首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
In this study, we investigated the role of endogenous IL-12 in protective immunity against blood-stage P. chabaudi AS malaria using IL-12 p40 gene knockout (KO) and wild-type (WT) C57BL/6 mice. Following infection, KO mice developed significantly higher levels of primary parasitemia than WT mice and were unable to rapidly resolve primary infection and control challenge infection. Infected KO mice had severely impaired IFN-gamma production in vivo and in vitro by NK cells and splenocytes compared with WT mice. Production of TNF-alpha and IL-4 was not compromised in infected KO mice. KO mice produced significantly lower levels of Th1-dependent IgG2a and IgG3 but a higher level of Th2-dependent IgG1 than WT mice during primary and challenge infections. Treatment of KO mice with murine rIL-12 during the early stage of primary infection corrected the altered IgG2a, IgG3, and IgG1 responses and restored the ability to rapidly resolve primary and control challenge infections. Transfer of immune serum from WT mice to P. chabaudi AS-infected susceptible A/J mice completely protected the recipients, whereas immune serum from KO mice did not, as evidenced by high levels of parasitemia and 100% mortality in recipient mice. Furthermore, depletion of IgG2a from WT immune serum significantly reduced the protective effect of the serum while IgG1 depletion had no significant effect. Taken together, these results demonstrate the protective role of a Th1-immune response during both acute and chronic phases of blood-stage malaria and extend the immunoregulatory role of IL-12 to Ab-mediated immunity against Plasmodium parasites.  相似文献   

2.
IFN-gamma is known to be required for host control of intracellular Trypanosoma cruzi infection in mice, although the basis of its protective function is poorly understood. LRG-47 is an IFN-inducible p47GTPase that has been shown to regulate host resistance to intracellular pathogens. To investigate the possible role of LRG-47 in IFN-gamma-dependent control of T. cruzi infection, LRG-47 knockout (KO) and wild-type (WT) mice were infected with the Y strain of this parasite, and host responses were analyzed. When assayed on day 12 after parasite inoculation, LRG-47 KO mice, in contrast to IFN-gamma KO mice, controlled early parasitemia almost as effectively as WT animals. However, the infected LRG-47 KO mice displayed a rebound in parasite growth on day 15, and all succumbed to the infection by day 19. Additional analysis indicated that LRG-47-deficient mice exhibit unimpaired proinflammatory responses throughout the infection. Instead, reactivated disease in the KO animals was associated with severe splenic and thymic atrophy, anemia, and thrombocytopenia not observed in their WT counterparts. In addition, in vitro studies revealed that IFN-gamma-stimulated LRG-47 KO macrophages display defective intracellular killing of amastigotes despite normal expression of TNF and NO synthetase type 2 and that both NO synthetase type 2 and LRG-47 are required for optimum IFN-gamma-dependent restriction of parasite growth. Together, these data establish that LRG-47 can influence pathogen control by simultaneously regulating macrophage-microbicidal activity and hemopoietic function.  相似文献   

3.
The question of genetic linkage of parasite-specific immune responses to resistance to infection in experimental African trypanosomiasis was addressed. For this purpose, major histocompatibility complex-compatible resistant and susceptible inbred mouse strains and their F1 hybrid, F2 hybrid, and backcross offspring were infected with Trypanosoma brucei rhodesiense LouTat 1. Immunologic control of the first peak of parasitemia and survival times were the parameters measured. As we have reported previously (R. F. Levine and J. M. Mansfield, J. Immunol. 133:1564, 1984), B10.BR/SgSnJ mice are relatively resistant and controlled the growth of the infecting variant antigenic type (VAT) by mounting an antibody response to exposed epitopes of the variable surface glycoprotein (VSG). Fluctuating parasitemias resulting from sequential growth of different variable antigenic types occurred subsequently, and these mice died with a median survival time of 48 days. C3HeB/FeJ mice, relatively susceptible, did not control the infecting VAT and did not exhibit VSG-specific antibodies. These mice died with a median survival time of 22 days. The (B10.BR X C3H)F1 hybrids derived from crosses between resistant and susceptible mice all exhibited VSG-specific antibody responses and controlled the infecting VAT population. However, the median survival time of the F1 hybrids (24 days) was not significantly different from the survival time of the susceptible C3H parent. These findings demonstrate for the first time that antibody-mediated control of parasitemia is inherited as a dominant trait; that overall resistance, as measured by survival time, is inherited as a recessive trait (e.g., susceptibility is dominant); and that the two events segregate independently of one another. Further analyses of the inheritance of immunity and resistance (survival time) were made in which the F2 hybrid and backcross studies revealed that there are multiple genes controlling the VSG-specific antibody response as well as determining susceptibility. An extension of the present studies to a similar but non-major histocompatibility complex-mouse model system of resistance and susceptibility (C57BL/6J and C3H/HeJ mice, F1 hybrids, and 11 recombinant inbred B X H strains derived from them) was made in order to link the strain distribution patterns of known genetic markers with control of VSG-specific antibody responses or with control of susceptibility. Results of this study showed that resistance varied independently of the ability to control parasitemia with VSG-specific B cell responses.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Genetically based differences in variant-specific immunity to the African trypanosomes were examined. H-2-compatible inbred mouse strains that differed in relative resistance were infected with Trypanosoma rhodesiense clone LouTat 1. Antibody responses to exposed epitopes of the LouTat 1 variant-specific surface glycoprotein (VSG) were measured. Relatively resistant B10.BR mice (H-2k) made predictable IgM antibody responses to the VSG of LouTat 1 which were associated with clearance of the LouTat 1 variant antigenic type from blood; IgG responses to LouTat 1 surface antigen appeared after clearance occurred, and were lower than peak titers of IgM. Intermediately susceptible CBA mice (H-2k) also made predictable IgM and IgG responses which followed the same pattern as the more resistant strain. Peak titers were lower for both Ig classes, however, and a delayed appearance of antibody was correlated with delayed clearance of LouTat 1. In contrast to B10.BR and CBA mice, the susceptible C3H mice (H-2k) failed to make detectable antibodies to LouTat 1 surface antigen and also failed to control the first peak of parasitemia. The absence of immunity in infected C3H mice was selective for antibody to exposed epitopes of LouTat 1 VSG because antibody was detectable to invariant VSG or internal trypanosome antigens. Also, the C3H strain was shown not to be a genetic nonresponder to LouTat 1 surface antigen because VSG-specific antibodies appeared within 1 wk after trypanocidal chemotherapy. Finally, we demonstrated that the susceptibility of C3H mice was not associated with an inability of the mononuclear phagocyte system to clear the parasites because drug cure, passive transfer of immune serum, or sensitization of trypanosomes with antibody all led to trypanosome clearance from blood by the liver. In summary, we show for the first time that major differences in variant-specific immunity occur in MHC-compatible animals after infection with the African trypanosomes.  相似文献   

5.
The initial host response toward the extracellular parasite Trypanosoma brucei is characterized by the early release of inflammatory mediators associated with a type 1 immune response. In this study, we show that this inflammatory response is dependent on activation of the innate immune system mediated by the adaptor molecule MyD88. In the present study, MyD88-deficient macrophages are nonresponsive toward both soluble variant-specific surface glycoprotein (VSG), as well as membrane-bound VSG purified from T. brucei. Infection of MyD88-deficient mice with either clonal or nonclonal stocks of T. brucei resulted in elevated levels of parasitemia. This was accompanied by reduced plasma IFN-gamma and TNF levels during the initial stage of infection, followed by moderately lower VSG-specific IgG2a Ab titers during the chronic stages of infection. Analysis of several TLR-deficient mice revealed a partial requirement for TLR9 in the production of IFN-gamma and VSG-specific IgG2a Ab levels during T. brucei infections. These results implicate the mammalian TLR family and MyD88 signaling in the innate immune recognition of T. brucei.  相似文献   

6.
Helicobacter pylori infection persists for the life of the host due to the failure of the immune response to eradicate the bacterium. Determining how H. pylori escapes the immune response in its gastric niche is clinically important. We have demonstrated in vitro that macrophage NO production can kill H. pylori, but induction of macrophage arginase II (Arg2) inhibits inducible NO synthase (iNOS) translation, causes apoptosis, and restricts bacterial killing. Using a chronic H. pylori infection model, we determined whether Arg2 impairs host defense in vivo. In C57BL/6 mice, expression of Arg2, but not arginase I, was abundant and localized to gastric macrophages. Arg2(-/-) mice had increased histologic gastritis and decreased bacterial colonization compared with wild-type (WT) mice. Increased gastritis scores correlated with decreased colonization in individual Arg2(-/-) mice but not in WT mice. When mice infected with H. pylori were compared, Arg2(-/-) mice had more gastric macrophages, more of these cells were iNOS(+), and these cells expressed higher levels of iNOS protein, as determined by flow cytometry and immunofluorescence microscopy. There was enhanced nitrotyrosine staining in infected Arg2(-/-) versus WT mice, indicating increased NO generation. Infected Arg2(-/-) mice exhibited decreased macrophage apoptosis, as well as enhanced IFN-γ, IL-17a, and IL-12p40 expression, and reduced IL-10 levels consistent with a more vigorous Th1/Th17 response. These studies demonstrate that Arg2 contributes to the immune evasion of H. pylori by limiting macrophage iNOS protein expression and NO production, mediating macrophage apoptosis, and restraining proinflammatory cytokine responses.  相似文献   

7.
Th1 cells, in cooperation with activated macrophages, are required to overcome Yersinia enterocolitica infection in mice. The pathway macrophages utilize to metabolize arginine can alter the outcome of inflammation in different ways. The objective of this study was to verify the pattern of macrophages activation in Y. enterocolitica infection of BALB/c (Yersinia-susceptible) and C57BL/6 (Yersinia-resistant) mice. Both strains of mice were infected with Y. enterocolitica O:8 WA 2707. Peritoneal macrophages and spleen cells were obtained on the 1st, 3rd and 5th day post-infection. The iNOS and the arginase activities were assayed in supernatants of macrophage cultures, by measuring their NO/citrulline and ornithine products, respectively. TGFbeta-1 production was also assayed. The Th1 and Th2 responses were evaluated in supernatants of lymphocyte cultures, by IFN-gamma and IL-4 production. Our results showed that in the early phase of Y. enterocolitica infection (1st and 3rd day), the macrophages from C57BL/6 mice produced higher levels of NO/citrulline and lower levels of ornithine than macrophages from BALB/c mice. The infection with Y. enterocolitica leads to an increase in the TGF-beta1 and IL-4 production by BALB/c mice and to an increase in the IFN-gamma levels produced by C57BL/6 mice. These results suggest that Y. enterocolitica infection leads to the modulation of M1 macrophages in C57Bl/6 mice, and M2 macrophages in BALB/c mice. The predominant macrophage population (M1 or M2) at the 1st and 3rd day of infection thus seems to be important in determining Y. enterocolitica susceptibility or resistance.  相似文献   

8.
The critical role of interferon-gamma (IFN-gamma) in the resistance of C57Bl/6 mice to Leishmania major is widely established but its role in the relative resistance of these animals to L. amazonensis infection is still not clear. In this work we use C57Bl/6 mice congenitally deficient in the IFN-gamma gene (IFN-gamma KO) to address this issue. We found that IFN-gamma KO mice were as resistant as their wild-type (WT) counterparts at least during the first two months of infection. Afterwards, whereas WT mice maintained lesion growth under control, IFN-gamma KO mice developed devastating lesions. At day 97 of infection, their lesions were 9-fold larger than WT controls, concomitant with an increased parasite burden. At this stage, lesion-draining cells from IFN-gamma KO mice had impaired capacity to produce interleukin-12 (IL-12) and tumour necrosis factor-a in response to parasite antigens whereas IL-4 was slightly increased in comparison to infected WT mice. Together, these results show that IFN-gamma is not critical for the initial control of L. amazonensis infection in C57Bl/6 mice, but is essential for the development of a protective Th1 type immune response in the later stages.  相似文献   

9.
Regulation of B cell responses to the trypanosome surface Ag was examined in H-2k compatible "responder" B10.BR and "nonresponder" C3H mice after infection with two variant clones of Trypanosoma brucei rhodesiense. Development of a selective RIA for independent detection of antibody binding to surface (exposed) and subsurface (buried) epitopes of the trypanosome variable surface glycoprotein (VSG) molecule permitted sensitive quantitation and kinetic characterization of immune responses to these epitopes. The infected B10.BR mice responded to both exposed and buried VSG epitopes of clone LouTat 1 trypanosomes, whereas a B cell response by C3H mice to exposed VSG epitopes was not detected by RIA analyses at any time. However, VSG-specific IgM and IgG responses were produced to buried VSG epitopes, demonstrating that LouTat 1 induced immunoregulation was specific only for the B cell responses to exposed VSG epitopes. Subsequently, comparisons of B10.BR and C3H B cell responses to a heterologous variant, LouTat 1.5, were made. The results revealed that both infected mouse strains produced VSG 1.5-specific antibody to exposed and buried epitopes with different kinetics and maximal sera concentrations, showing, therefore, that these responses are not coordinately regulated. In addition, it was clear that the observed immunosuppression to exposed LouTat 1 VSG epitopes in C3H mice could be regulated by the parasite since functional C3H B cell responses were mounted against exposed VSG epitopes of a closely related variant (LouTat 1.5) after infection.  相似文献   

10.
In this study, we investigated the involvement of Th1 cytokines in the expression of cell adhesion molecules (CAM) and recruitment of inflammatory cells to the heart of mice infected with Trypanosoma cruzi. Our results show that endogenously produced IFN-gamma is essential to induce optimal expression of VCAM-1 and ICAM-1 on the cardiac vascular endothelium of infected mice. Furthermore, the influx of inflammatory cells into the cardiac tissue was impaired in Th1 cytokine-deficient infected mice, paralleling the intensity of VCAM-1 and ICAM-1 expression on the vascular endothelium. Consistent with the importance of ICAM-1 in host resistance, ICAM-1 knockout (KO) mice were highly susceptible to T. cruzi infection, as assessed by mortality rate, parasitemia, and heart tissue parasitism. The enhanced parasitism was associated with a decrease in the numbers of CD4(+) and CD8(+) T lymphocytes in the heart tissue of ICAM-1 KO mice. Additionally, ICAM-1 KO mice mounted an unimpaired IFN-gamma response and IFN-gamma-dependent production of reactive nitrogen intermediates and parasite- specific IgG2a. Supporting the participation of ICAM-1 in cell migration during T. cruzi infection, the entrance of adoptively transferred PBL from T. cruzi-infected wild-type C57BL/6 mice into the cardiac tissue of ICAM-1 KO mice was significantly abrogated. Therefore, we favor the hypothesis that ICAM-1 plays a crucial role in T lymphocyte recruitment to the cardiac tissue and host susceptibility during T. cruzi infection.  相似文献   

11.
BACKGROUND: Interferon (IFN)-gamma is a key to protective immunity against a variety of intracellular bacterial infections, including Chlamydia trachomatis. Interleukin (IL)-18, a recently identified Th1 cytokine, together with IL-12 is a strong stimulator for IFN-gamma production. We investigated the relative roles of IL-18 and IL- 12 in protective immunity to C. trachomatis mouse pneumonitis (MoPn) infection using gene knockout (KO) and wild-type (WT) mice. MATERIALS AND METHODS: Mice were intranasally infected with C. trachomatis MoPn and protective immunity was assessed among groups of mice by daily body weight changes, lung growth of MoPn, and histopathological appearances at day 10 postinfection. The corresponding immune responses for each group of mice at the same postinfection time point were evaluated by measuring antigen-specific antibody isotype responses and cytokine profiles. RESULTS: Our results showed that IL-18 deficiency had little or no influence on clearance of MoPn from the lung, although KO mice exhibited slightly more severe inflammatory reactions in lung tissues, as well as reduced systemic and local IFN-gamma production, compared with WT mice. Results with IL-18 KO mice were in sharp contrast to those observed with IL-12 KO mice that showed substantially reduced clearance of MoPn from the lungs, substantial reductions of antigen-specific systemic and lung IFN-gamma production, decreased ratio of MoPn-specific immunoglobulin G (IgG)2a/IgG1, and severe pathological changes in the lung with extensive polymorphonuclear, instead of mononuclear, cell infiltration. Exogenous IL-12 or IL-18 was able to increase IFN-gamma production in IL-18 KO mice; whereas, only exogenous IL-12, but not IL-18, enhanced IFN-gamma production in IL-12 KO mice. Caspase-1 is the key protease for activation of IL-18 precursor into the bioactive form, and caspase-1 KO mice also displayed similar bacterial clearance and body weight loss to that in WT mice at early stages of MoPn infection. This further confirmed that IL-18 was not essential for host defense against chlamydia infection. CONCLUSIONS: These results suggest that IL-12, rather than IL-18, plays the dominant role in the development of protective immunity against chlamydia lung infection, although both cytokines are involved in the in vivo regulation of IFN-gamma production.  相似文献   

12.
The present study was conducted to critically determine the protective role of IL-18 in host response to Mycobacterium tuberculosis infection. IL-18-deficient (knockout (KO)) mice were slightly more prone to this infection than wild-type (WT) mice. Sensitivity of IL-12p40KO mice was lower than that of IL-12p40/IL-18 double KO mice. IFN-gamma production caused by the infection was significantly attenuated in IL-18KO mice compared with WT mice, as indicated by reduction in the levels of this cytokine in sera, spleen, lung, and liver, and its synthesis by spleen cells restimulated with purified protein derivatives. Serum IL-12p40 level postinfection and its production by peritoneal exudate cells stimulated with live bacilli were also significantly lower in IL-18KO mice than WT mice, suggesting that attenuated production of IFN-gamma was secondary to reduction of IL-12 synthesis. However, this was not likely the case, because administration of excess IL-12 did not restore the reduced IFN-gamma production in IL-18KO mice. In further studies, IL-18 transgenic mice were more resistant to the infection than control littermate mice, and serum IFN-gamma level and its production by restimulated spleen cells were increased in the former mice. Taken together, our results indicate that IL-18 plays an important role in Th1 response and host defense against M. tuberculosis infection although the contribution was not as profound as that of IL-12p40.  相似文献   

13.
We previously reported that macrophage arginase inhibits NO-dependent trypanosome killing in vitro and in vivo. BALB/c and C57BL/6 mice are known to be susceptible and resistant to trypanosome infection, respectively. Hence, we assessed the expression and the role of inducible NO synthase (iNOS) and arginase in these two mouse strains infected with Trypanosoma brucei brucei. Arginase I and arginase II mRNA expression was higher in macrophages from infected BALB/c compared with those from C57BL/6 mice, whereas iNOS mRNA was up-regulated at the same level in both phenotypes. Similarly, arginase activity was more important in macrophages from infected BALB/c vs infected C57BL/6 mice. Moreover, increase of arginase I and arginase II mRNA levels and of macrophage arginase activity was directly induced by trypanosomes, with a higher level in BALB/c compared with C57BL/6 mice. Neither iNOS expression nor NO production was stimulated by trypanosomes in vitro. The high level of arginase activity in T. brucei brucei-infected BALB/c macrophages strongly inhibited macrophage NO production, which in turn resulted in less trypanosome killing compared with C57BL/6 macrophages. NO generation and parasite killing were restored to the same level in BALB/c and C57BL/6 macrophages when arginase was specifically inhibited with N(omega)-hydroxy-nor-L-arginine. In conclusion, host arginase represents a marker of resistance/susceptibility to trypanosome infections.  相似文献   

14.
15.
Severe injury induces immune dysfunction resulting in increased susceptibility to opportunistic infections. Previous studies from our laboratory have demonstrated that post-burn immunosuppression is mediated by nitric oxide (NO) due to the increased expression of macrophage inducible nitric oxide synthase (iNOS). In contrast, others suggest that injury causes a phenotypic imbalance in the regulation of Th1- and Th2 immune responses. It is unclear whether or not these apparently divergent mediators of immunosuppression are interrelated. To study this, C57BL/6 mice were subjected to major burn injury and splenocytes were isolated 7 days later and stimulated with antiCD3. Burn injury induced NO-mediated suppression of proliferative responses that was reversed in the presence of the NOS inhibitor L-monomethyl-L-arginine and subsequently mimicked by the addition of the NO donor, S-nitroso-N-acetyl-penicillamine (SNAP). SNAP also dose-dependently suppressed IFN-gamma and IL-2 (Th1), but not IL-4 and IL-10 (Th2) production. Delaying the addition of SNAP to the cultures by 24 h prevented the suppression of IFN-gamma production. The Th2 shift in immune phenotype was independent of cGMP and apoptosis. The addition of SNAP to cell cultures also induced apoptosis, attenuated mitochondrial oxidative metabolism and induced mitochondrial membrane depolarization. However, these detrimental cellular effects of NO were observed only at supra-physiologic concentrations (>250 microM). In conclusion, these findings support the concept that NO induces suppression of cell-mediated immune responses by selective action on Th1 T cells, thereby promoting a Th2 response.  相似文献   

16.
Protective immunity against Helicobacter pylori infection in mice has been associated with a strong Th1 response, involving IL-12 as well as IFN-gamma, but recent studies have also demonstrated prominent eosinophilic infiltration, possibly linked to local Th2 activity in the gastric mucosa. In this study we investigated the role of IL-18, because this cytokine has been found to be a coregulator of Th1 development as well as involved in Th2-type responses with local eotaxin production that could influence gastric eosinophilia and resistance to infection. We found that IL-18(-/-) mice failed to develop protection after oral immunization with H. pylori lysate and cholera toxin adjuvant, indicating an important role of IL-18 in protection. Well-protected C57BL/6 wild-type (WT) mice demonstrated substantial influx of CD4(+) T cells and eosinophilic cells in the gastric mucosa, whereas IL-18(-/-) mice had less gastritis, few CD4(+) T cells, and significantly reduced numbers of eosinophilic cells. T cells in well-protected WT mice produced increased levels of IFN-gamma and IL-18 to recall Ag. By contrast, unprotected IL-18(-/-) mice exhibited significantly reduced gastric IFN-gamma and specific IgG2a Ab levels. Despite differences in gastric eosinophilic cell infiltration, protected WT and unprotected IL-18(-/-) mice had comparable levels of local eotaxin, suggesting that IL-18 influences protection via Th1 development and IFN-gamma production rather than through promoting local production of eotaxin and eosinophilic cell infiltration.  相似文献   

17.
The induction and role of nitric oxide (NO) during antigen presentation by macrophages to T helper (Th) cell subsets was examined. When cultured with Th1 clones, macrophage APC produced NO only in the presence of cognate Ag, which in turn suppressed T cell proliferation. IFN-gamma production by the activated Th1 cells was essential for the induction of NO. Th2 cells presented with the same cognate Ag did not induce NO production and proliferated uninhibited. Coactivation of Th1 and Th2 cells specific for the same Ag indicated that Th2 cells did not inhibit NO production, but were sensitive to NO induced by stimulated Th1 cells. Antigenic activation of Th2 cells in the presence of rIFN-gamma resulted in NO-mediated inhibition of proliferation. Th2 cells provided only a cell-associated cofactor, whereas Th1 cells secreted a soluble cofactor for IFN-gamma as well, i.e., TNF-alpha. Finally, a role for IFN-gamma and NO during immune responses was studied in spleen cells obtained from immunized IFN-gamma(-/-) mice. NO production and subsequent inhibition of Ag-specific proliferation ex vivo was observed only after the addition of rIFN-gamma. These studies suggest an IFN-gamma-dependent regulatory role for NO during Ag-specific Th cell activation involving macrophages, with obvious implications for Th subset-dependent immune responses in general.  相似文献   

18.
In the murine model of Cryptococcus neoformans infection Th1 (IL-12/IFN-gamma) and Th17 (IL-23/IL-17) responses are associated with protection, whereas an IL-4-dependent Th2 response exacerbates disease. To investigate the role of the Th2 cytokine IL-13 during pulmonary infection with C. neoformans, IL-13-overexpressing transgenic (IL-13Tg(+)), IL-13-deficient (IL-13(-/-)), and wild-type (WT) mice were infected intranasally. Susceptibility to C. neoformans infection was found when IL-13 was induced in WT mice or overproduced in IL-13Tg(+) mice. Infected IL-13Tg(+) mice had a reduced survival time and higher pulmonary fungal load as compared with WT mice. In contrast, infected IL-13(-/-) mice were resistant and 89% of these mice survived the entire period of the experiment. Ag-specific production of IL-13 by susceptible WT and IL-13Tg(+) mice was associated with a significant type 2 cytokine shift but only minor changes in IFN-gamma production. Consistent with enhanced type 2 cytokine production, high levels of serum IgE and low ratios of serum IgG2a/IgG1 were detected in susceptible WT and IL-13Tg(+) mice. Interestingly, expression of IL-13 by susceptible WT and IL-13Tg(+) mice was associated with reduced IL-17 production. IL-13 was found to induce formation of alternatively activated macrophages expressing arginase-1, macrophage mannose receptor (CD206), and YM1. In addition, IL-13 production led to lung eosinophilia, goblet cell metaplasia and elevated mucus production, and enhanced airway hyperreactivity. This indicates that IL-13 contributes to fatal allergic inflammation during C. neoformans infection.  相似文献   

19.
Pulmonary Cryptococcus neoformans infection of C57BL/6 mice is an established model of an allergic bronchopulmonary mycosis that has also been used to test a number of immunomodulatory agents. Our objective was to determine the role of IL-4 and IL-10 in the development/manifestation of the T2 response to C. neoformans in the lungs and lung-associated lymph nodes. In contrast to wild-type (WT) mice, which develop a chronic infection, pulmonary clearance was significantly greater in IL-4 knockout (KO) and IL-10 KO mice but was not due to an up-regulation of a non-T cell effector mechanism. Pulmonary eosinophilia was absent in both IL-4 KO and IL-10 KO mice compared with WT mice. The production of IL-4, IL-5, and IL-13 by lung leukocytes from IL-4 KO and IL-10 KO mice was lower but IFN-gamma levels remained the same. TNF-alpha and IL-12 production by lung leukocytes was up-regulated in IL-10 KO but not IL-4 KO mice. Overall, IL-4 KO mice did not develop the systemic (lung-associated lymph nodes and serum) or local (lungs) T2 responses characteristic of the allergic bronchopulmonary C. neoformans infection. In contrast, the systemic T2 elements of the response remained unaltered in IL-10 KO mice whereas the T2 response in the lungs failed to develop indicating that the action of IL-10 in T cell regulation was distinct from that of IL-4. Thus, although IL-10 has been reported to down-regulate pulmonary T2 responses to isolated fungal Ags, IL-10 can augment pulmonary T2 responses if they occur in the context of fungal infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号