首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 349 毫秒
1.
A novel series of acridine linked to thioacetamides 9a–o were synthesized and evaluated for their α-glucosidase inhibitory and cytotoxic activities. All the synthesized compounds exhibited excellent α-glucosidase inhibitory activity in the range of IC50 = 80.0 ± 2.0–383.1 ± 2.0 µM against yeast α-glucosidase, when compared to the standard drug acarbose (IC50 = 750.0 ± 1.5 µM). Among the synthesized compounds, 2-((6-chloro-2-methoxyacridin-9-yl)thio)-N-(p-tolyl) acetamide 9b displayed the highest α-glucosidase inhibitory activity (IC50 = 80.0 ± 2.0 μM). The in vitro cytotoxic assay of compounds 9a–o against MCF-7 cell line revealed that only the compounds 9d, 9c, and 9n exhibited cytotoxic activity. Cytotoxic compounds 9d, 9c, and 9n did not show cytotoxic activity against the normal human cell lines HDF. Kinetic study revealed that the most potent compound 9b is a competitive inhibitor with a Ki of 85 μM. Furthermore, the interaction modes of the most potent compounds 9b and 9f with α-glucosidase were evaluated through the molecular docking studies.  相似文献   

2.
A novel series of quinazolinone-1,2,3-triazole hybrids 10a-p were designed, synthesized, and evaluated for their in vitro α-glucosidase inhibitory activity leading to efficient anti-diabetic agents. All synthesized compounds exhibited good inhibitory activity against yeast α-glucosidase (IC50 values in the range of 181.0–474.5 µM) even much more potent than standard drug acarbose (IC50 = 750.0). Among them, quinazolinone-1,2,3-triazoles possessing 4-bromobenzyl moiety connected to 1,2,3-triazole ring (10g and 10p) demonstrated the most potent inhibitory activity towards α-glucosidase. Compound 10g inhibited α-glucosidase in a competitive manner with Ki value of 117 µM. Furthermore, the binding modes of the most potent compounds 10g and 10p in the α-glucosidase active site was studied through in silico docking studies. Also, lack of cytotoxicity of compounds 10g and 10p was confirmed via MTT assay.  相似文献   

3.
α-Glucosidase is considered as a therapeutic target for the treatment of type 2 diabetes mellitus (DM2). In current study, we synthesized pyrrolidine-2,5-dione (succinimide) and thiazolidine-2,4-dione derivatives and evaluated for their ability to inhibit α-Glucosidase. Pyrrolidine-2,5-dione derivatives (11a–o) showed moderate to poor α-glucosidase inhibition. Compound 11o with the IC50 value of 28.3 ± 0.28 µM emerged as a good inhibitor of α-glucosidase. Thiazolidine-2,4-dione and dihydropyrimidine (TZD-DHPM) hybrids (22a–c) showed excellent inhibitory activities. The most active compound 22a displayed IC50 value of 0.98 ± 0.008 µM. Other two compounds of this series also showed activity in low micromolar range. The in-vivo antidiabetic study of three compounds 11n, 11o and 22a were also determined using alloxan induced diabetes mice model. Compounds 11o and 22a showed significant hypoglycemic effect compared to the reference drug. In-vivo acute toxicity study showed the safety of these selected compounds. In-silico docking studies were carried out to rationalize the in-vitro results. The binding modes and bioassay results of TZD-DHPM hybrids showed that interactions with important residues appeared significant for high potency.  相似文献   

4.
Twenty three fused carbazole–imidazoles 6a–w were designed, synthesized, and screened as new α-glucosidase inhibitors. All the synthesized fused carbazole-imidazoles 6a-w were found to be more active than acarbose (IC50?=?750.0?±?1.5?µM) against yeast α-glucosidase with IC50 values in the range of 74.0?±?0.7–298.3?±?0.9?µM. Kinetic study of the most potent compound 6v demonstrated that this compound is a competitive inhibitor for α-glucosidase (Ki value?=?75?µM). Furthermore, the in silico studies of the most potent compounds 6v and 6o confirmed that these compounds interacted with the key residues in the active site of α-glucosidase.  相似文献   

5.
In this work, new derivatives of diarylimidazole-1,2,3-triazole 7a-p were designed, synthesized, and evaluated for their in vitro α-glucosidase inhibitory activity. All compounds showed potent inhibitory activity in the range of IC50 = 90.4–246.7 µM comparing with acarbose as the standard drug (IC50 = 750.0 µM). Among the synthesized compounds, compounds 7b, 7c, and 7e were approximately 8 times more potent than acarbose. The kinetic study of those compounds indicated that they acted as the competitive inhibitors of α-glucosidase. Molecular docking studies were also carried out for compounds 7b, 7c, and 7e using modeled α-glucosidase to find the interaction modes responsible for the desired inhibitory activity.  相似文献   

6.
Indole containing compounds have acquired conspicuous significance due to their wide spectrum of biological activities. Synthesis of a series of enantiomerically pure indole derivatives 3a-r via Friedel–Crafts alkylation of indole 1 with enones 2a-r were described here. The products were isolated in a moderate to excellent yields (upto 89%) with excellent enantioselectivities (upto 99.9% ee). These compounds 3a-r were evaluated for their in vitro α-glucosidase inhibitory activity and some of them were identified as potent inhibitors (IC50 = 4.3 ± 0.13–43.9 ± 0.51 μM) with several fold higher activity than the clinically used α-glucosidase inhibitor, acarbose (IC50 = 840 ± 1.73 μM). To the best of knowledge, this is the first report of the propanone substituted indole ring containing compounds by in vitro α-glucosidase enzyme inhibition.  相似文献   

7.
A novel series of biscoumarin-1,2,3-triazole hybrids 6a-n was prepared and evaluated for α-glucosidase inhibitory potential. All fourteen derivatives exhibited excellent α-glucosidase inhibitory activity with IC50 values ranging between 13.0 ± 1.5 and 75.5 ± 7.0 µM when compared with the acarbose as standard inhibitor (IC50 = 750.0 ± 12.0 µM). Among the synthesized compounds, compounds 6c (IC50 = 13.0 ± 1.5 µM) and 6g (IC50 = 16.4 ± 1.7 µM) exhibited the highest inhibitory activity against α-glucosidase and were non-cytotoxic towards normal fibroblast cells. Kinetic study revealed that compound 6c inhibits the α-glucosidase in a competitive mode. Furthermore, molecular docking investigation was performed to find interaction modes of the biscoumarin-1,2,3-triazole derivatives.  相似文献   

8.
Cratoxylum cochinchinense displayed significant inhibition against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase, both of which are key target enzymes to attenuate diabetes and obesity. The compounds responsible for both enzymes inhibition were identified as twelve xanthones (112) among which compounds 1 and 2 were found to be new ones. All of them simultaneously inhibited PTP1B with IC50s of (2.4–52.5?µM), and α-glucosidase with IC50 values of (1.7–72.7?µM), respectively. Cratoxanthone A (3) and γ-mangostin (7) were estimated to be most active inhibitors against both PTP1B (IC50?=?2.4?µM for 3, 2.8?µM for 7) and α-glucosidase (IC50?=?4.8?µM for 3, 1.7?µM for 7). In kinetic studies, all isolated xanthones emerged to be mixed inhibitors of α-glucosidase, whereas they behaved as competitive inhibitors of PTP1B. In time dependent experiments, compound 3 showed isomerization inhibitory behavior with following kinetic parameters: Kiapp?=?2.4?µM; k5?=?0.05001?µM?1?S?1 and k6?=?0.02076?µM?1?S?1.  相似文献   

9.
Inhibition of α-glucosidase is an effective strategy for controlling post-prandial hyperglycemia in diabetic patients. Beside these α-glucosidase inhibitors has been also used as anti-obesity and anti-viral drugs. Keeping in view the greater importance of α-glucosidase inhibitors here in this study we are presenting oxindole based oxadiazoles hybrid analogs (1–20) synthesis, characterized by different spectroscopic techniques including 1H NMR and EI-MS and their α-glucosidase inhibitory activity. All compounds were found potent inhibitors for the enzyme with IC50 values ranging between 1.25 ± 0.05 and 268.36 ± 4.22 µM when compared with the standard drug acarbose having IC50 value 895.09 ± 2.04 µM. Our study identifies novel series of potent α-glucosidase inhibitors and further investigation on this may led to the lead compounds. A structure activity relationship has been established for all compounds. The interactions of the active compounds and enzyme active site were established with the help of molecular docking studies.  相似文献   

10.
Stem of Vigna angularis (Willd.) Ohwi & H. Ohashi (VAS) is a main byproduct with considerable bioactivities. In present study, a bioassay-guided phytochemical investigation was used and led to the isolation of 16 compounds including one new compound (1) and one compound (2) isolated from nature source firstly along with 14 known compounds (316). The structures of isolates were identified by NMR and HR-ESI-MS data. The ability of antioxidant and α-glucosidase inhibition of the compounds were measured in vitro. Most of the ingredients shown strong ABTS radical scavenging activity (IC50 = 4.21–14.93 μM) and α-glucosidase inhibitory activity (IC50 = 0.05–34.14 μM). Enzyme kinetic analysis and molecular docking of compounds 1 and 2 were conducted. Compounds 1 and 2 were competitive inhibitor for α-glucosidase, with the inhibition kinetic constant value of 1.03 and 1.06 μM, respectively. The potent α-glucosidase inhibitory ability of compounds 1 and 2 resulted from firm binding with the active site of α-glucosidase.  相似文献   

11.
In searchof the potenttherapeutic agent as an α-glucosidase inhibitor, we have synthesized twenty-five analogs (125) of quinoline-based Schiff bases as an inhibitoragainst α-glucosidase enzyme under positive control acarbose (IC50 = 38.45 ± 0.80 µM). From the activity profile it was foundthat analogs 1, 2, 3, 4, 11, 12 and 20with IC50values 12.40 ± 0.40, 9.40 ± 0.30, 14.10 ± 0.40, 6.20 ± 0.30, 14.40 ± 0.40, 7.40 ± 0.20 and 13.20 ± 0.40 µMrespectively showed most potent inhibition among the series even than standard drug acarbose (IC50 = 38.45 ± 0.80 µM). Here in the present study analog 4 (IC50 = 6.20 ± 0.30 µM) was found with many folds better α-glucosidase inhibitory activity than the reference drug. Eight analogs like 5, 7, 8, 16, 17, 22, 24 and 25 among the whole series displayed less than 50% inhibition. The substituents effects on phenyl ring thereby superficially established through SAR study. Binding interactions of analogs and the active site of ligands proteins were confirmed through molecular docking study. Spectroscopic techniques like 1H NMR, 13C NMR and ESIMS were used for characterization.  相似文献   

12.
Diabetes mellitus (DM), a chronic multifarious metabolic disorder resulting from impaired glucose homeostasis has become one of the most challenging diseases with severe life threat to public health. The inhibition of α-glucosidase, a key carbohydrate hydrolyzing enzyme, could serve as one of the effective methodology in both preventing and treating diabetes through controlling the postprandial glucose levels and suppressing postprandial hyperglycemia. In this context, three series of diamine-bridged bis-coumarinyl oxadiazole conjugates were designed and synthesized by one-pot multi-component methodology. The synthesized conjugates (4a–j, 5a–j, 6a–j) were evaluated as potential inhibitors of glucosidases. Compound 6f containing 4,4′-oxydianiline linker was identified as the lead and selective inhibitor of α-glucosidase enzyme with an IC50 value of 0.07 ± 0.001 μM (acarbose: IC50 = 38.2 ± 0.12 μM). This inhibition efficacy was ∼545-fold higher compared to the standard drug. Compound 6f was also emerged as the lead molecule against intestinal maltase-glucoamylase with good inhibition strength (IC50 = 0.04 ± 0.02 μM) compared to acarbose (IC50 = 0.06 ± 0.01 μM). Against β-glucosidase enzyme, compound 6 g was noted as the lead inhibitor with IC50 value of 0.08 ± 0.002 μM. Michaelis–Menten kinetic experiments were performed to explore the mechanism of inhibition. Molecular docking studies of the synthesized library of hybrid structures against glucosidase enzyme were performed to describe ligand-protein interactions at molecular level that provided an insight into the biological properties of the analyzed compounds. The results suggested that the inhibitors could be stabilized in the active site through the formation of multiple interactions with catalytic residues in a cooperative fashion. In addition, strong binding interactions of the compounds with the amino acid residues were effective for the successful identification of α-glucosidase inhibitors.  相似文献   

13.
Synthesis, structure, and evaluation of in vitro α-glucosidase enzyme inhibition of a new class of diethylammonium salts of aryl substituted thiobarbituric acid is described. This protocol is straight, environmentally benign and efficient, involving Aldol-Michael addition reaction in one pot fashion. The 3D chemical structures of the synthesized compounds were assigned based on spectroscopic methods and X-ray single crystal diffraction analyses. All synthesized compounds 3a-3n were evaluated for their in vitro α-glucosidase enzyme inhibitory activity, whereas acarbose was used as the standard drug (IC50 = 840 ± 1.73 µM). All tested compounds were found to possess varying degree of α-glucosidase enzyme inhibition activity with (IC50 = 19.46 ± 1.84–415.8 ± 4.0 µM). Compound 3i (IC50 = 19.4 ± 1.84 µM) exhibited the highest activity. To the best of knowledge this is the first report of the in vitro α-glucosidase enzyme inhibition by the diethylamonium salts of aryl substituted thiobarbituric acid. Furthermore, molecular docking studies of selected compounds were also performed to see interactions between active compounds and binding sites.  相似文献   

14.
α-Glucosidase is a catabolic enzyme that regulates the body’s plasma glucose levels by providing energy sources to maintain healthy functioning. 2-Amino-thiadiazole (113) and 2-amino-thiadiazole based Schiff bases (1422) were synthesized, characterized by 1H NMR and HREI-MS and screened for α-glucosidase inhibitory activity. All twenty-two (22) analogs exhibit varied degree of α-glucosidase inhibitory potential with IC50 values ranging between 2.30 ± 0.1 to 38.30 ± 0.7 μM, when compare with standard drug acarbose having IC50 value of 39.60 ± 0.70 μM. Among the series eight derivatives 1, 2, 6, 7, 14, 17, 19 and 20 showed outstanding α-glucosidase inhibitory potential with IC50 values of 3.30 ± 0.1, 5.80 ± 0.2, 2.30 ± 0.1, 2.70 ± 0.1, 2.30 ± 0.1, 5.50 ± 0.1, 4.70 ± 0.2, and 5.50 ± 0.2 μM respectively, which is many fold better than the standard drug acarbose. The remaining analogs showed good to excellent α-glucosidase inhibition. Structure activity relationship has been established for all compounds. The binding interactions of these compounds were confirmed through molecular docking.  相似文献   

15.
In search of better α-glucosidase inhibitors, a series of novel hetarylcoumarins (3a-3j) were designed and synthesized through a facile multicomponent route where p-toluenesulfonic acid (PTSA) was explored as an efficient catalyst. These new scaffolds were further evaluated for their α-glucosidase inhibition potentials. All the derivatives exhibited good to excellent results which were comparable or even better than of standard drug acarbose. Of these compounds, a dihalogenated compound 3f was found to be the most effective one with IC50: 2.53 ± 0.002 µM. Molecular docking has predicted the plausible binding interactions of compounds 3f, 3g and 3j with α-glucosidase.  相似文献   

16.
Bark of Quercus coccifera is widely used in folk medicine. We tested tyrosinase and α-glucosidase inhibitory effects of Q. coccifera bark extract and isolated compounds from it. The extract inhibited tyrosinase with an IC50 value of 75.13 ± 0.44 µg/mL. Among the isolated compounds, polydatin (6) showed potent tyrosinase inhibition compared to the positive control, kojic acid, with an IC50 value of 4.05 ± 0.30 µg/mL. The Q. coccifera extract also inhibited α-glucosidase significantly with an IC50 value of 3.26 ± 0.08 µg/mL. (-)-8-Chlorocatechin (5) was the most potent isolate, also more potent than the positive control, acarbose, with an IC50 value of 43.60 ± 0.67 µg/mL. According to the kinetic analysis, 6 was a noncompetitive and 5 was a competitive inhibitor of tyrosinase, and 5 was a noncompetitive α-glucosidase inhibitor. In the light of these findings, we performed in silico molecular docking studies for 5 and 6 with QM/MM optimizations to predict their tyrosinase inhibition mechanisms at molecular level and search for correlations with the in vitro results. We found that the ionized form of 5 (5i) showed higher affinity and more stable binding to tyrosinase catalytic site than its neutral form, while 6 bound to the predicted allosteric sites of the enzyme better than the catalytic site.  相似文献   

17.
Herein, substituted imidazole-pyrazole hybrids (2a-2n) were prepared via a multi component reaction employing pyrazole-4-carbaldehydes (1a-1d), ammonium acetate, benzil and arylamines as reactants. All the new compounds were characterized through their spectral and elemental analyses. Further these compounds were tested against α-glucosidase enzyme. The compounds 2k, 2l and 2n possessed good inhibition potencies, however, compounds 2f (IC50 value: 25.19 ± 0.004 μM) and 2m (IC50 value: 33.62 ± 0.03 μM) were the most effective compounds of the series. Furthermore, molecular docking helped to understand the binding interactions of 2f and 2m with the understudy yeast’s α-glucosidase enzyme.  相似文献   

18.
Some Geranium species have been used to treat diabetes. To evaluate the scientific basis of this ethnopharmacological use, we aimed to isolate potent α-glucosidase inhibitory metabolites of Geranium asphodeloides Burm. through in vitro bioactivity-guided fractionation. All the tested extracts showed high α-glucosidase inhibitory effect compared to acarbose. Among the tested extracts, the ethyl acetate subextract showed the highest activity with an IC50 value of 0.85 ± 0.01 µM. A hydrolysable tannin, 1,2,4-tri-O-galloyl-β-d-glucopyranose (1), and five flavonoid glycosides, kaempferol-3-O-α-rhamnopyranoside (2), kaempferol-3-O-α-arabinofuranoside (3), quercetin-3-O-β-glucopyranoside (4), quercetin-3-O-α-rhamnopyranoside (5), and quercetin-3-O-α-rhamnofuranoside (6), were isolated from the ethyl acetate subextract. Their structures were identified by 1D- and 2D-NMR experiments. 1 exhibited the highest α-glucosidase inhibitory effect, approximately 61 times more potent than positive control, acarbose, with an IC50 value of 0.95 ± 0.07 µM. Also, 2 was more potent than acarbose. An enzyme kinetics analysis revealed that compounds 2, 3 and 4 were competitive, whereas 1 and 6 uncompetitive inhibitors. Molecular docking studies were performed to get insights into inhibition mechanisms of the isolated compounds in the light of the enzyme kinetic studies using various binding sites of the enzyme model.  相似文献   

19.
Basing on chromatographic separation techniques, fifteen aglycones (115), including two new anthraquinone aglycones (1, 2) and thirteen known compounds (315), were isolated from the small polar fraction of Cassia obtusefolia (petroleum ether extract). Structural elucidations were performed by 1D/2D NMR spectroscopy and mass spectrometry. The in vitro antioxidant and α-glucosidase inhibitory activities of these fifteen compounds were determined. Except compounds 12 (IC50 3.03 ± 0.31 μg/mL, stronger than ascorbic acid, which IC50 was 6.48 ± 2.30 μg/mL) and 13 (IC50 78.40 ± 2.39 μg/mL), the free radical scavenging capacities of other compounds were weak. Compounds 4, 5, 6 and 13 exhibited inhibitory activities on α-glucosidase with IC50 values of 50.60 ± 1.10, 22.57 ± 0.07, 60.09 ± 1.40, and 80.01 ± 2.66 μg/mL separately, however, all the α-glucosidase inhibitory activities were weaker than positive control (acarbose).  相似文献   

20.
A series of novel quinazoline-1-deoxynojirimycin hybrids were designed, synthesized and evaluated for their inhibitory activities against two drug target enzymes, epidermal growth factor receptor (EGFR) tyrosine kinase and α-glucosidase. Some synthesized compounds exhibited significantly inhibitory activities against the tested enzymes. Comparing with reference compounds gefitinib and lapatinib, compounds 7d, 8d, 9b and 9d showed higher inhibitory activities against EGFR (IC50: 1.79–10.71 nM). Meanwhile the inhibitory activities of 7d, 8d and 9c against α-glucosidase (IC50 = 0.14, 0.09 and 0.25 µM, respectively) were obvious higher than that of miglitol (IC50 = 2.43 µM), a clinical using α-glucosidase inhibitor. Interestingly, compound 9d as a dual inhibitor showed high inhibitory activity to EGFRwt tyrosine kinase (IC50 = 1.79 nM), also to α-glucosidase (IC50 = 0.39 µM). The work could be very useful starting point for developing a new series of enzyme inhibitors targeting EGFR and/or α-glucosidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号