首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 358 毫秒
1.
The crystal structure of Nicotiana alata (ornamental tobacco) S(F11)-RNase, an S-allelic glycoprotein associated with gametophytic self-incompatibility, was determined by X-ray diffraction at 1.55 A resolution. The protein has a tertiary structure typical of members of the RNase T(2) family as it consists of a variant of the (alpha+beta) fold and has eight helices and seven strands. A heptasaccharide moiety is also present, and amino acid residues that serve as the catalytic acid and base can be assigned to His32 and His91, respectively. Two "hypervariable" regions, known as HVa and HVb, are the proposed sites of S-allele discrimination during the self-incompatibility reaction, and in the S(F11)-RNase these are well separated from the active site. HVa and HVb are composed of a long, positively charged loop followed by a part of an alpha-helix and short, negatively charged alpha-helix, respectively. The S(F11)-RNase structure shows both regions are readily accessible to the solvent and hence could participate in the process of self/non-self discrimination between the S-RNase and an unknown pollen S-gene product(s) upon pollination.  相似文献   

2.
The crystal structure of Escherichia coli ribonuclease I (EcRNase I) reveals an RNase T2-type fold consisting of a conserved core of six beta-strands and three alpha-helices. The overall architecture of the catalytic residues is very similar to the plant and fungal RNase T2 family members, but the perimeter surrounding the active site is characterized by structural elements specific for E. coli. In the structure of EcRNase I in complex with a substrate-mimicking decadeoxynucleotide d(CGCGATCGCG), we observe a cytosine bound in the B2 base binding site and mixed binding of thymine and guanine in the B1 base binding site. The active site residues His55, His133, and Glu129 interact with the phosphodiester linkage only through a set of water molecules. Residues forming the B2 base recognition site are well conserved among bacterial homologs and may generate limited base specificity. On the other hand, the B1 binding cleft acquires true base aspecificity by combining hydrophobic van der Waals contacts at its sides with a water-mediated hydrogen-bonding network at the bottom. This B1 base recognition site is highly variable among bacterial sequences and the observed interactions are unique to EcRNaseI and a few close relatives.  相似文献   

3.
Ribonuclease (RNase) T2 from Aspergillus oryzae was modified by diethyl pyrocarbonate and iodoacetic acid. RNase T2 was rapidly inactivated by diethyl pyrocarbonate above pH 6.0 and by incorporation of a carboxymethyl group. No inactivation occurred in the presence of 3'AMP. 1H-NMR titration and photo-chemically induced dynamic nuclear polarization experiments demonstrated that two histidine residues were involved in the active site of RNase T2. Furthermore, analysis of inactive carboxymethylated RNase T2 showed that both His53 and His115 were partially modified to yield a total of one mole of N tau-carboxymethylhistidine/mole enzyme. The results indicate that the two histidine residues in the active site of RNase T2 are essential for catalysis and that modification of either His53 or His115 inactivates the enzyme.  相似文献   

4.
Fluorescence titrations of kynurenine and tyrosine in Kyn 59-RNase T1 and NFK 59-RNase T1 were carried out by monitoring protein fluorescence through a pH change from 1.5 to 10.5. In the titration of kynurenine fluorescence at 455 nm, a few small but distinct quenching events occurred between pH 3.5 and 9.5. Three ionizable groups were found to be responsible for the individual steps of quenching observed. These groups are Glu 58 with pKa 4.6, His 40 or 92 with pKa 7.8 and Lys 41 with pKa 8.7. From this result, a subtle conformational change associated with the proton dissociation equilibria of Glu 58 and His 40 or 92 in the active site of Kyn 59-RNase T1 is suggested. The pH-titration behavior of tyrosine fluorescence in Kyn 59-RNase T1 was different from that of kynurenine fluorescence. Two acidic groups with pKa's 3.2 and 6.5 were detected as perturbants. In NFK 59-RNase T1, both N'-formylkynurenine and tyrosine showed almost the same fluorescence behavior during titration, which was characterized by two transitions between pH 3 and 8 in each titration curve. Two ionizable groups with pKa's 3.7-3.8 and 6.7-6.8 were determined. The role of the latter ionizable group is discussed in relation to the enzyme function of RNase T1. From the close similarity in structure and function between Kyn 59-RNase T1 and RNase T1, it is suggested that the same mechanism of conformational change linked to the ionization states of Glu 58 and His 40 or 92 exists in the native protein too.  相似文献   

5.
In bacterial RNA metabolism, mRNA degradation is an important process for gene expression. Recently, a novel ribonuclease (RNase), belonging to the beta-CASP family within the metallo-beta-lactamase superfamily, was identified as a functional homologue of RNase E, a major component for mRNA degradation in Escherichia coli. Here, we have determined the crystal structure of TTHA0252 from Thermus thermophilus HB8, which represents the first report of the tertiary structure of a beta-CASP family protein. TTHA0252 comprises two separate domains: a metallo-beta-lactamase domain and a "clamp" domain. The active site of the enzyme is located in a cleft between the two domains, which includes two zinc ions coordinated by seven conserved residues. Although this configuration is similar to those of other beta-lactamases, TTHA0252 has one conserved His residue characteristic of the beta-CASP family as a ligand. We also detected nuclease activity of TTHA0252 against rRNAs of T. thermophilus. Our results reveal structural and functional aspects of novel RNase E-like enzymes with a beta-CASP fold.  相似文献   

6.
In order to investigate the S-RNase allele structure of a Prunus webbii population from the Montenegrin region of the Balkans, we analyzed 10 Prunus webbii accessions. We detected 10 different S-RNase allelic variants and obtained the nucleotide sequences for six S-RNases. The BLAST analysis showed that these six sequences were new Prunus webbii S-RNase alleles. It also revealed that one of sequenced alleles, S(9)-RNase, coded for an amino acid sequence identical to that for Prunus dulcis S(14)-RNase, except for a single conservative amino acid replacement in the signal peptide region. Another, S(3)-RNase, was shown to differ by only three amino acid residues from Prunus salicina Se-RNase. The allele S(7)-RNase was found to be inactive by stylar protein isoelectric focusing followed by RNase-specific staining, but the reason for the inactivity was not at the coding sequence level. Further, in five of the 10 analyzed accessions, we detected the presence of one active basic RNase (marked PW(1)) that did not amplify with S-RNase-specific DNA primers. However, it was amplified with primers designed from the PA1 RNase nucleotide sequence (basic "non-S RNase" of Prunus avium) and the obtained sequence showed high homology (80%) with the PA1 allele. Although homologs of PA1 "non-S RNases" have been reported in four other Prunus species, this is the first recorded homolog in Prunus webbii. The evolutionary implications of the data are discussed.  相似文献   

7.
S Parry  E Newbigin  G Currie  A Bacic    D Oxley 《Plant physiology》1997,115(4):1421-1429
The style component of the self-incompatibility (S) locus of the wild tomato Lycopersicon peruvianum (L.) Mill. is an allelic series of glycoproteins with ribonuclease activity (S-RNases). Treatment of the S3-RNase from L. peruvianum with iodoacetate at pH 6.1 led to a loss of RNase activity. In the presence of a competitive inhibitor, guanosine 3'-monophosphate (3'-GMP), the rate of RNase inactivation by iodoacetate was reduced significantly. Analysis of the tryptic digestion products of the iodoacetate-modified S-RNase by reversed-phase high-performance liquid chromatography and electrospray-ionization mass spectrometry showed that histidine-32 was preferentially modified in the absence of 3'-GMP. Histidine-88 was also modified, but this occurred both in the presence and absence of 3'-GMP, suggesting that this residue is accessible when 3'-GMP is in the active site. Cysteine-150 was modified by iodoacetate in the absence of 3'-GMP and, to a lesser extent, in its presence. The results are discussed with respect to the related fungal RNase T2 family and the mechanism of S-RNase action.  相似文献   

8.
The histidyl residues of bovine pancreatic ribonuclease A (RNase A) play a crucial role in enzymatic activity. Diethylpyrocarbonate (DEPC) is a potent inhibitor of RNase A, and its precise sites of action on the imidazole rings of the four histidyl residues of RNase A are not clearly defined. We have used a multidisciplinary approach including enzyme assay, calculation of accessible surface area (ASA), isoelectric pH gradient technique, fluorescence investigations, circular dichroism spectroscopy, differential scanning calorimetry, and 1H NMR analysis to study the sites of DEPC interaction with the imidazole rings of the four histidyl residues. Our results demonstrate that among the histidyl residues of RNase A, His48 is not accessible to react with DEPC. However, the sequential carbethoxylation of the imidazole rings of His119, His105, and His12 occurs on the nitrogen atoms of Ndelta, Nepsilon, and Nepsilon, respectively. Carbethoxylation of His119 was followed by conversion of the A conformation to the B conformation in the active site. However, the carbethoxylation of His12 was accompanied by a second spatial rotation of the corresponding imidazole ring in the active site to adopt a new conformation. These conformation changes are accompanied by subsequent decrements in the thermal stability of the protein. Therefore, these findings reinforce the important structural roles of the spatial positions for His119 and His12 in the active site of RNase A.  相似文献   

9.
3-N-Carboxymethyl-His-12 and 1-N-carboxymethyl-His-119-RNase A bind to the naturally occurring RNase inhibitor, isolated from human placenta, 1.3 and 3.6 times, respectively, more strongly than does native RNase A. Near-ultraviolet circular dichroism measurements indicate that the conformational change which occurs upon carboxymethylation of either of the active site histidine residues appears different from that which the protein undergoes upon binding of substrate of a substrate analogue. Specific carboxymethylation of Lys-41 of RNase A decreased the strength of the interaction between the enzyme and the RNase inhibitor to about 12% of the initial value. The near-UV CD spectra of Cm-Lys-41-RNase A and of acetimidyl-RNase A (9.3 lysines modified) and carbamylated RNase A (3.0 lysines modified), which also have weaker interactions with RNase inhibitor of 25% and 10%, respectively, show a negative [theta]MRW identical to that of native RNase A at 275 nm but are altered in the positive [theta]MRW at 240 nm. The CD measurements suggest that one or more tyrosine residues of RNase A may be involved in the interaction with inhibitor. The effects of pH and salt concentration suggest that a major part of the protein-protein interaction is probably through nonpolar forces. The strengths of interactions between the inhibitor and pancreatic RNases from several species were very similar. Since Tyr-92 is the only tyrosine residue retained in all of the species studied, this residue may have a key role in the nonpolar interaction. The data presented herein suggest that the interaction between RNase A and the inhibitor involves the positively charged epsilon-NH2 group of Lys-41 of RNase A. This interaction could result in the inactivation of the enzyme.  相似文献   

10.
TTHA0727 is a conserved hypothetical protein from Thermus thermophilus HB8, with a molecular mass of 12.6 kDa. TTHA0727 belongs to the carboxymuconolactone decarboxylase (CMD) family (Pfam 02627). A sequence comparison with its homologs suggested that TTHA0727 is a distinct protein from alkylhydroperoxidase AhpD and gamma-carboxymuconolactone decarboxylase in the CMD family. Here we report the 1.9 A crystal structure of TTHA0727 (PDB ID: 2CWQ) determined by the multiwavelength anomalous dispersion method. The TTHA0727 monomer structure consists of seven alpha-helices (alpha1-alpha7) and one short 3(10)-helix. The crystal structure and the analytical ultracentrifugation revealed that TTHA0727 forms a hexameric ring structure in solution. The electrostatic potential distribution on the solvent-accessible surface of the TTHA0727 hexamer showed that positively charged regions exist on the side of the ring structure, suggesting that TTHA0727 interacts with some negatively charged molecules. A structural homology search revealed that the structure of three alpha-helices (alpha4-alpha6) is remarkably conserved, suggesting that it is the common structural motif for the CMD family proteins. In addition, the nine residues of the N-terminal tag bound to the cleft region between alpha1 and alpha3 in chains A and B of TTHA0727, implying that this region is the putative binding/active site for some small molecules.  相似文献   

11.
The understanding of protein dynamics is one of the major goals of structural biology. A direct link between protein dynamics and function has been provided by x-ray studies performed on ribonuclease A (RNase A) (B. F. Rasmussen et al., Nature, 1992, Vol. 357, pp. 423-424; L. Vitagliano et al., Proteins: Structure, Function, and Genetics, 2002, Vol. 46, pp. 97-104). Here we report a 3 ns molecular dynamics simulation of RNase A in water aimed at characterizing the dynamical behavior of the enzyme. The analysis of local and global motions provides interesting insight on the dynamics/function relationship of RNase A. In agreement with previous crystallographic reports, the present study confirms that the RNase A active site is constituted by rigid (His12, Asn44, Thr45) and flexible (Lys41, Asp83, His119, Asp121) residues. The analysis of the global motions, performed using essential dynamics, shows that the two beta-sheet regions of RNase A move coherently in opposite directions, thus modifying solvent accessibility of the active site, and that the mixed alpha/3(10)-helix (residues 50-60) behaves as a mechanical hinge during the breathing motion of the protein. These data demonstrate that this motion, essential for RNase A substrate binding and release, is an intrinsic dynamical property of the ligand-free enzyme.  相似文献   

12.
Ribonuclease LE (RNase LE) from cultured tomato (Lycopersicon esculentum) cells is a member of the RNase T(2) family showing broad base specificity. The crystal structure of RNase LE has been determined at 1.65 A resolution. The structure consists of seven alpha-helices and seven beta-strands, belonging to an alpha+beta type structure. Comparison of the structure of RNase LE with that of RNase Rh, a microbial RNase belonging to the RNase T(2) family, reveals that while the overall folding topologies are similar to each other, major insertions and deletions are found at the N-terminal regions. The structural comparison, an amino acid sequence alignment of the RNase T(2) enzymes, and comparison of the disulfide-bonding pattern of these enzymes show that the structure of RNase LE shown here is the basic framework of the animal/plant subfamily of RNase T(2) enzymes (including a self-incompatibility protein called S-RNase), and the structure of RNase Rh is that of the fungal subfamily of RNase T(2) enzymes (including RNase T(2)). Subsequently, we superposed the active-site of the RNase LE with that of RNase Rh and found that (1) His39, Trp42, His92, Glu93, Lys96, and His97 of RNase LE coincided exactly with His46, Trp49, His104, Glu105, Lys108, and His109, respectively, of RNase Rh, and (2) two conserved water molecules were found at the putative P(1) sites of both enzymes. These facts suggest that plant RNase LE has a very similar hydrolysis mechanism to that of fungal RNase Rh, and almost all the RNase T(2) enzymes widely distributed in various species share a common catalytic mechanism. A cluster of hydrophobic residues was found on the active-site face of the RNase LE molecule and two large hydrophobic pockets exist. These hydrophobic pockets appear to be base binding sites mainly by hydrophobic interactions and are responsible for the base non-specificity of RNase LE.  相似文献   

13.
14.
The previously reported method for the preparation of Kyn 59-RNase T1 and NFK 59-RNase T1 has been improved, and these two proteins have been obtained in high purity. Kyn 59-RNase T1, fully active for the hydrolysis of GpA and GpC, emitted a 35-fold-enhanced fluorescence of kynurenine relative to acetylnurenine amide with an emission maximum at 455 nm upon excitation at 380 nm. The polarity of the environment of Kyn 59 estimated from the emission maximum corresponded to a dielectric constant of 6. Upon excitation at 325 nm, NFK 59-RNase T1, less active than Kyn 59-RNase T1, exhibited a quenched N'-formylkynurenine fluorescence with an emission maximum at 423 nm, from which the value of 12 was obtained as the dielectric constant of the surroundings of residue 59. In both modified proteins, distinct tyrosine fluorescence appeared on excitation at 280 nm. The detection of an energy transfer from tyrosine to residue 59 suggests that the tertiary structure is very similar in Kyn 59-RNase T1 and native RNase T1. With guanidine hydrochloride, Kyn 59-RNase T1 was less stable than the native protein. Carboxymethylation at Glu 58 was shown to stabilize the active site of the modified enzyme. Based on the information collected for Kyn 59-RNase T1, the local environment and possible roles of the sole tryptophan residue in RNase T1 are discussed.  相似文献   

15.
The structure of RNase F1 in aqueous solution has been studied by Raman spectroscopy and compared with that of a homologous enzyme, RNase T1. RNase F1 contains less beta-sheet and alpha-helical structure and more irregular structure than RNase T1. The strength of hydrogen bonding is weak in the beta-sheet and strong in the alpha-helix compared to that of RNase T1. Two disulfide bridges take the gauche-gauche and gauche-trans conformations, respectively. The overall hydrogen bonding of nine Tyr side chains in RNase F1 is very similar to that in RNase T1. Both of two His residues have pKa values around 8.2, which are close to those of the His residues in the active site of RNase T1. Upon binding of 2'-GMP, the hydrogen bonding of some Tyr side chains changes to a more proton-donating state. 2'-GMP is strongly hydrogen bonded with the enzyme at N7 of the guanine ring and takes the C3' endo-syn conformation. The binding mode of the inhibitor is identical to that found for RNase T1. In spite of significant differences in secondary structure, the molecular architecture of the active site seems to be highly conserved.  相似文献   

16.
Trichomaglin is a protein isolated from root tuber of the plant Maganlin (Trichosanthes Lepiniate, Cucurbitaceae). The crystal structure of trichomaglin has been determined by multiple-isomorphous replacement and refined at 2.2 A resolution. The X-ray sequence was established, based on electron density combined with the experimentally determined N-terminal sequence, and the sequence information derived from mass spectroscopic analysis. X-ray sequence-based homolog search and the three-dimensional structure reveal that trichomaglin is a novel S-like RNase, which was confirmed by biological assay. Trichomaglin molecule contains an additional beta sheet in the HV(b) region, compared with the known plant RNase structures. Fourteen cystein residues form seven disulfide bridges, more than those in the other known structures of S- and S-like RNases. His43 and His105 are expected to be the catalytic acid and base, respectively. Four hydrosulfate ions are bound in the active site pocket, three of them mimicking the substrate binding sites.  相似文献   

17.
The products of the S-locus expressed in female tissues of Nicotiana alata are ribonucleases (S-RNases). The arrest of growth of incompatible pollen tubes in styles may result from entry of the S-RNase into the pollen tube and degradation of pollen tube RNA. We investigated the action of isolated S-RNases on pollen tubes grown in vitro and found that S-RNase is taken up by the pollen without substantial alteration. The S-RNases inhibit incorporation of exogenously added radioactive amino acids into protein by the germinated pollen. The S-RNases also inhibit in vitro translation of pollen tube RNA in a wheat germ cell-free extract. We found no evidence for a specific mRNA substrate for the S-RNases, which implies that if RNase activity is involved in the control of self-incompatibility, allelic specificity is more likely to depend on the selective uptake of S-RNases into pollen tubes or their selective activation or inactivation by pollen factors, rather than cleavage of a specific substrate. Heat treating S2-RNase largely destroys its RNase activity but increases its inhibitory effect on in vitro pollen tube growth. This effect is not due to an increased uptake of S2-RNase by the pollen but is associated with a greatly enhanced accumulation of S2-RNase on the outer surface of the pollen grains.  相似文献   

18.
In this study we biochemically characterized stylar ribonucleases (RNases) of Japanese pear (Pyrus pyrifolia), which exhibits S-RNase-based gametophytic self-incompatibility. We separated the RNase fractions NS-1, NS-2, and NS-3 from stylar extracts of the cultivar Nijisseiki (S(2)S(4)). The RNase in each fraction was purified to homogeneity through a series of chromatographic steps. Chemical analysis of the proteins revealed that the basic RNases in the NS-2 and NS-3 fractions were the S(4)- and S(2)-RNases, respectively. Five additional S-RNases were purified from other cultivars. An acidic RNase in the NS-1 fraction was also purified from other cultivars, and identified as a non-S-allele-associated RNase (non-S-RNase). The non-S-RNase is composed of 203 amino acids, is non-glycosylated and is a N-terminal-pyroglutamylated enzyme of the RNase T(2) family. The substrate specificities and optimum pH levels of the non-S-RNase and S-RNases were similar. Interestingly, the specific activity of the non-S-RNase was 7.5-221-fold higher than those of the S-RNases when tolura yeast RNA was used as the substrate. The specific activity of the S(2)-RNase was 8.8-28.6-fold lower than those of the other S-RNases. These differences in specific activities among the stylar RNases are discussed.  相似文献   

19.
The refined crystal structure of ribonuclease A at 2.0 A resolution   总被引:13,自引:0,他引:13  
This paper describes the structure of bovine pancreatic ribonuclease A, refined by a restrained parameter least squares procedure at 2.0 A resolution, and rebuilt using computer graphics. The final agreement factor (formula see text) is 0.159. The positions of the 951 main chain atoms have been determined with an estimated accuracy of 0.17 A. In addition, the model includes a phosphate group in the active site and 176 waters, many of them with partial occupancy. The bond lengths in the refined structure of RNase A differ from the ideal values by an overall root mean square deviation of 0.022 A; the corresponding value for angle distances is 0.06 A. The root mean square deviation of planar atoms from ideality is 0.017 A, and root mean square deviation of the peptide torsion angles from 180 degrees is 3.4 degrees. The model is in good agreement with the final difference Fourier maps. Two active site histidines, His 12 and His 119, form hydrogen bonds to the phosphate ion. His 119 is also hydrogen bonded to the carboxyl of ASp 121 and His 12 to the carbonyl of Thr 45. The structure of the RNase A is very similar to that of RNase S, particularly in the active site region. The root mean square discrepancy of all atoms from residues 1 to 16 and 24 to 123 is 1.06 A and the root mean square discrepancy for the active site region is 0.6 A.  相似文献   

20.
The structure of aconitase   总被引:15,自引:0,他引:15  
A H Robbins  C D Stout 《Proteins》1989,5(4):289-312
The crystal structure of the 80,000 Da Fe-S enzyme aconitase has been solved and refined at 2.1 A resolution. The protein contains four domains; the first three from the N-terminus are closely associated around the [3Fe-4S] cluster with all three cysteine ligands to the cluster being provided by the third domain. Association of the larger C-terminal domain with the first three domains creates an extensive cleft leading to the Fe-S cluster. Residues from all four domains contribute to the active site region, which is defined by the Fe-S cluster and a bound SO4(2-) ion. This region of the structure contains 4 Arg, 3 His, 3 Ser, 2 Asp, 1 Glu, 3 Asn, and 1 Gln residues, as well as several bound water molecules. Three of these side chains reside on a three-turn 3(10) helix in the first domain. The SO4(2-) ion is bound 9.3 A from the center of the [3Fe-4S] cluster by the side chains of 2 Arg and 1 Gln residues. Each of 3 His side chains in the putative active site is paired with Asp or Glu side chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号