首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Gibberellins control various aspects of growth and development. Here, we identified a gene, designated paclobutrazol resistance1 (PRE1), by screening Arabidopsis activation-tagged lines. PRE1 encodes a helix-loop-helix protein and belongs to a small gene family. Physiological and genetic analysis indicated that overexpression of PRE1 altered various aspects of gibberellin-dependent responses such as germination, elongation of hypocotyl/petiole, floral induction and fruit development, and suppressed gibberellin-deficient phenotypes of the ga2 mutant. Expression of some gibberellin-responsive genes was also affected by PRE1. Expression of PRE1 was shown to be early gibberellin inducible in the wild-type plants and under control of SPY and GAI, upstream negative regulators of gibberellin signaling. The shortened hypocotyl length phenotype of the gai-1 mutant was suppressed by PRE1 overexpression. Ectopic overexpression of each of the four PRE1-related genes conferred pleiotropic phenotypes similar to PRE1 overexpression, indicative of overlapping functions among the PRE gene family. Our results of gain-of-function studies suggest that PRE genes may have a regulatory role in gibberellin-dependent development in Arabidopsis thaliana.  相似文献   

2.
3.
Specialized plant cells arise from undifferentiated cells through a series of developmental steps. The decision to enter into a certain differentiation pathway depends in many cases on signals from neighbouring cells. The ability of cells to engage in short-range intercellular communication permits the coordination of cell actions necessary in many developmental processes. Overexpression of genes from the DEVIL/ROTUNDIFOLIA (DVL/ROT) family results in severe developmental alterations, but very little is known about their mechanism of action. This work presents evidence that suggests a role for these genes in local signalling, specifically in the coordination of socket cell recruitment and differentiation. Overexpression of different DVL genes results in protuberances at the base of the trichomes surrounded by several rows of elongated epidermal cells, morphologically similar to socket cells. Localized overexpression of DVL4 in trichomes and socket cells during early developmental stages activates expression of socket cell markers in additional cells, farther away from the trichome. The same phenomenon is observed in an activation tagged line of DVL1, which also shows an increase in the number of socket cells in contact with the trichome. The roles of individual DVL genes have been difficult to discover since their overexpression phenotypes are quite similar. In gl1 leaves that lack trichomes and socket cells DVL1 expression shows a 69% reduction, suggesting that this gene could be involved in the coordination of socket cell development in wild-type plants.  相似文献   

4.
Members of the plant-specific gibberellic acid-stimulated Arabidopsis (GASA) gene family play roles in hormone response, defense and development. We have identified six new Arabidopsis GASA genes, bringing the total number of family members to 14. Here we show that these genes all encode small polypeptides that share the common structural features of an N-terminal putative signal sequence, a highly divergent intermediate region and a conserved 60 amino acid C-terminal domain containing 12 conserved cysteine residues. Analysis of promoter::GUS (beta-glucuronidase) transgenic plants representing six different GASA loci reveals that the promoters are activated in a variety of stage- and tissue-specific patterns during development, indicating that the GASA genes are involved in diverse processes. Characterization of GASA4 shows that the promoter is active in the shoot apex region, developing flowers and developing embryos. Phenotypic analyses of GASA4 loss-of-function and gain-of-function lines indicate that GASA4 regulates floral meristem identity and also positively affects both seed size and total seed yield.  相似文献   

5.
6.
A conditionally lethal mutation in the bimB gene of Aspergillus nidulans disrupts the normal regulatory patterns associated with mitotic events. This results in DNA replication in the absence of the completion of mitosis in the mutant at restrictive temperature. This defect yields large polyploid nuclei after several hours at restrictive temperature. The bimB gene has been cloned by genetic mapping and chromosome walking from the previously cloned amdS gene. The cloned DNA complements the temperature-sensitive recessive bimB3 mutation. Sequence analysis of overlapping complementary DNA clones for bimB predicts a polypeptide of 2,068 amino acids. The predicted polypeptide of 227,958 Da is shown to have a carboxyl-terminal region similar to those of the budding yeast ESP1 and fission yeast cut1+ genes. In contrast these genes exhibit no other regions of similarity to one another. The conserved domain in these three proteins and the similarity of the terminal mutant phenotypes for these genes are suggestive of a conserved function for this domain in each of the predicted polypeptides. We also present evidence for a second gene in the genome of A. nidulans which also has this conserved carboxyl-terminal region, suggesting that bimB, ESP1, and cut1+ may be members of a small gene family.  相似文献   

7.
In this article, we present the cloning of two CLAVATA3/ESR (CLE)-like genes, HsCLE1 and HsCLE2, from the beet cyst nematode Heterodera schachtii, a plant-parasitic cyst nematode with a relatively broad host range that includes the model plant Arabidopsis. CLEs are small secreted peptide ligands that play important roles in plant growth and development. By secreting peptide mimics of plant CLEs, the nematode can developmentally reprogramme root cells for the formation of unique feeding sites within host roots for its own benefit. Both HsCLE1 and HsCLE2 encode small secreted polypeptides with a conserved C-terminal CLE domain sharing highest similarity to Arabidopsis CLEs 1-7. Moreover, HsCLE2 contains a 12-amino-acid CLE motif that is identical to AtCLE5 and AtCLE6. Like all other plant and nematode CLEs identified to date, HsCLEs caused wuschel-like phenotypes when overexpressed in Arabidopsis, and this activity was abolished when the proteins were expressed without the CLE motif. HsCLEs could also function in planta without a signal peptide, highlighting the unique, yet conserved function of nematode CLE variable domains in trafficking CLE peptides for secretion. In a direct comparison of HsCLE2 overexpression phenotypes with those of AtCLE5 and AtCLE6, similar shoot and root phenotypes were observed. Exogenous application of 12-amino-acid synthetic peptides corresponding to the CLE motifs of HsCLEs and AtCLE5/6 suggests that the function of this class of CLEs may be subject to complex endogenous regulation. When seedlings were grown on high concentrations of peptide (10 μm), root growth was suppressed; however, when seedlings were grown on low concentrations of peptide (0.1 μm), root growth was stimulated. Together, these findings indicate that AtCLEs1-7 may be the target peptides mimicked by HsCLEs to promote parasitism.  相似文献   

8.
9.
Organization of the sunflower 11S storage protein gene family   总被引:2,自引:0,他引:2  
  相似文献   

10.
Pathways for regulation of signaling by transforming growth factor-β family members are poorly understood at present. The best genetically characterized member of this family is encoded by the Drosophila gene decapentaplegic (dpp), which is required for multiple events during fly development. We describe here the results of screens for genes required to maximize dpp signaling during embryonic dorsal-ventral patterning. Screens for genetic interactions in the zygote have identified an allele of tolloid, as well as two novel alleles of screw, a gene recently shown to encode another bone morphogenetic protein-like polypeptide. Both genes are required for patterning the dorsalmost tissues of the embryo. Screens for dpp interactions with maternally expressed genes have identified loss of function mutations in Mothers against dpp and Medea. These mutations are homozygous pupal lethal, engendering gut defects and severely reduced imaginal disks, reminiscent of dpp mutant phenotypes arising during other dpp-dependent developmental events. Genetic interaction phenotypes are consistent with reduction of dpp activity in the early embryo and in the imaginal disks. We propose that the novel screw mutations identified here titrate out some component(s) of the dpp signaling pathway. We propose that Mad and Medea encode rate-limiting components integral to dpp pathways throughout development.  相似文献   

11.
The Arabidopsis (Arabidopsis thaliana) genome contains 16 genes belonging to the class IV homeodomain-Leucine zipper gene family. These include GLABRA2, ANTHOCYANINLESS2, FWA, ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1), and PROTODERMAL FACTOR2 (PDF2). Our previous study revealed that atml1 pdf2 double mutants have severe defects in the shoot epidermal cell differentiation. Here, we have characterized additional members of this gene family, which we designated HOMEODOMAIN GLABROUS1 (HDG1) through HDG12. Analyses of transgenic Arabidopsis plants carrying the gene-specific promoter fused to the bacterial beta-glucuronidase reporter gene revealed that some of the promoters have high activities in the epidermal layer of the shoot apical meristem and developing shoot organs, while others are temporarily active during reproductive organ development. Expression profiles of highly conserved paralogous gene pairs within the family were found to be not necessarily overlapping. Analyses of T-DNA insertion mutants of these HDG genes revealed that all mutants except hdg11 alleles exhibit no abnormal phenotypes. hdg11 mutants show excess branching of the trichome. This phenotype is enhanced in hdg11 hdg12 double mutants. Double mutants were constructed for other paralogous gene pairs and genes within the same subfamily. However, novel phenotypes were observed only for hdg3 atml1 and hdg3 pdf2 mutants that both exhibited defects in cotyledon development. These observations suggest that some of the class IV homeodomain-Leucine zipper members act redundantly with other members of the family during various aspects of cell differentiation. DNA-binding sites were determined for two of the family members using polymerase chain reaction-assisted DNA selection from random oligonucleotides with their recombinant proteins. The binding sites were found to be similar to those previously identified for ATML1 and PDF2, which correspond to the pseudopalindromic sequence 5'-GCATTAAATGC-3' as the preferential binding site.  相似文献   

12.
Intercellular signaling is essential for the coordination of growth and development in higher plants. Although hundreds of putative receptors have been identified in Arabidopsis (Arabidopsis thaliana), only a few families of extracellular signaling molecules have been discovered, and their biological roles are largely unknown. To expand our insight into the developmental processes potentially regulated by ligand-mediated signal transduction pathways, we undertook a systematic expression analysis of the members of the Arabidopsis CLAVATA3/ESR-RELATED (CLE) small signaling polypeptide family. Using reporter constructs, we show that the CLE genes have distinct and specific patterns of promoter activity. We find that each Arabidopsis tissue expresses at least one CLE gene, indicating that CLE-mediated signaling pathways are likely to play roles in many biological processes during the plant life cycle. Some CLE genes that are closely related in sequence have dissimilar expression profiles, yet in many tissues multiple CLE genes have overlapping patterns of promoter-driven reporter activity. This observation, plus the general absence of detectable morphological phenotypes in cle null mutants, suggest that a high degree of functional redundancy exists among CLE gene family members. Our work establishes a community resource of CLE-related biological materials and provides a platform for understanding and ultimately manipulating many different plant signaling systems.  相似文献   

13.
14.
15.
16.
An intriguing feature of the diatom life cycle is that sexual reproduction and the generation of genetic diversity are coupled to the control of cell size. A PCR-based cDNA subtraction technique was used to identify genes that are expressed as small cells of the centric diatom Thalassiosira weissflogii initiate gametogenesis. Ten genes that are up-regulated during the early stages of sexual reproduction have been identified thus far. Three of the sexually induced genes, Sig1, Sig2, and Sig3, were sequenced to completion and are members of a novel gene family. The three polypeptides encoded by these genes possess different molecular masses and charges but display many features in common: they share five highly conserved domains; they each contain three or more cysteine-rich epithelial growth factor (EGF)-like repeats; and they each display homology to the EGF-like region of the vertebrate extracellular matrix glycoprotein tenascin X. Interestingly, the five conserved domains appear in the same order in each polypeptide but are separated by variable numbers of nonconserved amino acids. SIG1 and SIG2 display putative regulatory domains within the nonconserved regions. A calcium-binding, EF-hand motif is found in SIG1, and an ATP/GTP binding motif is present in SIG2. The striking similarity between the SIG polypeptides and extracellular matrix components commonly involved in cell-cell interactions suggests that the SIG polypeptides may play a role in sperm-egg recognition. The SIG polypeptides are thus important molecular targets for determining when and where sexual reproduction occurs in the field.  相似文献   

17.
Copines are calcium-dependent membrane-binding proteins that are highly conserved among protozoa, plants, nematodes and mammals. Although they are implicated in membrane trafficking and signal transduction, the functions of these proteins are not well understood. The Arabidopsis copine gene BON1/CPN1 was previously shown to negatively regulate a disease resistance (R) gene SNC1. Here we report that in Arabidopsis, as in other organisms, there is a family of copine genes, BON1, 2 and 3. Using double and triple mutant combinations we show that these three copine genes have overlapping functions essential for the viability of plants. The loss of function of BON1 combined with that of BON2 or BON3 leads to extensive cell death phenotypes resembling the hypersensitive response (HR) in defense responses. The resulting lethality can be suppressed by mutations in PAD4 or EDS1 which are required for R gene signaling and cell death control. Accession-dependent phenotypes of the mutant combinations suggest that the BON/CPN genes may together repress several R genes other than SNC1. Moreover, the mutant combinations exhibit developmental defects when R-gene-mediated defense responses are largely suppressed in pad4 and eds1 mutants. Thus, the copine family in Arabidopsis may have effects in promoting growth and development in addition to repressing cell death, and these two processes might be intricately intertwined.  相似文献   

18.
A novel seven-transmembrane receptor family, that is comprised of human adiponectin receptors (AdipoRs) and membrane progestin receptors (mPRs) that share little sequence homology with all known G protein-coupled receptors (GPCRs), has been identified recently. Although a fish mPR has been suggested to be a GPCR, human AdipoRs seem to be structurally and functionally distinct from all known GPCRs. The identification of a novel gene family, the heptahelical protein (HHP) gene family, encoding proteins in Arabidopsis predicted to have a heptahelical transmembrane topology is reported here. There are at least five HHP genes in Arabidopsis whose encoded amino acid sequences have significant similarities to human AdipoRs and mPRs.The expression and regulation of the Arabidopsis HHP gene family has been studied here. The expression of the HHP gene family is differentially regulated by plant hormones. Steady-state levels of HHP1 mRNA are increased by treatments with abscisic acid and gibberellic acid, whereas levels of HHP2 mRNA are increased by abscisic acid and benzyladenine treatments. In addition, the expression of the HHP gene family is up-regulated by the presence of sucrose in the medium. Temperature and salt stress treatments also differentially affect the expression of the HHP genes. These novel seven-transmembrane proteins previously described in yeast and animals, and now identified in plants, may represent a new class of receptors that are highly conserved across kingdoms.  相似文献   

19.
20.
We have previously reported the isolation and characterization of tomato nuclear genes encoding two types of chlorophyll a/b-binding (CAB) polypeptides localized in photosystem (PS) I and two types of CAB polypeptides localized in PSII. Sequence comparisons shows that all these genes are related to each other and thus belong to a single gene family. Here we report the isolation and characterization of an additional member of the tomato CAB gene family, the single tomato nuclear gene, designated Cab-8, which encodes a third type of CAB polypeptide localized in PSI. The protein encoded by Cab-8 is 65% and 60% divergent from the PSI Type I and Type II CAB polypeptides, respectively. The latter two are 65% divergent from each other. Only some short regions of the polypeptides are strongly conserved. The Cab-8 locus maps to chromosome 10, 9 map units from Cab-7, the gene encoding the Type II PSI CAB polypeptide. The Cab-8 gene contains two introns; the first intron matches in position the single intron in the Type II PSII CAB genes and the second intron matches in position the second intron in the Type II PSI CAB gene. Like other CAB genes, Cab-8 is light-regulated and is highly expressed in the leaf and to a lesser extent in other green organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号