首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 962 毫秒
1.
In acute experiments on cats we studied convergence of the afferent temperature-related and glycemic signals on the neurons of the preoptic region (RPO1). Local heating and cooling (±7°C) of the skin on the contralateral forelimb pad were used for identification ofRPO neurons as thermosensitive units, while infusion of 0.1–0.4 ml of 5.5% glucose solution in the ipsilaterala. carotis revealed their sensitivity to shifts in the glucose concentration. More than half (57%) of glucosensitiveRPO neurons responded to the changes in peripheral temperature. The pattern of convergence and peculiarities of localization of the convergent neurons were studied. We propose the following hypothesis:RPO neurons receiving convergent thermal and glycemic inputs provide formation of integral controlling signals addressed to the ventromedial and lateral hypothalamic nuclei, which control the thermoregulatory food consumption.  相似文献   

2.
Radiation therapy of the CNS, even at low doses, can lead to deficits in neurocognitive functions. Reduction in hippocampal neurogenesis is usually, but not always, associated with cognitive deficits resulting from radiation therapy. Generation of reactive oxygen species is considered the main cause of radiation-induced tissue injuries, and elevated levels of oxidative stress persist long after the initial cranial irradiation. Consequently, mutant mice with reduced levels of the mitochondrial antioxidant enzyme, Mn superoxide dismutase (MnSOD or Sod2), are expected to be more sensitive to radiation-induced changes in hippocampal neurogenesis and the related functions. In this study, we showed that MnSOD deficiency led to reduced generation of immature neurons in Sod2−/+ mice even though progenitor cell proliferation was not affected. Compared to irradiated Sod2+/+ mice, which showed cognitive defects and reduced differentiation of newborn cells towards the neuronal lineage, irradiated Sod2−/+ mice showed normal hippocampal-dependent cognitive functions and normal differentiation pattern for newborn neurons and astroglia. However, we also observed a disproportional decrease in newborn neurons in irradiated Sod2−/+ following behavioral studies, suggesting that MnSOD deficiency may render newborn neurons more sensitive to stress from behavioral trainings following cranial irradiation. A positive correlation between normal cognitive functions and normal dendritic spine densities in dentate granule cells was observed. The data suggest that maintenance of synaptic connections, via maintenance of dendritic spines, may be important for normal cognitive functions following cranial irradiation.  相似文献   

3.
人们对电磁辐射越来越关注,但是工频磁场产生的生物效应并不确定.选用1、5、10 mT的工频磁场照射急性分离的小鼠皮层神经元(15 min),应用全细胞膜片钳技术离线记录瞬时外向钾通道电流,研究工频磁场对离子通道的影响.结果显示:工频磁场抑制通道的电流密度,并且1 mT、5 mT及10 mT工频磁场的抑制率分别为(63.0±2.2)%、(55.0±1.7)%和(38.0±1.8)%.工频磁场影响离子通道的激活和失活特性,半数激活电压和半数失活电压变小.不同强度工频磁场对离子通道产生的影响程度不同,其中1 mT工频磁场对通道电流的抑制率最大,5 mT工频磁场对通道的半数激活电压和半数失活电压影响最大,10 mT工频磁场增大了通道的失活斜率因子.研究结果表明,工频磁场影响了细胞膜上离子通道蛋白质构象的变化,进一步影响了离子通道的正常功能.  相似文献   

4.
Wan YH  Jian Z  Wang WT  Xu H  Hu SJ  Ju G 《Neuro-Signals》2006,15(2):74-90
Short-term plasticity (STP) is an important element of information processing in neuronal networks. As the first synaptic relay between primary afferent fibers (PAFs) and central neurons, primary afferent synapses in spinal dorsal horn (DH) are essential to the initial processing of somatosensory information. In this research, we examined the STP between Adelta-PAFs and spinal DH neurons by patch-clamp recording. Our results showed that depression dominated the STP at primary afferent synapses. The curves of STP had no significant changes in the presence of bicuculline, CTZ or AP-5. Lowering extracellular Ca(2+) concentration ([Ca(2+)](o)) from 2.4 to 0.8 mM reduced the depression of synaptic responses at all stimulus rates, while raising [Ca(2+)](o) from 2.4 to 4.0 mM increased the synaptic depression. Increasing the bath temperature from 24 to 32 degrees C clearly reduced the depression of all responses. These results indicate that the observed STP is of presynaptic origin and depends on transmitter release. By fitting the experimental data recorded under different conditions, a model of STP was used to quantitatively characterize the observed STP and to analyze the possible mechanisms underlying the effects of [Ca(2+)](o) and temperature. Furthermore, using a model neuron receiving synaptic inputs, we found that with this form of STP, postsynaptic DH neurons could detect rate changes in both rapidly- and slowly-firing afferents with equal sensitivity. The present study links the intrinsic STP properties of primary afferent synapses with their role in processing neural information, and provides a basis for further research on the STP in spinal DH and its biological function under in vivo conditions.  相似文献   

5.
Hardware that generates electromagnetic waves with wavelengths from 1 to 10 mm (millimeter waves, “MMW”) is being used in a variety of applications, including high‐speed data communication and medical devices. This raises both practical and fundamental issues concerning the interaction of MMW electromagnetic fields (EMF) with biological tissues. A 94 GHz EMF is of particular interest because a number of applications, such as active denial systems, rely on this specific frequency. Most of the energy associated with MMW radiation is absorbed in the skin and, for a 94 GHz field, the power penetration depth is shallow (≈0.4 mm). At sufficiently high energies, skin heating is expected to activate thermal pain receptors, leading to the perception of pain. In addition to this “thermal” mechanism of action, a number of “non‐thermal” effects of MMW fields have been previously reported. Here, we investigated the influence of a 94 GHz EMF on the assembly/disassembly of neuronal microtubules in Xenopus spinal cord neurons. We reasoned that since microtubule array is regulated by a large number of intracellular signaling cascades, it may serve as an exquisitely sensitive reporter for the biochemical status of neuronal cytoplasm. We found that exposure to 94 GHz radiation increases the rate of microtubule assembly and that this effect can be entirely accounted for by the rapid EMF‐elicited temperature jump. Our data are consistent with the notion that the cellular effects of a 94 GHz EMF are mediated entirely by cell heating. Bioelectromagnetics 34:133–144, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
7.
Exposure of the brain to ionizing radiation can cause neurocognitive deficiencies. The pathophysiology of these neurological changes is complex and includes radiation-induced apoptosis in the subgranular zone of the hippocampus. We have recently found that inhibition of glycogen synthase kinase 3β (GSK-3β) resulted in significant protection from radiation-induced apoptosis in hippocampal neurons. The molecular mechanisms of this cytoprotection include abrogation of radiation-induced accumulation of p53. Here we show that pretreatment of irradiated HT-22 hippocampal-derived neurons with small molecule inhibitors of GSK-3β SB216763 or SB415286, or with GSK-3β-specific shRNA resulted in accumulation of the p53-specific E3 ubiquitin ligase MDM2. Knockdown of MDM2 using specific shRNA or chemical inhibition of MDM2-p53 interaction prevented the protective changes triggered by GSK-3β inhibition in irradiated HT-22 neurons and restored radiation cytotoxicity. We found that this could be due to regulation of apoptosis by subcellular localization and interaction of GSK-3β, p53 and MDM2. These data suggest that the mechanisms of radioprotection by GSK-3β inhibitors in hippocampal neurons involve regulation of MDM2-dependent p53 accumulation and interactions between GSK-3β, MDM2 and p53.  相似文献   

8.
The health risks to astronauts exposed to high-LET radiation include possible cognitive deficits. The pathogenesis of radiation-induced cognitive injury is unknown but may involve loss of neural precursor cells from the subgranular zone (SGZ) of the hippocampal dentate gyrus. To address this hypothesis, adult female C57BL/6 mice received whole-body irradiation with a 1 GeV/nucleon iron-particle beam in a single fraction of 0, 1, 2 and 3 Gy. Two months later mice were given BrdU injections to label proliferating cells. Subsequently, hippocampal tissue was assessed using immunohistochemistry for detection of proliferating cells and immature neurons. Routine histopathological methods were used to qualitatively assess tissue/cell morphology in the hippocampal formation and adjacent areas. When compared to controls, irradiated mice showed progressively fewer BrdU-positive cells as a function of dose. This observation was confirmed by Ki-67 immunostaining in the SGZ showing reductions in a dose-dependent fashion. The progeny of the proliferating SGZ cells, i.e. immature neurons, were visualized by doublecortin staining and were significantly reduced by irradiation, with the decreases ranging from 34% after 1 Gy to 71% after 3 Gy. Histopathology showed that in addition to cell changes in the SGZ, (56)Fe particles induced a chronic and diffuse astrocytosis and changes in pyramidal neurons in and around the hippocampal formation. The present data provide the first evidence that high-LET radiation has deleterious effects on cells associated with hippocampal neurogenesis.  相似文献   

9.
电磁辐射对原代培养海马神经元的损伤效应及其机制探讨   总被引:4,自引:0,他引:4  
研究X带高功率微波、S带高功率微波及电磁脉冲辐射对原代培养海马神经元的损伤效应并探讨其机制。通过体外培养原代海马神经元,建立电磁波辐照细胞模型。采用Annexin V-PI双标记、流式细胞术检测细胞凋亡与坏死,原子力显微镜检测细胞膜表面形态,Fluo-3-AM荧光探针负载、激光扫描共聚焦显微镜测定胞内[Ca2 ]i。结果表明,辐射后海马神经元凋亡与坏死均增加,其中坏死增加明显;细胞膜表面粗糙度加大,膜穿孔增多;胞内[Ca2 ]i明显升高。且以上变化均以X带高功率微波组最重,S带高功率微波组次之,电磁脉冲组最轻。提示细胞膜穿孔增多,膜通透性增加,导致胞外Ca2 内流增加,甚至胞内钙超载是辐射致海马神经元凋亡与坏死的机制之一;三种电磁辐射对海马神经元的损伤程度与照射频率呈正相关。  相似文献   

10.
Nine isoforms of voltage-gated sodium channels (NaV) have been characterized and in excitable tissues they are responsible for the initiation and conduction of action potentials. For primary afferent neurons residing in dorsal root ganglia (DRG), individual neurons may express multiple NaV isoforms extending the neuron’s functional capabilities. Since expression of NaV isoforms can be differentially regulated by neurotrophic factors we have examined the functional consequences of exposure to either nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) on action potential conduction in outgrowing cultured porcine neurites of DRG neurons. Calcium signals were recorded using the exogenous intensity based calcium indicator Fluo-8®, AM. In 94 neurons, calcium signals were conducted along neurites in response to electrical stimulation of the soma. At an image acquisition rate of 25 Hz it was possible to discern calcium transients in response to individual electrical stimuli. The peak amplitude of electrically-evoked calcium signals was limited by the ability of the neuron to follow the stimulus frequency. The stimulus frequency required to evoke a half-maximal calcium response was approximately 3 Hz at room temperature. In 13 of 14 (93%) NGF-responsive neurites, TTX-r NaV isoforms alone were sufficient to support propagated signals. In contrast, calcium signals mediated by TTX-r NaVs were evident in only 4 of 11 (36%) neurites from somata cultured in GDNF. This establishes a basis for assessing action potential signaling using calcium imaging techniques in individual cultured neurites and suggests that, in the pig, afferent nociceptor classes relying on the functional properties of TTX-r NaV isoforms, such as cold-nociceptors, most probably derive from NGF-responsive DRG neurons.  相似文献   

11.
Therapeutic irradiation of the brain can cause a progressive cognitive dysfunction that may involve defects in neurogenesis. In an effort to understand the mechanisms underlying radiation-induced stem cell dysfunction, neural precursor cells isolated from the adult rat hippocampus were analyzed for acute (0-24 h) and chronic (3-33 days) changes in apoptosis and reactive oxygen species (ROS) after exposure to X rays. Irradiated neural precursor cells exhibited an acute dose-dependent apoptosis accompanied by an increase in ROS that persisted over a 3-4-week period. The radiation effects included the activation of cell cycle checkpoints that were associated with increased Trp53 phosphorylation and Trp53 and p21 (Cdkn1a) protein levels. In vivo, neural precursor cells within the hippocampal dentate subgranular zone exhibited significant sensitivity to radiation. Proliferating precursor cells and their progeny (i.e. immature neurons) exhibited dose-dependent reductions in cell number. These reductions were less severe in Trp53-null mice, possibly due to the disruption of apoptosis. These data suggest that the apoptotic and ROS responses may be tied to Trp53-dependent regulation of cell cycle control and stress-activated pathways. The temporal coincidence between in vitro and in vivo measurements of apoptosis suggests that oxidative stress may provide a mechanistic explanation for radiation-induced inhibition of neurogenesis in the development of cognitive impairment.  相似文献   

12.
Cranial radiotherapy induces progressive and debilitating cognitive deficits, particularly in long-term cancer survivors, which may in part be caused by the reduction of hippocampal neurogenesis. Previous studies suggested that voluntary exercise can reduce the cognitive impairment caused by radiation therapy. However, there is no study on the effect of forced wheel exercise and little is known about the molecular mechanisms mediating the effect of exercise. In the present study, we investigated whether the forced running exercise after irradiation had the protective effects of the radiation-induced cognitive impairment. Sixty-four Male Sprague–Dawley rats received a single dose of 20 Gy or sham whole-brain irradiation (WBI), behavioral test was evaluated using open field test and Morris water maze at 2 months after irradiation. Half of the rats accepted a 3-week forced running exercise before the behavior detection. Immunofluorescence was used to evaluate the changes in hippocampal neurogenesis and Western blotting was used to assess changes in the levels of mature brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine receptor kinase B (TrkB) receptor, protein kinase B (Akt), extracellular signal-regulated kinase (ERK), calcium-calmodulin dependent kinase (CaMKII), cAMP-calcium response element binding protein (CREB) in the BDNF–pCREB signaling. We found forced running exercise significantly prevented radiation-induced cognitive deficits, ameliorated the impairment of hippocampal neurogenesis and attenuated the down-regulation of these proteins. Moreover, exercise also increased behavioral performance, hippocampal neurogenesis and elevated BDNF–pCREB signaling in non-irradiation group. These results suggest that forced running exercise offers a potentially effective treatment for radiation-induced cognitive deficits.  相似文献   

13.
The underlying mechanisms associated with radiation-induced cognitive impairments remain elusive but may involve changes in hippocampal neural precursor cells. Proliferating neural precursor cells have been shown to be extremely sensitive to X rays, either from damage to the cells themselves and/or through microenvironmental factors, including the anatomical relationship with the microvasculature, which is altered by radiation. The neutron capture reaction in boron was used to determine whether the sensitivity of neural precursor cells was dominated by direct radiation effects or was mediated through changes in the microvasculature. Young adult rats were irradiated with X rays, neutrons only, or neutrons plus either mercapto-undecahydro-dodecaborane (BSH) or p-dihydroxyboryl-phenylalanine (BPA). BSH remains inside cerebral vessels, thereby limiting the neutron capture intravascularly; BPA readily passes into the parenchyma. One month after irradiation, cell proliferation and numbers of immature neurons were determined using immunohistochemistry. Results showed that (1) neural precursor cells and their progeny were decreased in a dose-dependent manner by mixed high- and low-LET radiation, and (2) selective irradiation of the microvasculature resulted in less loss of neural precursor cells than when the radiation dose was delivered uniformly to the parenchyma. This information, and in particular the approach of selectively irradiating the vasculature, may be useful in developing radioprotective compounds for use during therapeutic irradiation.  相似文献   

14.
Imaging fluorescent measurements with fura 2 were used to examine cytosolic calcium signals induced by sulfated CCK octapeptide (CCK-8) in dissociated vagal afferent neurons from adult rat nodose ganglia. We found that 40% (184/465) of the neurons responded to CCK-8 with a transient increase in cytosolic calcium. The threshold concentration of CCK-8 for inducing the response varied from 0.01 to 100 nM. In most neurons (13/16) the response was eliminated by removing extracellular calcium. Depleting intracellular calcium stores with thapsigargin slightly augmented the response. Most neurons were unresponsive to nonsulfated CCK-8. The response was eliminated by the CCK-A receptor antagonist lorglumide. Low concentrations of JMV-180 had no effect; however, high concentrations of JMV-180 reduced responses to CCK-8. These results demonstrate that CCK acts at the low-affinity site of the CCK-A receptor to trigger the entry of extracellular calcium into vagal afferent neurons. Increased cytosolic calcium may participate in acute activation of vagal afferent neurons, or it may initiate long-term changes, which modulate future neuronal responses to sensory stimuli.  相似文献   

15.
The effects of air temperature, relative and specific humidity, wind speed, solar shortwave radiation, thermal longwave radiation, and rain on the performance of participants in the annual Stockholm Marathon from 1980 to 2008 were analysed statistically. The objective was to validate and extend previous studies by including data on finishing times of slower male and female runners and on the percentage of non-finishers. Due to decadal trends in the finishing time not related to weather, the finishing time anomaly (FTA) was calculated as the deviation of the annual finishing time from the linear trend of the finishing time. In all categories of runners, the single weather parameter with highest correlation with the FTA was the air temperature (correlation coefficient r = 0.66–0.73, with the highest values for slowest runners). Also, the solar shortwave radiation (r = 0.41–0.71), air relative humidity (r = −0.57 to −0.44) and, for male runners, the occurrence of rain (r = −0.51 to −0.42) reached a statistically significant correlation with the FTA, but the effects of the relative humidity and rain only arose from their negative correlation with the air temperature. The percentage of non-finishers (PNF) was significantly affected by the air temperature and specific humidity (r = 0.72 for multiple regression), which is a new result. Compared to faster runners, the results of slower runners were more affected by unfavourable weather conditions; this was previously known for runners with finishing times of 2.1–3 h, and now extended to finishing times of 4.7 h. Effects of warm weather were less evident for female than male runners, which was probably partly due to female runners’ larger ratio of surface area to body mass and slower running speed.  相似文献   

16.
The present model of joint angle perception is based on the following hypotheses: the perception and control of joint angle are closely interrelated processes; central motor commands are adequately expressed by shifts of an equilibrium point resulting from the interaction of antagonistic muscles and a load; two fundamental commands-reciprocal (r) and coactivative (c) provide for changes in activity of the antagonistic muscle pair. The dependence of joint angle on static muscle torque and r and c commands is derived (Eq. 5). The following principles of joint position sense are formulated: 1) the r component of the efferent copy plays the role of a reference point which shifts during voluntary regulation of muscle state, but remains unchanged during any passive alterations of joint position; 2) muscle afferent signals deliver not absolute but relative information (i.e. measured relatively to the central reference point). These signals turn out to be related to active muscle torque; 3) the nervous system evaluates muscle afferent signals on the basis of a scale determined by the level of coactivation of the antagonistic muscles. Kinaesthetic illusions appear to be due to disruptions in perception of afferent and/or efferent components of position sense. The present model is consistent with all the variety of kinaesthetic illusions observed experimentally. A qualitative neurophysiological schema for joint angle perception is proposed involving efferent copy and information concerning muscle torque delivered by the tendon organ, muscle spindle, and perhaps, articular receptors. It is known that the cerebellum incorporates both afferent and efferent information concerning movement. One may presume that it plays an essential role in position sense.  相似文献   

17.
Every year, nearly 200,000 patients undergo radiation for brain tumors. For both patients and caregivers the most distressing adverse effect is impaired cognition. Efforts to protect against this debilitating effect have suffered from inadequate understanding of the cellular mechanisms of radiation damage. In the past it was accepted that radiation-induced normal tissue injury resulted from a progressive reduction in the survival of clonogenic cells. Moreover, because radiation-induced brain dysfunction is believed to evolve over months to years, most studies have focused on late changes in brain parenchyma. However, clinically, acute changes in cognition are also observed. Because neurons are fully differentiated post-mitotic cells, little information exists on the acute effects of radiation on synaptic function. The purpose of our study was to assess the potential acute effects of radiation on neuronal function utilizing ex vivo hippocampal brain slices. The cellular localization and functional status of excitatory and inhibitory neurotransmitter receptors was identified by immunoblotting. Electrophysiological recordings were obtained both for populations of neuronal cells and individual neurons. In the dentate gyrus region of isolated ex vivo slices, radiation led to early decreases in tyrosine phosphorylation and removal of excitatory N-methyl-D-aspartate receptors (NMDARs) from the cell surface while simultaneously increasing the surface expression of inhibitory gamma-aminobutyric acid receptors (GABA(A)Rs). These alterations in cellular localization corresponded with altered synaptic responses and inhibition of long-term potentiation. The non-competitive NMDAR antagonist memantine blocked these radiation-induced alterations in cellular distribution. These findings demonstrate acute effects of radiation on neuronal cells within isolated brain slices and open new avenues for study.  相似文献   

18.
Summary In the non-filamenting tif-1 strain WP44s NF trp a dramatic enhancement of both UV and gamma ray mutability to Trp+ was observed when irradiated bacteria were incubated on plates at 43°. This enhanced mutability was progressively suppressed when the initial plating density exceeded 108 bacteria per plate and was not demonstrable in liquid media. Under optimal conditions more mutants were induced by gamma radiation than could reasonably be accounted for by the initial number of radiation-induced lesions in the DNA, implying the existence of some mechanism for amplifying the radiation effect. Moreover, the tif-enhanced mutation frequency could be obtained if incubation at restrictive temperature was delayed for up to 60 min in nutrient broth after irradiation, at a time when all known reparable DNA damage had been repaired and the number of viable bacteria had more than doubled. On plates the effect of high temperature was still fully demonstrable 120 min after irradiation. The results are hard to reconcile with the hypothesis that incubation of tif-1 bacteria at restrictive temperature causes the induction of a repair system acting on DNA damaged by gamma radiation. A more compatible interpretation would be that radiation causes a persisting physiological disturbance in the cell and that this enhances the spontaneous mutator effect occurring in tif-1 bacteria subjected to subsequent thermal shock.  相似文献   

19.
TRPM8, a member of the transient receptor potential (TRP) channel superfamily, is expressed in thermosensitive neurons, in which it functions as a cold and menthol sensor. TRPM8 and most other temperature-sensitive TRP channels (thermoTRPs) are voltage gated; temperature and ligands regulate channel opening by shifting the voltage dependence of activation. The mechanisms and structures underlying gating of thermoTRPs are currently poorly understood. Here we show that charge-neutralizing mutations in transmembrane segment 4 (S4) and the S4-S5 linker of human TRPM8 reduce the channel's gating charge, which indicates that this region is part of the voltage sensor. Mutagenesis-induced changes in voltage sensitivity translated into altered thermal sensitivity, thereby establishing the strict coupling between voltage and temperature sensing. Specific mutations in this region also affected menthol affinity, which indicates a direct interaction between menthol and the TRPM8 voltage sensor. Based on these findings, we present a Monod-Wyman-Changeux-type model explaining the combined effects of voltage, temperature and menthol on TRPM8 gating.  相似文献   

20.
In the course of modern daily life, individuals are exposed to numerous sources of electromagnetic radiation that are not present in the natural environment. The strength of the electromagnetic fields from sources such as hairdryers, computer display units and other electrical devices is modest. However, in many home and office environments, individuals can experience perpetual exposure to an “electromagnetic smog”, with occasional peaks of relatively high electromagnetic field intensity. This has led to concerns that such radiation can affect health. In particular, emissions from mobile phones or mobile phone masts have been invoked as a potential source of pathological electromagnetic radiation. Previous reports have suggested that cellular calcium (Ca2+) homeostasis is affected by the types of radiofrequency fields emitted by mobile phones. In the present study, we used a high-throughput imaging platform to monitor putative changes in cellular Ca2+ during exposure of cells to 900 MHz GSM fields of differing power (specific absorption rate 0.012–2 W/Kg), thus mimicking the type of radiation emitted by current mobile phone handsets. Data from cells experiencing the 900 Mhz GSM fields were compared with data obtained from paired experiments using continuous wave fields or no field. We employed three cell types (human endothelial cells, PC-12 neuroblastoma and primary hippocampal neurons) that have previously been suggested to be sensitive to radiofrequency fields. Experiments were designed to examine putative effects of radiofrequency fields on resting Ca2+, in addition to Ca2+ signals evoked by an InsP3-generating agonist. Furthermore, we examined putative effects of radiofrequency field exposure on Ca2+ store emptying and store-operated Ca2+ entry following application of the Ca2+ATPase inhibitor thapsigargin. Multiple parameters (e.g., peak amplitude, integrated Ca2+ signal, recovery rates) were analysed to explore potential impact of radiofrequency field exposure on Ca2+ signals. Our data indicate that 900 MHz GSM fields do not affect either basal Ca2+ homeostasis or provoked Ca2+ signals. Even at the highest field strengths applied, which exceed typical phone exposure levels, we did not observe any changes in cellular Ca2+ signals. We conclude that under the conditions employed in our experiments, and using a highly-sensitive assay, we could not detect any consequence of RF exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号