首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stands of groundnut (Arachis hypogaea L. cv. Kadiri‐3) were grown in controlled environment glasshouses at mean atmospheric CO2 concentrations of 375 or 700 μmol mol?1 and daily mean air temperatures of 28 or 32°C on irrigated or drying soil profiles. Leaf water (Ψl) and solute potential (Ψs), relative water content (RWC), stomatal conductance (gl) and net photosynthesis (Pn) were measured at midday for the youngest mature leaf throughout the growing season. Elevated CO2 and temperature had no detectable effect on the water relations of irrigated plants, but higher values of RWC, Ψl and Ψs were maintained for longer under elevated CO2 during progressive drought. Turgor potential (Ψp) reached zero when Ψl declined to ?1.6 to ?1.8 MPa in all treatments; turgor was lost sooner when droughted plants were grown under ambient CO2. A 4°C increase in mean air temperature had no effect on Ψs in droughted plants, but elicited a small increase in Ψl; midday gl values were lower under elevated than under ambient CO2, and Ψl and gl declined below ?1.5 MPa and 0.25 cm s?1, respectively, as the soil dried. Despite the low gl values recorded for droughted plants late in the season, Pn was maintained under elevated CO2, but declined to zero 3 weeks before final harvest under ambient CO2. Concurrent reductions in gl and increases in water use efficiency under elevated CO2 prolonged photosynthetic activity during drought and increased pod yields relative to plants grown under ambient CO2. The implications of future increases in atmospheric CO2 for the productivity of indeterminate C3 crops grown in rainfed subsistence agricultural systems in the semi‐arid tropics are discussed.  相似文献   

2.
Abstract Seedlings of Pinus radiata, 10–20 weeks old and hitherto fully watered, responded rapidly when water was withheld. Wilting occurred 9d later, at which time soil matric water potential at dawn (Ψm) was –1.06MPa and shoot water potential (Ψ) was –1.9 MPa. Small reductions in Ψm elicited large responses in assimilation rate (A) and leaf conductance to water vapour (g). Seedlings appear to be more sensitive to small water deficits than are older Plants of P. radiata. After rewatering, significant increases of A and g occurred within one day, but neither regained the values measured prior to the imposition of a single drying cycle. This residual effect of drought on A, after one or six drying cycles, was partially caused by a decrease in photosynthetic capacity. In plants wilted for the first time, the concentration of abscisic acid (ABA) in the bulk foliage increased 3.4 times as Ψ decreased to –1.77 MPa. In comparison, pretreatment with six drying cycles significantly reduced Ψ to –2.13 MPa (indicating some osmotic adjustment) and induced only a doubling of ABA concentration. However, these differences in Ψ and ABA concentration did not Persist after the plants of all pretreatments had been watered for 7 d, although g of drought-pretreatment Plants remained approximately half that of continuously-watered plants.  相似文献   

3.
Water relations and gas exchange were studied in the crowns of small European larch (Larix decidua Mill.) trees with respect to branch position. The upper-crown branches showed significantly higher branch sap flux rate (F la) and branch conductance (g b) compared to the lower crown (P<0.001). Values of leaf conductance (g l), transpiration rate (E) and net photosynthesis (A), averaged for different ranges of atmospheric vapour pressure deficit (VPD), were also higher in the upper crown position. We suppose that the up to 2.6-fold smaller soil-to-leaf hydraulic conductance observed in the lower branches (P<0.001, compared to upper branches) could contribute to the decreased values of F la, g b, g l, and E in the lower crown position. Variation in tracheid lumen diameter with respect to crown position (P<0.001) supported the hypothesis that branches growing at the crown base are hydraulically more constrained than branches located at the top of the tree. Leaf area to sapwood area ratio (A la/A sa) exhibited 1.4 times smaller values in lower crown (P<0.01), however, this could not compensate the effect of decreased hydraulic conductivity of the lower-crown branches.  相似文献   

4.
Over the past decade, the concept of isohydry or anisohydry, which describes the link between soil water potential (ΨS), leaf water potential (ΨL), and stomatal conductance (gs), has soared in popularity. However, its utility has recently been questioned, and a surprising lack of coordination between the dynamics of ΨL and gs across biomes has been reported. Here, we offer a more expanded view of the isohydricity concept that considers effects of vapour pressure deficit (VPD) and leaf area index (AL) on the apparent sensitivities of ΨL and gs to drought. After validating the model with tree‐ and ecosystem‐scale data, we find that within a site, isohydricity is a strong predictor of limitations to stomatal function, though variation in VPD and leaf area, among other factors, can challenge its diagnosis. Across sites, the theory predicts that the degree of isohydricity is a good predictor of the sensitivity of gs to declining soil water in the absence of confounding effects from other drivers. However, if VPD effects are significant, they alone are sufficient to decouple the dynamics of ΨL and gs entirely. We conclude with a set of practical recommendations for future applications of the isohydricity framework within and across sites.  相似文献   

5.
Low soil temperatures induce water deficits in olive (Olea europaea) trees   总被引:2,自引:0,他引:2  
Olive trees are often subjected to low temperatures during winter. To quantify the effects of low temperatures on the water relations of olive trees, we studied the responses to low soil temperatures on winter days of variable evaporative demand (ET0) in 1-year-old potted olive (Oleo europaea L. cv. Picual) trees in 1996 and 1997. Low night (2.5 and 5.2°C) but ambient day soil temperatures (above 10°C) did not affect stomatal conductance (gs), leaf (Ψleaf) and stem (Ψstem) water potentials. Soil temperature levels inducing water stress in olive trees were determined for winter days with ET0 typical for southern Spain (ET0= 1.5 ± 0.3 mm day?1). Leaf and stem water potential decreased and root hydraulic resistance (rroot) increased when trees were exposed to night and day soil temperatures below 10°C. Stomatal conductance was not affected at soil temperatures between 6.4 and 10°C, but decreased at temperatures below 6.4°C. The soil temperature levels affecting the water uptake of olive trees remained relatively constant over the range of ET0 of 1-2 mm day?1 during winter and early spring months. However, the soil temperature influencing gs appeared to be more variable and was affected by ET0. Olive tree recovery from low soil temperature stress depended on stress duration and severity and interacted with ET0. Recovery of ψ started already during the stress period, probably induced by stomatal closure and high rroot, thus allowing tree rehydration overnight. Root hydraulic resistance contributed the major part of whole-tree hydraulic resistance in response to cold stress, accounting for 76 and 89% at 6.4 and 4.6°C, respectively; which indicates that rroot is the primary control of the water status in olive trees under low temperatures.  相似文献   

6.
A comparative study on stomatal control under water deficit was conducted on grapevines of the cultivars Grenache, of Mediterranean origin, and Syrah of mesic origin, grown near Montpellier, France and Geisenheim, Germany. Syrah maintained similar maximum stomatal conductance (gmax) and maximum leaf photosynthesis (Amax) values than Grenache at lower predawn leaf water potentials, Ψleaf, throughout the season. The Ψleaf of Syrah decreased strongly during the day and was lower in stressed than in watered plants, showing anisohydric stomatal behaviour. In contrast, Grenache showed isohydric stomatal behaviour in which Ψleaf did not drop significantly below the minimum Ψleaf of watered plants. When g was plotted versus leaf specific hydraulic conductance, Kl, incorporating leaf transpiration rate and whole‐plant water potential gradients, previous differences between varieties disappeared both on a seasonal and diurnal scale. This suggested that isohydric and anisohydric behaviour could be regulated by hydraulic conductance. Pressure‐flow measurements on excised organs from plants not previously stressed revealed that Grenache had a two‐ to three‐fold larger hydraulic conductance per unit path length (Kh) and a four‐ to six‐fold larger leaf area specific conductivity (LSC) in leaf petioles than Syrah. Differences between internodes were only apparent for LSC and were much smaller. Cavitation detected as ultrasound acoustic emissions on air‐dried shoots showed higher rates for Grenache than Syrah during the early phases of the dry‐down. It is hypothesized that the differences in water‐conducting capacity of stems and especially petioles may be at the origin of the near‐isohydric and anisohydric behaviour of g.  相似文献   

7.
In situ gas-exchange data, for branchlets of white spruce [Picea glauca (Moench) Voss.] in a mature mixed-wood boreal forest in central Canada (53°44′N 105°14′W), were subjected to a multiple regression analysis. Vapor pressure deficit (VPD) and branchlet temperature (tleaf) were both significant predictors (P<0.0001) of stomatal conductance to water vapor (gsw) and net photosynthesis (An), together explaining 67 and 64% of the variation in gsw and An, respectively. Since VPD and tleaf were autocorrelated in these field data, but also to further explore the nature of independent effects of temperature and humidity on water and CO2 exchange in white spruce, steady-state gas-exchange was performed on well-watered greenhouse-grown seedlings of white spruce. Results from laboratory experiments supported the following conclusions: (1) Transpiration (E) increases with VPD to an inflection point that increases linearly with tleaf. This tleaf effect on E could not be explained by trends in VPD, RH, An or PFD. Rather, our data support a model in which E and gsw are influenced by the balance between ’supply’ and ’loss’ of water to and from leaf tissue, respectively. The supply of water appears to be in accordance with Darcy’s law, where supply of water is proportional to the driving gradient in pressure/ tension, specific permeability (k), and inverse of water viscosity (n –1). Approximately half of the increase in E could be explained by the linear increase in n –1 with increasing tleaf. We propose that increases in k explain the remainder of the increase in E with tleaf. (2) VPD and tleaf appear to have independent effects on gsw. In contrast, RH effects on gsw or E were subtle and could be explained by a combination of effects of tleaf and VPD. (3) An was affected primarily by tleaf, being reduced at low (10°C) and high (40°C) temperatures, and only indirectly by humidity parameters via stomatal conductance, viz. intercellular CO2 concentrations. Our results have implications for the prediction of water fluxes from plants and canopies in areas where plant temperatures vary diurnally or seasonally. Received: 24 September 1998 / Accepted: 20 July 1999  相似文献   

8.
Three- and four-year-old potted, greenhouse-grown cedar seedlings were subjected to two different watering regimes: half received full water supply and the other half was submitted to moderate drought (50% of the full water supply). Height growth was the greatest for C. atlantica and the most-limited for C. brevifolia in the well-watered set. However, in the dry set, height growth was less affected by drought conditions for C. brevifolia than for C. atlantica. Cedrus libani gave intermediate results for both watering regimes. Moderate drought provoked a decrease in osmotic potential at full leaf turgor and a long-lasting osmotic adjustment. When irrigation was withheld completely to induce severe soil drying, gas exchange decreased and then stopped at predawn water potentials of −3.0 MPa for C. brevifolia, between −2.6 and −2.8 MPa for C. libani, and at −2.4 MPa for C. atlantica, irrespective of watering regime. For all species, the dry set showed lower net photosynthesis (A) and stomatal conductance (g s) than the plants in the well-watered set. A and g s responded to variations in atmospheric water-vapour pressure deficit (VPD). As VPD increased, A and g s decreased, and this trend was proportionate to initial values at low VPD, but remained independent of previous watering treatments, plant water status or species. To conclude, C. brevifolia appears to be a species with limited growth potential but strong soil drought tolerance whereas C. atlantica has strong growth potential when an adequate water supply is available but is more sensitive to soil drought. C. libani shows an intermediate behaviour for growth and drought tolerance.  相似文献   

9.
Recent work has shown that stomatal conductance (gs) and assimilation (A) are responsive to changes in the hydraulic conductance of the soil to leaf pathway (KL), but no study has quantitatively described this relationship under controlled conditions where steady‐state flow is promoted. Under steady‐state conditions, the relationship between gs, water potential (Ψ) and KL can be assumed to follow the Ohm's law analogy for fluid flow. When boundary layer conductance is large relative to gs, the Ohm's law analogy leads to gs = KLsoilleaf)/D, where D is the vapour pressure deficit. Consequently, if stomata regulate Ψleaf and limit A, a reduction in KL will cause gs and A to decline. We evaluated the regulation of Ψleaf and A in response to changes in KL in well‐watered ponderosa pine seedlings (Pinus ponderosa). To vary KL, we systematically reduced stem hydraulic conductivity (k) using an air injection technique to induce cavitation while simultaneously measuring Ψleaf and canopy gas exchange in the laboratory under constant light and D. Short‐statured seedlings (< 1 m tall) and hour‐long equilibration times promoted steady‐state flow conditions. We found that Ψleaf remained constant near ? 1·5 MPa except at the extreme 99% reduction of k when Ψleaf fell to ? 2·1 MPa. Transpiration, gs, A and KL all declined with decreasing k (P < 0·001). As a result of the near homeostasis in bulk Ψleaf, gs and A were directly proportional to KL (R2 > 0·90), indicating that changes in KL may affect plant carbon gain.  相似文献   

10.
We investigated the contribution of internal water storage and efficiency of water transport to the maintenance of water balance in six evergreen tree species in a Hawaiian dry forest. Wood‐saturated water content, a surrogate for relative water storage capacity, ranged from 70 to 105%, and was inversely related to its morphological correlate, wood density, which ranged between 0·51 and 0·65 g cm?3. Leaf‐specific conductivity (kL) measured in stem segments from terminal branches ranged from 3 to 18 mmol m?1 s?1 MPa?1, and whole‐plant hydraulic efficiency calculated as stomatal conductance (g) divided by the difference between predawn and midday leaf water potential (ΨL), ranged from 70 to 150 mmol m?2 s?1 MPa?1. Hydraulic efficiency was positively correlated with kL (r2 = 0·86). Minimum annual ΨL ranged from ? 1·5 to ? 4·1 MPa among the six species. Seasonal and diurnal variation in ΨL were associated with differences among species in wood‐saturated water content, wood density and kL. The species with higher wood‐saturated water content were more efficient in terms of long‐distance water transport, exhibited smaller diurnal variation in ΨL and higher maximum photosynthetic rates. Smaller diurnal variation in ΨL in species with higher wood‐saturated water content, kL and hydraulic efficiency was not associated with stomatal restriction of transpiration when soil water deficit was moderate, but avoidance of low minimum seasonal ΨL in these species was associated with a substantial seasonal decline in g. Low seasonal minimum ΨL in species with low kL, hydraulic efficiency, and wood‐saturated water content was associated with higher leaf solute content and corresponding lower leaf turgor loss point. Despite the species‐specific differences in leaf water relations characteristics, all six evergreen tree species shared a common functional relationship defined primarily by kL and stem water storage capacity.  相似文献   

11.
Vulnerability to cavitation of leaf minor veins and stems of Laurus nobilis L. was quantified together with that of leaflets, rachides and stems of Ceratonia siliqua L. during air‐dehydration of 3‐year‐old branches. Embolism was estimated by counting ultrasound acoustic emissions (UAE) and relating them to leaf water potential (ΨL). The threshold ΨL for cavitation was less negative in L. nobilis than in C. siliqua according to the known higher drought resistance of the latter species. Leaf minor vein cavitation was also quantified by infiltrating leaves with fluorescein at different dehydration levels and observing them under microscope. Distinct decreases in the functional integrity of minor veins were observed during leaf dehydration, with high correlation between the two variables. The relationship between leaf conductance to water vapour (gL) and ΨL showed that stomata of L. nobilis closed in response to stem and not to leaf cavitation. However, in C. siliqua, gL decreased in coincidence to the leaf cavitation threshold, which was, nevertheless, very close to that of the stem. The hypothesis that stem cavitation acts as a signal for stomatal closure was confirmed, while the same role for leaf cavitation remains an open problem.  相似文献   

12.
Future climate change is expected to increase temperature (T) and atmospheric vapour pressure deficit (VPD) in many regions, but the effect of persistent warming on plant stomatal behaviour is highly uncertain. We investigated the effect of experimental warming of 1.9–5.1 °C and increased VPD of 0.5–1.3 kPa on transpiration and stomatal conductance (gs) of tree seedlings in the temperate forest understory (Duke Forest, North Carolina, USA). We observed peaked responses of transpiration to VPD in all seedlings, and the optimum VPD for transpiration (Dopt) shifted proportionally with increasing chamber VPD. Warming increased mean water use of Carya by 140% and Quercus by 150%, but had no significant effect on water use of Acer. Increased water use of ring‐porous species was attributed to (1) higher air T and (2) stomatal acclimation to VPD resulting in higher gs and more sensitive stomata, and thereby less efficient water use. Stomatal acclimation maintained homeostasis of leaf T and carbon gain despite increased VPD, revealing that short‐term stomatal responses to VPD may not be representative of long‐term exposure. Acclimation responses differ from expectations of decreasing gs with increasing VPD and may necessitate revision of current models based on this assumption.  相似文献   

13.
Water‐use efficiency in grapevines is dependent on the aerial and below‐ground environment of the plant. Specifically, transpiration efficiency, the ratio of net carbon fixation to water loss, may be influenced by soil moisture and the leaf‐to‐air vapour pressure deficit (VPD) in the soil–plant–atmosphere continuum. The interactive effect of these abiotic parameters, however, has not been suitably investigated in field‐grown grapevines. Accordingly, gas exchange of an anisohydric variety, Semillon, was assessed across a number of vineyards in two warm grape‐growing regions of New South Wales (NSW) to ascertain how soil moisture and VPD interact to affect transpiration efficiency at the leaf level. Leaf gas exchange measurements demonstrated that the rate of transpiration (E) was driven by VPD, particularly under high soil moisture. Both high VPD and low soil moisture decreased photosynthesis (A) and instantaneous leaf transpiration efficiency (A/E). Increased intrinsic leaf transpiration efficiency (A/g) in response to drying soil was limited to vines growing in a non‐irrigated vineyard. In this site, A/g was negatively related to vine water status. VPD did not have a substantial influence on A/g in any vineyard. While VPD is the main driver for A/E, soil moisture is an important determinant of A/g. Under high VPD, stomatal closure in Semillon leaves was not substantial enough to suitably curtail transpiration, and as a consequence A/E declined. These data indicate that in warm climates, irrigation scheduling of anisohydric varieties must take into account both VPD and soil moisture so that vine water status can be maintained.  相似文献   

14.
Water relations are a key factor limiting olive production. In this study, effects of plating density on physiological aspects and productivity of ‘Chemlali’ olive trees were analyzed under rain-fed conditions in four planting densities (156, 100, 69 and 51 trees ha−1), in an experimental olive orchard located in the center of Tunisia. Seasonal changes in leaf relative water content (RWC), leaf water potential, stomatal conductance (g s), CO2 assimilation rate and tree production were studied. Accompanying the changes in leaf water status, all the monitored trees reduced leaf stomatal conductance (g s) and photosynthetic rate (A) throughout the summer drought, mirroring the increase in soil moisture deficit and vapor pressure deficit. However, the decrease in gas exchange was much more pronounced in high planting densities than in low ones. Our results confirm that the increase of tree-to-tree water competition with planting density was significant in the dry climate of Tunisia. Thus, planting density is critical when planting new olive orchards in arid regions.  相似文献   

15.
Climate-driven changes in biomass allocation in pines   总被引:8,自引:0,他引:8  
Future increases in air temperature resulting from human activities may increase the water vapour pressure deficit (VPD) of the atmosphere. Understanding the responses of trees to spatial variation in VPD can strengthen our ability to predict how trees will respond to temporal changes in this important variable. Using published values, we tested the theoretical prediction that conifers decrease their investment in photosynthetic tissue (leaves) relative to water‐conducting tissue in the stem (sapwood) as VPD increases. The ratio of leaf/sapwood area (AL/AS) decreased significantly with increasing VPD in Pinus species but not in Abies, Pseudotsuga, Tsuga and Picea, and the average AL/AS was significantly lower for pines than other conifers (pines: 0.17 m2 cm?2; nonpines: 0.44 m2 cm?2). Thus, pines adjusted to increasing aridity by altering above‐ground morphology while nonpine conifers did not. The average water potential causing a 50% loss of hydraulic conductivity was ?3.28 MPa for pines and ?4.52 MPa for nonpine conifers, suggesting that pines are more vulnerable to xylem embolism than other conifers. For Pinus ponderosa the decrease in AL/AS with high VPD increases the capacity to provide water to foliage without escalating the risk of xylem embolism. Low AL/AS and plasticity in this variable may enhance drought tolerance in pines. However, lower AL/AS with increasing VPD and an associated shift in biomass allocation from foliage to stems suggests that pines may expend more photosynthate constructing and supporting structural mass and carry less leaf area as the climate warms.  相似文献   

16.
Abstract It had been hypothesized that if daily CO2 assimilation is to be maximized at a given level of daily transpiration, stomatal apertures should change during the day so that the gain ratio (?A/?g)/(?E/?g) remains constant. These partial differentials describe the sensitivity of assimilation rate (A) and transpiration rate (E) to changes in stomatal conductance (g). Experiments were conducted to determine whether stomata respond to environment in a manner which results in constant gain ratios. Gas–exchange measurements were made of the stomatal and photosynthetic responses of Vigna unguiculata L. Walp. in controlled environments. Leaf conductance to water vapour responded to step changes in temperature and humidity so that for different steady-state conditions the gain ratio remained constant on all but one day. Depletion of water in the root zone resulted in day-to-day increases in gain ratio which were correlated with decreases in maximum leaf conductance to water vapour. The significance of the results for plant adaptation and stomatal mechanisms, and methods for measuring the gain ratio, are discussed.  相似文献   

17.
The hydraulic limitation hypothesis proposes that (1) reduced growth in taller trees is caused by decreased photosynthesis resulting from a decrease in hydraulic conductance promoted by a longer root‐to‐leaf flow path, and (2) this mechanism reduces stand productivity after canopy closure. This hypothesis was tested by comparing the physiology of 7 m (1 year) and 26 m (5 year) Eucalyptus saligna plantations where above‐ground productivity for the 26 m trees was approximately 69% of that for the 7 m trees, and water and nutrients were not limiting. The study compared whole tree physiology [water flux (Ql), average crown conductance (GT), crown hydraulic conductance per unit leaf area (KL), carbon isotope discrimination (δ13C)] and leaf physiology under light saturation (leaf water potential at the canopy top (ΨLEAF), photosynthetic capacity (Amax), and photosynthesis (A) and stomatal conductance (gs). KL was 50% lower in the taller trees, but whole tree Ql and GT were the same for the 7 m and 26 m trees. Photosynthetic capacity was the same for leaves at the canopy top, but δ13C was ?1.8‰ lower for the 26 m trees. A and gs were either lower in the taller trees or equal, depending on sampling date. The taller trees maintained 0.8 MPa lower ΨLEAF during the day and had 2.6‐times higher sapwood area per unit leaf area; these factors compensated for the effects of increased height and gravitational potential in the taller trees to maintain higher GT. The hydraulic limitation hypothesis (as originally stated) failed to explain the sharp decline in net primary productivity after canopy closure in this study. The effects of increased height appear to be a universal hydraulic problem for trees, but compensation mitigated these effects and maintained Ql and GT in the present study. Compensation may induce other problems (such as lower ΨLEAF or higher respiratory costs) that could reduce carbon gain or shift carbon allocation, and future studies of hydraulic limitation should consider compensation and associated carbon costs. In this study, the combination of similar GT and lower δ13C for the 26 m trees suggests that total crown photosynthesis was lower for the 26 m trees, perhaps a result of the lower ΨLEAF.  相似文献   

18.
Stomatal regulation is crucial for forest species performance and survival on drought‐prone sites. We investigated the regulation of root and shoot hydraulics in three Pinus radiata clones exposed to drought stress and its coordination with stomatal conductance (gs) and leaf water potential (Ψleaf). All clones experienced a substantial decrease in root‐specific root hydraulic conductance (Kroot‐r) in response to the water stress, but leaf‐specific shoot hydraulic conductance (Kshoot‐l) did not change in any of the clones. The reduction in Kroot‐r caused a decrease in leaf‐specific whole‐plant hydraulic conductance (Kplant‐l). Among clones, the larger the decrease in Kplant‐l, the more stomata closed in response to drought. Rewatering resulted in a quick recovery of Kroot‐r and gs. Our results demonstrated that the reduction in Kplant‐l, attributed to a down regulation of aquaporin activity in roots, was linked to the isohydric stomatal behaviour, resulting in a nearly constant Ψleaf as water stress started. We concluded that higher Kplant‐l is associated with water stress resistance by sustaining a less negative Ψleaf and delaying stomatal closure.  相似文献   

19.
Plant water relations, xylem anatomy and the hydraulic architecture of 1‐year‐old twigs of Spartium junceum, both healthy and affected by a phytoplasm disease, were studied. The disease causes twigs to be either shortened (witches broom disease, WBD) or flat (fasciate disease, FD). WBD twigs show a sevenfold increase in total leaf area, smaller and shorter xylem conduits, a higher stomatal conductance (gl) and a decline of minimum leaf water potentials ( Ψ l) below the turgor loss point. FD twigs had nearly twice the leaf area of the healthy controls as well as high gl values and Ψ l values below the turgor loss point. Moreover, significant differences between healthy and affected twigs in stem stomatal conductance (gs) and in the total stem area were recorded. Affected twigs die back under drought stress, which is explained by a pronounced loss of hydraulic conductivity of the infected stems (40 and 60%) in FD and WBD as well as by the unfavourable ratio of weighted conduit radius ( Σ r4) to total surface area (At), so that the efficiency of the stem in supplying the whole transpiring area with water is strongly reduced.  相似文献   

20.
This study investigated the effect of the dwarfing M9, semi‐dwarfing MM106 and local Hashabi rootstocks on the water use, canopy conductance (Gc) and hydraulic conductance (k) of apple orchards with the same scion, Golden Delicious. The average summer leaf area index (LAI) was 2·4, 2·7 and 1·7 for M9, MM106 and Hashabi, respectively. Irrigation in 1997 was less than water use until June, and excessive afterwards. In 1998, irrigation was doubled, and was excessive throughout the season. Sap flow (J) in June–August 1998 totalled 476, 682 and 606 mm (or 0·60, 0·86 and 0·76 of class A pan evaporation) for M9, MM106 and Hashabi, respectively. Maximum sap velocity in the three rootstocks (approximately 70 cm h?1) occurred in the outer 30–60% of the stem, and its decrease with depth was greater in M9 than in the other rootstocks. Midday Gc during both summers was least for M9, intermediate for Hashabi and greatest for MM106. The k value of M9 and MM106 for the soil to stem, stem to leaves and soil to leaves pathways were determined from daily courses of water potential of leaves, Ψl, stem, Ψstem and J. Specific k (ks, i.e. relative to stem sapwood area) did not significantly differ between the two rootstocks for soil to stem and soil to leaf pathways, but leaf specific k (kl) was greater for MM106 soil to stem (71% greater) and soil to leaf (63%) pathways, respectively. The inverse slopes of the relationships between midday canopy resistance (Rc) and vapour pressure deficit (D) for MM106 was 1·75 of that for M9, and the ratio of their Huber values, i.e. the ratio of sapwood to leaf area, was 1·6. These findings indicate that differences in water use are attributable to differences in kl, and not to differences in wood properties (ks). Application of a model relating Rc to orchard area specific k (kg) showed that the slope of the relationships between midday Rc and D for the 1998 data could be predicted using common values of ks (0·134 kg m?2 s?1 MPa?1) and midday Ψl (?1·34 MPa) for the three rootstocks. The implications of these findings, and the similarities in the differences between rootstocks of Gc, kl, kg and Huber values, are discussed with respect to rootstock water use and irrigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号