首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Amplification and sequencing of mitochondrial DNA regions corresponding to three major clusters of transfer RNA genes from a variety of species representing major groups of birds and reptiles revealed some new variations in tRNA gene organization. First, a gene rearrangement from tRNA(His)-tRNA(Ser)(AGY)-tRNA(Leu)(CUN) to tRNA(Ser)(AGY)- tRNA(His)tRNA(Leu)(CUN) occurs in all three crocodilians examined (alligator, caiman, and crocodile). In addition an exceptionally long spacer region between the genes for NADH dehydrogenase subunit 4 and tRNA(Ser)(AGY) is found in caiman. Second, in congruence with a recent finding by Seutin et al., a characteristic stem-and-loop structure for the putative light-strand replication origin located between tRNA(Asn) and tRNA(Cys) genes is absent for all the birds and crocodilians. This stem-and-loop structure is absent in an additional species, the Texas blind snake, whereas the stem-and-loop structure is present in other snakes, lizards, turtles, mammals, and a frog. The disappearance of the stem-and-loop structure in the blind snake most likely occurred independently of that on the lineage leading to birds and crocodilians. Finally, the blind snake has a novel type of tRNA gene arrangement in which the tRNA(Gln) gene moved from one tRNA cluster to another. Sequence substitution rates for the tRNA genes appeared to be somewhat higher in crocodialians than in birds and mammals. As regards the controversial phylogenetic relationship among the Aves, Crocodilia, and Mammalia, a sister group relationship of birds and crocodilians relative to mammals, as suggested from the common loss of the stem-and- loop structure, was supported with statistical significance by molecular phylogenetic analyses using the tRNA gene sequence data.   相似文献   

2.
Stem-loop hairpins formed by mitochondrial light strand replication origins (OL) and by heavy strand DNA coding for tRNAs that form OL-like structures initiate mitochondrial replication. The loops are recognized by one of the two active sites of the vertebrate mitochondrial gamma polymerase, which are homologuous to the active sites of class II amino-acyl tRNA synthetases. Therefore, the polymerase site recognizing the OL loop could recognize tRNA anticodon loops and sequence similarity between anticodon and OL loops should predict initiation of DNA replication at tRNAs. Strengths of genome-wide deamination gradients starting at tRNA genes estimate extents by which replication starts at that tRNA. Deaminations (A→G and C→T) occur proportionally to time spent single stranded by heavy strand DNA during mitochondrial light strand replication. Results show that deamination gradients starting at tRNAs are proportional to sequence similarity between OL and tRNA loops: most for anticodon-, least D-, intermediate for TψC-loops, paralleling tRNA synthetase recognition interactions with these tRNA loops. Structural and sequence similarities with regular OLs predict OL function, loop similarity is dominant in most tRNAs. Analyses of sequence similarity and structure independently substantiate that DNA sequences coding for mitochondrial tRNAs sometimes function as alternative OLs. Pathogenic mutations in anticodon loops increase similarity with the human OL loop, non-pathogenic polymorphisms do not. Similarity/homology alignment hypotheses are experimentally testable in this system.  相似文献   

3.
Cao Y  Sorenson MD  Kumazawa Y  Mindell DP  Hasegawa M 《Gene》2000,259(1-2):139-148
Maximum likelihood analysis, accounting for site-heterogeneity in evolutionary rate with the Gamma-distribution model, was carried out with amino acid sequences of 12 mitochondrial proteins and nucleotide sequences of mitochondrial 12S and 16S rRNAs from three turtles, one squamate, one crocodile, and eight birds. The analysis strongly suggests that turtles are closely related to archosaurs (birds+crocodilians), and it supports both Tree-2: (((birds, crocodilians), turtles), squamates) and Tree-3: ((birds, (crocodilians, turtles)), squamates). A more traditional Tree-1: (((birds, crocodilians), squamates), turtles) and a tree in which turtles are basal to other amniotes were rejected with high statistical significance. Tree-3 has recently been proposed by Hedges and Poling [Science 283 (1999) 998-1001] based mainly on nuclear genes. Therefore, we re-analyzed their data using the maximum likelihood method, and evaluated the total evidence of the analyses of mitochondrial and nuclear data sets. Tree-1 was again rejected strongly. The most likely hypothesis was Tree-3, though Tree-2 remained a plausible candidate.  相似文献   

4.
5.
6.
Molecular evidence for a clade of turtles.   总被引:5,自引:0,他引:5  
Although turtles have been generally grouped with the most primitive reptile species, the origin and phylogenetic relationships of turtles have remained unresolved to date. To confirm the phylogenetic position of turtles in amniotes, we have cloned and determined the cDNA sequences encoding for skink lactate dehydrogenase (LDH)-A and LDH-B, snake LDH-A, and African clawed frog LDH-A; four alpha-enolase cDNA sequences from turtle, alligator, skink, and snake were also cloned and determined. All of these eight cDNA sequences, as well as the previously published LDH-A, LDH-B, and alpha-enolase of mammals, birds, reptiles, and African clawed frog, were analyzed by the phylogenetic tree reconstruction methods of neighbor-joining, maximum parsimony, and maximum likelihood. In the phylogenetic analyses, the turtle was found to be closely related to the alligator. Also, we found that the turtle had diverged after the divergence of squamates and birds. This departs from previous hypotheses of turtle evolution and further suggests that turtles are the latest of divergent reptiles, having been derived from an ancestor of crocodilian lineage within the last 200 million years.  相似文献   

7.
8.
Presence of the dihydrouridine (D) stem in the mitochondrial cysteine tRNA is unusually variable among lepidosaurian reptiles. Phylogenetic and comparative analyses of cysteine tRNA gene sequences identify eight parallel losses of the D-stem, resulting in D-arm replacement loops. Sampling within the monophyletic Acrodonta provides no evidence for reversal. Slipped-strand mispairing of noncontiguous repeated sequences during replication or direct replication slippage can explain repeats observed within cysteine tRNAs that contain a D-arm replacement loop. These two mechanisms involving replication slippage can account for the loss of the cysteine tRNA D-stem in several lepidosaurian lineages, and may represent general mechanisms by which the secondary structures of mitochondrial tRNAs are altered.   相似文献   

9.
Turtles have highly specialized morphological characteristics, and their phylogenetic position has been under intensive debate. Previous molecular studies have not established a consistent and statistically well supported conclusion on this issue. In order to address this, complete mitochondrial DNA sequences were determined for the green turtle and the blue-tailed mole skink. These genomes possess an organization of genes which is typical of most other vertebrates, such as placental mammals, a frog, and bony fishes, but distinct from organizations of alligators and snakes. Molecular evolutionary rates of mitochondrial protein sequences appear to vary considerably among major reptilian lineages, with relatively rapid rates for snake and crocodilian lineages but slow rates for turtle and lizard lineages. In spite of this rate heterogeneity, phylogenetic analyses using amino acid sequences of 12 mitochondrial proteins reliably established the Archosauria (birds and crocodilians) and Lepidosauria (lizards and snakes) clades postulated from previous morphological studies. The phylogenetic analyses further suggested that turtles are a sister group of the archosaurs, and this untraditional relationship was provided with strong statistical evidence by both the bootstrap and the Kishino-Hasegawa tests. This is the first statistically significant molecular phylogeny on the placement of turtles relative to the archosaurs and lepidosaurs. It is therefore likely that turtles originated from a Permian-Triassic archosauromorph ancestor with two pairs of temporal fenestrae behind the skull orbit that were subsequently lost. The traditional classification of turtles in the Anapsida may thus need to be reconsidered.  相似文献   

10.
The 16,775 base-pair mitochondrial genome of the white Leghorn chicken has been cloned and sequenced. The avian genome encodes the same set of genes (13 proteins, 2 rRNAs and 22 tRNAs) as do other vertebrate mitochondrial DNAs and is organized in a very similar economical fashion. There are very few intergenic nucleotides and several instances of overlaps between protein or tRNA genes. The protein genes are highly similar to their mammalian and amphibian counterparts and are translated according to the same variant genetic code. Despite these highly conserved features, the chicken mitochondrial genome displays two distinctive characteristics. First, it exhibits a novel gene order, the contiguous tRNA(Glu) and ND6 genes are located immediately adjacent to the displacement loop region of the molecule, just ahead of the contiguous tRNA(Pro), tRNA(Thr) and cytochrome b genes, which border the displacement loop region in other vertebrate mitochondrial genomes. This unusual gene order is conserved among the galliform birds. Second, a light-strand replication origin, equivalent to the conserved sequence found between the tRNA(Cys) and tRNA(Asn) genes in all vertebrate mitochondrial genomes sequenced thus far, is absent in the chicken genome. These observations indicate that galliform mitochondrial genomes departed from their mammalian and amphibian counterparts during the course of evolution of vertebrate species. These unexpected characteristics represent useful markers for investigating phylogenetic relationships at a higher taxonomic level.  相似文献   

11.
DNA sequences from 195 squamate reptiles indicate that mitochondrial gene order is the most reliable phylogenetic character establishing monophyly of acrodont lizards and of the snake families Boidae, Colubridae, and Viperidae. Gene order shows no evidence of evolutionary parallelisms or reversals in these taxa. Derived secondary structures of mitochondrial tRNAs also prove to be useful phylogenetic characters showing no reversals. Parallelisms for secondary structures of tRNAs are restricted to deep lineages that are separated by at least 200 million years of independent evolution. Presence of a stem-and-loop structure between the genes encoding tRNA(Asn) and tRNA(Cys), where the replication origin for light-strand synthesis is typically located in vertebrate mitochondrial genomes, is found to undergo at least three and possibly as many as seven evolutionary shifts, most likely parallel losses. This character is therefore a less desirable phylogenetic marker than the other structural changes examined. Sequencing regions that contain multiple genes, including tRNA genes, may be preferable to the common practice of obtaining single-gene fragments for phylogenetic inference because it permits observation of major structural changes in the mitochondrial genome. Such characters may occasionally provide phylogenetic information on relatively short internal branches for which base substitutional changes are expected to be relatively uninformative.  相似文献   

12.
利用PCR步移法对黄毛纺蚋的线粒体基因组全序列进行了测定和分析。黄毛纺蚋线粒体基因组全长15904 bp(Gen Bank序列号KP793690),包括13个蛋白编码基因、22个tRNA基因、2个rRNA基因以及长度为939 bp的非编码区。A、T、C、G碱基含量分别为39.1%、35.8%、10.4%、14.7%。9个蛋白编码基因和14个tRNA基因在J链编码,其余4个蛋白编码基因和8个tRNA基因在N链编码,基因排列顺序与其它已知双翅目昆虫相同。13个蛋白编码基因中除COI以TTG作为起始密码外,其余蛋白质基因均以ATN作为起始密码子,终止密码子多数为典型的TAA、TAG,只有COI和ND4L以单独的T作为终止密码子。在所测得的22个tRNA基因中,除tRNASer(AGN)缺少DHU臂外,其余tRNA均能形成典型的三叶草结构。  相似文献   

13.
We provide phylogenetic analyses for primary Reptilia lineages including, for the first time, Sphenodon punctatus (tuatara) using data from whole mitochondrial genomes. Our analyses firmly support a sister relationship between Sphenodon and Squamata, which includes lizards and snakes. Using Sphenodon as an outgroup for select squamates, we found evidence indicating a sister relationship, among our study taxa, between Serpentes (represented by Dinodon) and Varanidae. Our analyses support monophyly of Archosauria, and a sister relationship between turtles and archosaurs. This latter relationship is congruent with a growing set of morphological and molecular analyses placing turtles within crown Diapsida and recognizing them as secondarily anapsid (lacking a skull fenestration). Inclusion of Sphenodon, as the only surviving member of Sphenodontia (with fossils from the mid-Triassic), helps to fill a sampling gap within previous analyses of reptilian phylogeny. We also report a unique configuration for the mitochondrial genome of Sphenodon, including two tRNA(Lys) copies and an absence of ND5, tRNA(His), and tRNA(Thr) genes.  相似文献   

14.
15.
Kim I  Cha SY  Yoon MH  Hwang JS  Lee SM  Sohn HD  Jin BR 《Gene》2005,353(2):155-168
The complete nucleotide sequences of the mitochondrial genome (mitogenome) of the oriental mole cricket, Gryllotalpa orientalis (Orthoptera: Gryllotalpidae), were determined. The 15,521-bp-long G. orientalis mitogenome contains typical gene complement, base composition, and codon usage found in metazoan mitogenomes. The G. orientalis mitogenome contains the third lowest A+T content (70.5%) among the complete insects mt genome sequences. The initiation codon for the G. orientalis COI gene appears to be ATG, instead of the tetranucleotides, which have been postulated to act as initiation codon for Locusta migratoria and some lepidopteran COI genes. The initiation codon for ND2 appears to be GTG, which is rare, but has been designated as an initiator of Tricholepidion gertschi ND2. All anticodons of G. orientalis tRNAs were identical to Drosophila yakuba and L. migratoria. The tRNA(Ser)(AGN) could not form a stable stem loop structure in the DHU arm as shown in many other insect tRNA(Ser)(AGN). Phylogenetic analysis of nucleotide sequence information from all mt genes supported a monophyletic Diptera, a monophyletic Lepidoptera, a monophyletic Coleoptera, a monophyletic Mecopterida (Diptera+Lepidoptera), and a monophyletic Endopterygota (Diptera+Lepidoptera+Coleoptera), suggesting that the complete insect mitogenome sequence has a resolving power to the diversification events within Endopterygota. However, the relationships of ancient insect orders were unstable, indicating the limited use of mitogenome information at deeper phylogenetic depth.  相似文献   

16.
Nematode mitochondria possess extremely truncated tRNAs. Of 22 tRNAs, 20 lack the entire T-arm. The T-arm is necessary for the binding of canonical tRNAs and EF (elongation factor)-Tu (thermo-unstable). The nematode mitochondrial translation system employs two different EF-Tu factors named EF-Tu1 and EF-Tu2. Our previous study showed that nematode Caenorhabditis elegans EF-Tu1 binds specifically to T-armless tRNA. C. elegans EF-Tu1 has a 57-amino acid C-terminal extension that is absent from canonical EF-Tu, and the T-arm-binding residues of canonical EF-Tu are not conserved. In this study, the recognition mechanism of T-armless tRNA by EF-Tu1 was investigated. Both modification interference assays and primer extension analysis of cross-linked ternary complexes revealed that EF-Tu1 interacts not only with the tRNA acceptor stem but also with the D-arm. This is the first example of an EF-Tu recognizing the D-arm of a tRNA. The binding activity of EF-Tu1 was impaired by deletion of only 14 residues from the C-terminus, indicating that the C-terminus of EF-Tu1 is required for its binding to T-armless tRNA. These results suggest that C. elegans EF-Tu1 recognizes the D-arm instead of the T-arm by a mechanism involving its C-terminal region. This study sheds light on the co-evolution of RNA and RNA-binding proteins in nematode mitochondria.  相似文献   

17.
18.
Over 450 transfer RNA (tRNA) genes have been annotated in the human genome. Reliable quantitation of tRNA levels in human samples using microarray methods presents a technical challenge. We have developed a microarray method to quantify tRNAs based on a fluorescent dye-labeling technique. The first-generation tRNA microarray consists of 42 probes for nuclear encoded tRNAs and 21 probes for mitochondrial encoded tRNAs. These probes cover tRNAs for all 20 amino acids and 11 isoacceptor families. Using this array, we report that the amounts of tRNA within the total cellular RNA vary widely among eight different human tissues. The brain expresses higher overall levels of nuclear encoded tRNAs than every tissue examined but one and higher levels of mitochondrial encoded tRNAs than every tissue examined. We found tissue-specific differences in the expression of individual tRNA species, and tRNAs decoding amino acids with similar chemical properties exhibited coordinated expression in distinct tissue types. Relative tRNA abundance exhibits a statistically significant correlation to the codon usage of a collection of highly expressed, tissue-specific genes in a subset of tissues or tRNA isoacceptors. Our findings demonstrate the existence of tissue-specific expression of tRNA species that strongly implicates a role for tRNA heterogeneity in regulating translation and possibly additional processes in vertebrate organisms.  相似文献   

19.
The 13,738 bp mitochondrial DNA from the cestode Echinococcus multilocularis has been sequenced. It contains two major noncoding regions and 36 genes (12 for proteins involved in oxidative phosphorylation, two for rRNAs and 22 for tRNAs) but a gene for ATPase subunit 8 is missing. All genes are transcribed in the same direction. Putative secondary structures of tRNAs indicate that most of them are conventional clover leaves but the dihydrouridine arm is unpaired in tRNA(Ser(AGN)), tRNA(Ser(UCN)), tRNA(Arg) and tRNA(Cys). The base composition at the wobble positions of fourfold degenerate codon families is highly biased toward U and against C.  相似文献   

20.
Insects, the most biodiverse taxonomic group, have high AT content in their mitochondrial genomes. Although codon usage tends to be AT-rich, base composition and codon usage of mitochondrial genomes may vary among taxa. Thus, we compare base composition and codon usage patterns of 49 insect mitochondrial genomes. For protein coding genes, AT content is as high as 80% in the Hymenoptera and Lepidoptera and as low as 72% in the Orthopotera. The AT content is high at positions 1 and 3, but A content is low at position 2. A close correlation occurs between codon usage and tRNA abundance in nuclear genomes. Optimal codons can pair well with the antr codons of the most abundant tRNAs. One tRNA gene translates a synonymous codon family in vertebrate mitochondrial genomes and these tRNA anticodons can pair with optimal codons. However, optimal codons cannot pair with anticodons in mtDNA ofCochiiomyia hominivorax (Dipteral: CaLliphoridae). Ten optimal codons cannot pair with tRNA anticodons in all 49 insect mitochondrial genomes; non-optimal codon-anticodon usage is common and codon usage is not influenced by tRNA abundance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号