of active site of enzyme.  相似文献   

12.
By targeting the ThDP binding site of Escherichia coli PDHc-E1, two new ‘open-chain’ classes of E. coli PDHc-E1 inhibitors, amide and urea derivatives, were designed, synthesized, and evaluated. The amide derivatives of compound 6d, with 4-NO2 in the benzene ring, showed the most potent inhibition of E. coli PDHc-E1. The urea derivatives displayed more potent inhibitory activity than the corresponding amide derivatives with the same substituent. Molecular docking studies confirmed that the urea derivatives have more potency due to the two hydrogen bonds formed by two NH of urea with Glu522. The docking results also indicate it might help us to design more efficient PDHc-E1 inhibitors that could interact with Glu522.  相似文献   

13.
A series of novel N-substituted 2-(2-oxo-2H-chromen-4-yloxy)propanamide derivatives were synthesized via converting the readily available 4-hydroxy coumarin to the corresponding ethyl 2-(2-oxo-2H-chromen-4-yloxy)propanoate followed by hydrolysis and then reacting with different substituted amines. The molecular structures of two representative compounds, that is, 3 and 5l were confirmed by single crystal X-ray diffraction study. All the compounds synthesized were evaluated for their cyclooxygenase (COX) inhibiting properties in vitro. The compound 5i showed balanced selectivity towards COX-2 over COX-1 inhibition and good docking scores when docked into the COX-2 protein.  相似文献   

14.
As our ongoing work on research of gelatinase inhibitors, an array of hydrazide-containing peptidomimetic derivatives bearing quinoxalinone as well as spiro-heterocyclic backbones were designed, synthesized, and assayed for their in vitro enzymatic inhibitory effects. The results demonstrated that both the quinoxalinone (series I and II) and 1,4-dithia-7-azaspiro[4,4]nonane-based hydrazide peptidomimetics (series III) displayed remarkably selectivity towards gelatinase A as compared to APN, with IC50 values in the micromole range. Structure–activity relationships were herein briefly discussed. Given evidences have validated that gelatinase inhibition may be contributable to the therapy of HIV-1 infection, all the target compounds were also submitted to the preliminary in vitro anti-HIV-1 evaluation. It resulted that gelatinase inhibition really has positive correlation with anti-HIV-1 activity, especially compounds 4m and 7h, which gave enhanced gelatinase inhibition in comparison with the positive control LY52, and also decent anti-HIV-1 potencies. The FlexX docking results provided a straightforward insight into the binding pattern between inhibitors and gelatinase, as well as the selective inhibition towards gelatinase over APN. Collectively, our research encouraged potent gelatinase inhibitors might be used in the development of anti-HIV-1 agents. And else, compounds 4m and 7h might be promising candidates to be considered for further chemical optimization.  相似文献   

15.
Stellatin (4), isolated from Dysophylla stellata is a cyclooxygenase (COX) inhibitor. The present study reports the synthesis and biological evaluation of new stellatin derivatives for COX-1, COX-2 inhibitory and anti-inflammatory activities. Eight derivatives showed more pronounced COX-2 inhibition than stellatin and, 17 and 21 exhibited the highest COX-2 inhibition. They also exhibited the significant anti-inflammatory activity in TPA-induced mouse ear edema assay and their anti-inflammatory effects were more than that of stellatin and indomethacin at 0.5 mg/ear. The derivatives were further evaluated for antioxidant activity wherein 16 and 17 showed potent free radical scavenging activity against DPPH and ABTS radicals. Molecular docking study revealed the binding orientations of stellatin and its derivatives into the active sites of COX-1 and COX-2 and thereby helps to design the potent inhibitors.  相似文献   

16.
A series of novel 6,7-dihydro-5H-cyclopenta[d]pyrimidine derivatives was successfully designed, synthesized and evaluated as a new chemical scaffold with vascular endothelial growth factor receptor (VEGFR 2) inhibitory activity. Compounds 6c and 6b showed enzyme inhibition of 97% and 87% at 10 µM, respectively, and exhibited potent dose-related VEGFR 2 inhibition with IC50 values of 0.85 µM and 2.26 µM, respectively. The design of the 6,7-dihydro-5H-cyclopenta[d]pyrimidine scaffold was implemented via consecutive molecular modelling protocols prior to the synthesis and biological evaluation of the derivatives. First, sorafenib was docked in the binding site of VEGFR 2 to study its binding orientation and affinity, followed by the generation of a valid 3D QSAR pharmacophore model for use in the virtual screening of different 3D databases. Structures with promising pharmacophore-based virtual screening results were refined using molecular docking studies in the binding site of VEGFR 2. A novel scaffold was designed by incorporating the results of the pharmacophore model generation and molecular docking studies. The new scaffold showed hydrophobic interactions with the kinase front pocket that may be attributed to increasing residence time in VEGFR 2, which is a key success factor for ligand optimization in drug discovery. Different derivatives of the novel scaffold were validated using docking studies and pharmacophore mapping, where they exhibited promising results as VEGFR 2 inhibitors to be synthesized and biologically evaluated. 6,7-dihydro-5H-cyclopenta[d]pyrimidine is a new scaffold that can be further optimized for the synthesis of promising VEGFR 2 inhibitors.  相似文献   

17.
Fatty acid amide hydrolase (FAAH) is a promising target for the development of drugs to treat pain, inflammation, and other central nervous system disorders. Herein, a series of novel heterocyclic carbohydrazide derivatives were firstly designed by the classic scaffold-hopping strategy. Then, multi-steps synthesis and human FAAH enzyme inhibiting activity assays were conducted. Among them, compound 26 showed strong inhibition against human FAAH with IC50 of 2.8 μM. Corresponding docking studies revealed that the acyl hydrazide group of compound 26 well-occupied the acyl-chain binding pocket. It also exhibited high selectivity towards FAAH when comparing with CES2 and MAGL. Additionally, compound 26 effectively suppressed the LPS-induced neuroinflammation of microglial cells (BV2) via the reduction of interleukin-1β and tumor necrosis factor-α. Our results provided significative lead compounds for the further discovery of novel selective and safe FAAH inhibitors with potent anti-neuroinflammation activity.  相似文献   

18.
Worldwide, Hepatocellular Carcinoma (HCC) endures to be a prominent cause of cancer death. Treatment of HCC follows multiple therapies which are not entirely applicable for treatment of all patients. HCC usually arises contextual to chronic liver diseases and is often discovered at later stages which makes treatment options more complex. The present study aimed at design, synthesis & evaluation of new pyridazinoquinazoline derivatives as potential nontoxic anti-hepatocellular carcinoma (HCC) agents, through inhibition of Vascular endothelial growth factor -2 (VEGFR-2). Novel Pyridazino[3, 4, 5-de]quinazoline derivatives (2-6) were designed & synthesized. Their structures were confirmed via spectral and microanalytical data. They were tested for their in vitro VEGFR-2 inhibition & anticancer activity against human liver cancer cell line (HEPG-2). Molecular docking was investigated into VEGFR-2 site. In vivo studies of VEGRF-2 inhibition and the anti-apoptotic effect of the new compounds were determined in liver of irradiated rats. Toxicity of synthesized compounds was also assessed. The results showed that compounds 3-6 have significant antitumor activity and proved to be non-toxic. The ethoxy aniline derivative 6, exhibited the highest activity both in vitro and in vivo compared to the reference drug used, sorafenib. Compound 6 could be considered a promising nontoxic anti HCC agent and this could be partially attributed to its VEGFR-2 inhibition. Future preclinical investigation would be carried out to confirm the specific and exact mechanism of action of these derivatives especially compound 6 as an effective pharmaceutical agent after full toxicological and pharmacological assessment.  相似文献   

19.
New Nucleosides, analogues derived from 1, 3, 4-oxadiazole, arylidene analogues and α-aminophosphonate were prepared. Infrared (IR), elemental analysis and 1HNMR elucidated nucleosides; arylidines and phosphonate derivatives. The prepared derivatives were purified and allowed to test against bacteria strains. Phosphonate derivative 12a showed the higher antibacterial against E. coli with inhibition zone 35 mm, P. aeruginosa with inhibition zone 30 and S. aureus with inhibition zone 22 while compounds 4, 6d, 9a, 9c and 12c showed moderate to weak activity against these bacteria species with inhibition zones ranged from 12 mm to 24 mm. The molecular docking studies was applied on compound 12a, which showed the binding at the active DNA Gyrase.  相似文献   

20.
In the designed research work, a series of 2-furoyl piperazine based sulfonamide derivatives were synthesized as therapeutic agents to target the Alzheimer’s disease. The structures of the newly synthesized compounds were characterized through spectral analysis and their inhibitory potential was evaluated against butyrylcholinesterase (BChE). The cytotoxicity of these sulfonamides was also ascertained through hemolysis of bovine red blood cells. Furthermore, compounds were inspected by Lipinki Rule and their binding profiles against BChE were discerned by molecular docking. The protein fluctuations in docking complexes were recognized by dynamic simulation. From our in vitro and in silico results 5c, 5j and 5k were identified as promising lead compounds for the treatment of targeted disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号