首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Influence of chitosan on the accumulation and state of tobacco mosaic virus (TMV) in the mesophyll cells of Nicotiana tabacum L. var Samsun leaves in early period of infection development (3 days after infection of leaves) has been studied. The virus accumulated in the cells of the leaves treated for 24 h before infection with chitosan to a lesser degree than in the control cells. The chitosan affected the formation of TMV-specific granular and tubular inclusions which are known to consist of the viral replicase components. Three days after infection of the leaves treated with the chitosan, a typical sign of the infection development was the predominant formation of granular inclusions which are known to appear at the early stages of TMV replication. The infected cells of the leaves untreated with chitosan contained mainly tubular inclusions which had been shown previously to be formed from granular ones at the last stages of the infection process. This indicates that chitosan treatment of the leaves leads to a delay of the development of infection. In phosphotungstic acid-stained suspensions obtained from the infected leaves, abnormal (swollen and "thin") TMV particles were observed along with normal ones. The appearance of abnormal virus particles seems to be caused by virus-induced activation of intracellular lytic processes. The most lytic activity in the infected cells as well as the highest number of abnormal viral particles was observed under the chitosan action. Therefore, it appears that chitosan-mediated stimulation of lytic processes causing destruction of TMV particles may be one of the protective mechanisms limiting virus accumulation in cells.  相似文献   

2.
The effect of chitosan on the development of infection caused by Tobacco mosaic virus(TMV) in leaves of Nicotiana tabacum L. cv. Samsun has been studied. It was shown that the infectivity and viral coat protein content in leaves inoculated with a mixture of TMV(2 μg/mL) and chitosan(1 mg/mL) were lower in the early period of infection(3 days after inoculation), by 63% and 66% respectively, than in leaves inoculated with TMV only. Treatment of leaves with chitosan 24 h before inoculation with TMV also caused the antiviral effects, but these were less apparent than when the virus and polysaccharide were applied simultaneously. The inhibitory effects of the agent decreased as the infection progressed. Inoculation of leaves with TMV together with chitosan considerably enhanced the activity of hydrolases(proteases, RNases) in the leaves, in comparison with leaves inoculated with TMV alone. Electron microscope assays of phosphotungstic acid(PTA)-stained suspensions from infected tobacco leaves showed that, in addition to the normal TMV particles(18 nm in diameter, 300 nm long), these suspensions contained abnormal(swollen, “thin” and “short”) virions. The highest number of abnormal virions was found in suspensions from leaves inoculated with a mixture of TMV and chitosan. Immuno-electron microscopy showed that “thin” virus particles, in contrast to the particles of normal diameter, lost the ability to bind to specific antiserum. It seems that the chitosan-induced activation of hydrolases stimulates the intracellular degradation of TMV particles and hence hydrolase activation may be considered to be one of the polysaccharide-mediated cellular defense mechanisms that limit virus accumulation in cells.  相似文献   

3.
The effect of fucoidan (1.3; 1.4-α-L-fucan), a sulfated polysaccharide from the brown alga Fucus evanescens on the formation of specific granular and tubular inclusions induced by tobacco mosaic virus (TMV) and consisted presumably of the virus-coded protein components of the viral replicase was investigated in the TMV-infected leaves of tobacco (Nicotiana tabacum L.). In four days after inoculation of the leaves with a TMV preparation (1 mg/ml), the signature of infection in a presence of fucoidan (1 mg/ml) was a preferential formation of intracellular granular inclusions, which were related to early stages of the virus reproduction. When infected leaves were not treated with fucoidan, their cells contained mainly tubular inclusions, which were presumably formed from the granular ones on the last stages of the infection process. These observations demonstrated that fucoidan delayed the development of the TMV-induced infection.  相似文献   

4.
Ultrastructural responses of tobacco cells infected with a newly discovered satellite virus (STMV) that has an isometric morphology and is associated with rigid rodshaped tobacco mosaic virus (TMV) were studied in situ. In cells infected with TMV alone,TMV particles occurred as crystalline arrays in the cytoplasm and were usually associated with TMV-characteristic X bodies. In cells infected with both TMV and STMV, particles of STMV occurred only in cells that contained TMV particles, which suggests a correlation between the satellite and helper virus presence. However, the replication and/or accumulation sites of STMV appear to be independent from its helper virus. Unlike TMV particles, STMV particles were associated with several cytopathic structures such as granular inclusions, membranous vesicles of 50–80 nm, and myelin-like bodies which were all bounded by a single common membrane, No X bodies occurred in cells containing STMV particles, and the mitochondria possessed abnormal tubular structures containing flocculent material.  相似文献   

5.
Accumulation of considerable amounts of viral particles has been demonstrated in parenchymal cells of young leaves in tobacco cultivar Samsun systemically infected with any of studied tobacco mosaic virus (TMV) strains isolated from pepper (TMV-p), tomato (TMV-t), and eggplant (TMV-e). Abnormal (swollen and thin) virions were found, which points to their destruction. Cell infection with all studied strains was accompanied by the activation of the lysosomal compartment manifested as formation of nascent dictyosomes, elements of smooth endoplasmic reticulum, cytoplasmic vacuoles, various vesicles, invaginated mitochondria, and multivesicular bodies. The studied viral strains could be arranged in the following sequence according to the degree of lysosomal compartment stimulation and induction of intracellular lytic processes mediating the destruction of viral particles and cell structures: TMV-p > TMV-e > TMV-t.  相似文献   

6.
NTH201, a novel class II KNOTTED1-like protein gene, was cloned from tobacco (Nicotiana tabacum cv. Xanthi) and its role in Tobacco mosaic virus (TMV) infection was analyzed. Virus-induced gene silencing of NTH201 caused a delay in viral RNA accumulation as well as virus spread in infected tobacco plants. Overexpression of the gene in a transgenic tobacco plant (N. tabacum cv. Xanthi nc) infected by TMV showed larger local lesions than those of the nontransgenic plant. NTH201 exhibited no intercellular trafficking ability but did exhibit colocalization with movement protein (MP) at the plasmodesmata. When NTH201-overexpressing tobacco BY-2 cultured cells were infected with TMV, the accumulation of MP but not of viral genomic and subgenomic RNA clearly was accelerated compared with those in nontransgenic cells at an early infection period. The formation of virus replication complexes (VRC) also was accelerated in these transgenic cells. Conversely, NTH201-silenced cells showed less MP accumulations and fewer VRC formations than did nontransgenic cells. These results suggested that NTH201 might indirectly facilitate MP accumulation and VRC formation in TMV-infected cells, leading to rapid viral cell-to-cell movement in plants at an early infection stage.  相似文献   

7.
8.
Umbraviruses are different from most other viruses in that they do not encode a conventional capsid protein (CP); therefore, no recognizable virus particles are formed in infected plants. Their lack of a CP is compensated for by the ORF3 protein, which fulfils functions that are provided by the CPs of other viruses, such as protection and long-distance movement of viral RNA. When the Groundnut rosette virus (GRV) ORF3 protein was expressed from Tobacco mosaic virus (TMV) in place of the TMV CP [TMV(ORF3)], in infected cells it interacted with the TMV RNA to form filamentous ribonucleoprotein (RNP) particles that had elements of helical structure but were not as uniform as classical virions. These RNP particles were observed in amorphous inclusions in the cytoplasm, where they were embedded within an electron-dense matrix material. The inclusions were detected in all types of cells and were abundant in phloem-associated cells, in particular companion cells and immature sieve elements. RNP-containing complexes similar in appearance to the inclusions were isolated from plants infected with TMV(ORF3) or with GRV itself. In vitro, the ORF3 protein formed oligomers and bound RNA in a manner consistent with its role in the formation of RNP complexes. It is suggested that the cytoplasmic RNP complexes formed by the ORF3 protein serve to protect viral RNA and may be the form in which it moves through the phloem. Thus, the RNP particles detected here represent a novel structure which may be used by umbraviruses as an alternative to classical virions.  相似文献   

9.
Tobacco mosaic virus (TMV) derivatives that encode movement protein (MP) as a fusion to the green fluorescent protein (MP:GFP) were used in combination with antibody staining to identify host cell components to which MP and replicase accumulate in cells of infected Nicotiana benthamiana leaves and in infected BY-2 protoplasts. MP:GFP and replicase colocalized to the endoplasmic reticulum (ER; especially the cortical ER) and were present in large, irregularly shaped, ER-derived structures that may represent "viral factories." The ER-derived structures required an intact cytoskeleton, and microtubules appeared to redistribute MP:GFP from these sites during late stages of infection. In leaves, MP:GFP accumulated in plasmodesmata, whereas in protoplasts, the MP:GFP was targeted to distinct, punctate sites near the plasma membrane. Treating protoplasts with cytochalasin D and brefeldin A at the time of inoculation prevented the accumulation of MP:GFP at these sites. It is proposed that the punctate sites anchor the cortical ER to plasma membrane and are related to sites at which plasmodesmata form in walled cells. Hairlike structures containing MP:GFP appeared on the surface of some of the infected protoplasts and are reminiscent of similar structures induced by other plant viruses. We present a model that postulates the role of the ER and cytoskeleton in targeting the MP and viral ribonucleoprotein from sites of virus synthesis to the plasmodesmata through which infection is spread.  相似文献   

10.
In many plant RNA viruses, Domains 1, 2 and 3 are conserved in replicase proteins. In order to examine the interference of viral replication by the Domain 1 sequence, we generated transgenic plants transformed with DNA corresponding to the Domain 1 sequence of the TMV 126 kDa protein. This DNA sequence includes the TMV RNA from nucleotides 1 to 2,149, which comprises both the 5'-untranslated and methyl transferase region. The transgenic plants obtained showed complete resistance to TMV infection. The presence of the Domain 1 sequence in the plants completely prevented local necrosis in Nicotiana tabacum cv. Xanthi nc, and any systemic development of symptoms in Nicotiana tabacum Xanthi upon TMV inoculation. Most transgenic plants sustained the conferred resistance even under TMV inoculum concentrations up to as high as 1,000 microg/ml. To detect any accumulation of TMV coat protein or viral RNA in infected transgenic plants, immunochemical tests and Northern blot analyses were carried out. Neither viral RNA or coat protein was detectable in the systemic leaves of the completely resistant transgenic plants, whereas they were accumulated in large quantities in all of the control plants. Because of the conservation of Domain 1 in many plant RNA viruses, the acquisition of resistance to virus infection using the Domain 1 sequence appears to be a very effective strategy for breeding of viral resistant plants.  相似文献   

11.
The response of tobacco (Nicotiana tabacum L. cv Xanthi-nc) plants with elevated catalase activity was studied after infection by tobacco mosaic virus (TMV). These plants contain the yeast (Saccharomyces cerevisiae) peroxisomal catalase gene CTA1 under the control of the cauliflower mosaic virus 35S promoter. The transgenic lines exhibited 2- to 4-fold higher total in vitro catalase activity than untransformed control plants under normal growth conditions. Cellular localization of the CTA1 protein was established using immunocytochemical analysis. Gold particles were detected mainly inside peroxisomes, whereas no significant labeling was detected in other cellular compartments or in the intercellular space. The physiological state of the transgenic plants was evaluated in respect to growth rate, general appearance, carbohydrate content, and dry weight. No significant differences were recorded in comparison with non-transgenic tobacco plants. The 3,3'-diaminobenzidine-stain method was applied to visualize hydrogen peroxide (H(2)O(2)) in the TMV infected tissue. Presence of H(2)O(2) could be detected around necrotic lesions caused by TMV infection in non-transgenic plants but to a much lesser extent in the CTA1 transgenic plants. In addition, the size of necrotic lesions was significantly bigger in the infected leaves of the transgenic plants. Changes in the distribution of H(2)O(2) and in lesion formation were not reflected by changes in salicylic acid production. In contrast to the local response, the systemic response in upper noninoculated leaves of both CTA1 transgenic and control plants was similar. This suggests that increased cellular catalase activity influences local but not systemic response to TMV infection.  相似文献   

12.
The effect of κ/β-carrageenan from red alda Tichocarpus crinitus on the development of a potato virus X (PVX) infection in the leaves of Datura stramonium L. has been studied. The treatment of leaves with carrageenan stimulates a protein synthesis in the cells, causing an increase in the size of nucleoli and in the number of mitochondria and membranes of the rough endoplasmic reticulum. At the same time, such treatment slightly stimulates lytic processes, causing an increase in the number of smooth endoplasmic reticulum cisternae, dictyosomes, and cytoplasmic vacuoles and the formation of cytoplasmic electron-transparent zones. The carrageenan-induced stimulation of lytic processes results in the destruction of viral particles and can be considered as one of the defense mechanisms, preventing the intracellular accumulation of virus. The carrageenan-stimulated formation of PVX-specific laminar structures, able to bind viral particles and, therefore, prevent their intracellular translocation and reproduction, represents another carrageenan-induced mechanism of the antiviral defense in plant cells.  相似文献   

13.
14.
Tobacco mosaic virus (TMV) is a widespread plant virus from the genus Tobamovirus that affects tobacco and tomato plants causing a pathology characterised by cell breakage and disorganisation in plant leaves and fruits. In this study we undertook a proteomic approach to investigate the molecular and biochemical mechanisms potentially involved in tomato fruit defence against the viral infection. The comparison of 2-D gels from control and TMV-infected but asymptomatic tomato fruits revealed changes in several proteins. The differential expression of peptidases, endoglucanase, chitinase and proteins participating in the ascorbate-glutathione cycle in infected fruits suggests that pathogenesis-related proteins and antioxidant enzymes may play a role in the protection against TMV infection. TMV coat protein appeared as a prominent spot in 2-D gels from TMV-infected asymptomatic fruits. A Triton X-114 phase-partitioning step of tomato protein extracts favoured the solubilisation of TMV coat protein and the enrichment of two aminopeptidases not present in control fruits. PMF and MS/MS data of the 2-D gel-isolated TMV coat protein is proposed as a powerful analysis method for the simultaneous tobamovirus detection, species determination and strain differentiation in virus-infected fruit commodities.  相似文献   

15.
RNA-interference (RNAi) silences gene expression by'guiding mRNA degradation in asequence-specific fashion.Small interfering RNA (siRNA),an intermediate of the RNAi pathway,has beenshown to be very effective in inhibiting virus infection in mammalian cells and cultured plant cells.Here,wereport that Agrobacterium tumefaciens-mediated transient expression of short hairpin RNA (shRNA) couldinhibit tobacco mosaic virus (TMV) RNA accumulation by targeting the gene encoding the replication-asso-ciated 126 kDa protein in intact plant tissue.Our results indicate that transiently expressed shRNA efficientlyinterfered with TMV infection.The interference observed is sequence-specific,and time-and site-dependent.Transiently expressed shRNA corresponding to the TMV 126 kDa protein gene did not inhibit cucumbermosaic virus (CMV),an unrelated tobamovirus.In order to interfere with TMV accumulation in tobaccoleaves,it is essential for the shRNA constructs to be infiltrated into the same leaves as TMV inoculation.Ourresults support the view that RNAi opens the door for novel therapeutic procedures against virus diseases.We propose that a combination of the RNAi technique and Agrobacterium-mediated transient expressioncould be employed as a potent antiviral treatment in plants.  相似文献   

16.
The submicroscopic organization of mesophyll cells from tobacco leaves systemically infected with tobacco mosaic virus (TMV) is described. After fixation with glutaraldehyde and osmium tetroxide the arrangement of the TMV particles within the crystalline inclusions is well preserved. Only the ribonucleic acid-containing core of the virus particles is visible in the micrographs. Besides the hexagonal virus crystals, several characteristic types of "inclusion bodies" are definable in the cytoplasm: The so-called fluid crystals seem to correspond to single layers of oriented TMV particles between a network of the endoplasmic reticulum and ribosomes. Unordered groups or well oriented masses of tubes with the diameter of the TMV capsid are found in certain areas of the cytoplasm. A complicated inclusion body is characterized by an extensively branched and folded part of the endoplasmic reticulum, containing in its folds long aggregates of flexible rods. Certain parts of the cytoplasm are filled with large, strongly electron-scattering globules, probably of lipid composition. These various cytoplasmic differentiations and the different forms of presumed virus material are discussed in relation to late stages of TMV reproduction and virus crystal formation.  相似文献   

17.
An attenuated strain L11A of tobacco mosaic virus (TMV) multiplied like wild type strain L at an early stage of infection in tomato leaves. Four days after inoculation, however, multiplication of L11A was drastically reduced (autoregulation) compared with the constant multiplication of L. In mixed infections, L11A strongly inhibited the multiplication of homologous strain L. Experiments with cucumber mosaic virus (CMV) or tobacco plants revealed that the inhibitory mechanism of L11A is not host-specific but virus-specific, and the autoregulatory mechanism is effective only for TMV. RNA synthesis in L11A infected leaves 4 days after inoculation was studied by polyacrylamide gel electrophoresis. Synthesis of TMV-RNA and its replicative intermediate were strongly inhibited, whereas the replicative form of TMV-RNA and ribosomal RNA were synthesized as in the case of L infection. Synthesis of non-coat-protein was studied by the incorporation of radioactive histidine into subcellular fractions derived from leaves infected with L or L11A for 4 days. Different patterns of the two strains in protein synthesis were noted. At least three proteins were predominantly synthesized in L11A infection. One of them was observed in the mitochondria fraction. From its position in polyacrylamide gel, it could be viral coded 165K protein which is considered to be involved in viral RNA replication. These results suggest that the unique nature of attenuated virus L11A, i.e. autoregulation, resulted from the inhibitory mechanism of viral RNA synthesis due to overproduction of 165K protein and is quite distinct from interferon, intrinsic interference or interference by defective virus.  相似文献   

18.
19.
20.
M Ishikawa  T Meshi  T Ohno    Y Okada 《Journal of virology》1991,65(2):861-868
The time course of accumulation of viral plus-strand RNAs (genomic RNA and subgenomic mRNA for the coat protein) and minus-strand RNA in tobacco protoplasts synchronously infected with tobacco mosaic virus (TMV) RNA was examined. In protoplasts infected with the wild-type TMV L RNA, the plus and minus strands accumulated differently not only in quantity but also in the outline of kinetics. The time courses of accumulation of the genomic RNA and coat protein mRNA were similar: they became detectable at 2 or 4 h postinoculation (p.i.), and their accumulation increased until 14 to 18 h p.i. The accumulation rate reached the maximum at about 4 h p.i. and then gradually decreased. In contrast, accumulation of the minus-strand RNA ceased at 6 to 8 h p.i., at which time the plus-strand accumulation was already about 100 times greater and still continued vigorously. This specific halt of minus-strand accumulation was not caused exclusively by encapsidation of the genomic RNA, because a similar halt was observed upon infection with a deletion mutant that lacks the 30K and coat protein genes. Upon infection with a mutant that could not produce the 130K protein (one of the two proteins that are thought to be involved in viral RNA replication), the accumulation levels of both plus and minus strands were lower than that of the parental wild-type virus. Given these observations, possible mechanisms of TMV replication are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号