首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
霍乱弧菌是引起人和动物烈性肠道传染病霍乱的病原体。在霍乱弧菌的200多个血清群中,只有O1群和O139群霍乱弧菌能引起霍乱。快速准确检测O1群和O139群霍乱弧菌是霍乱防治的关键。表面抗原在O1群和O139群霍乱弧菌检测中发挥着重要作用。简要综述了O1群和O139群霍乱弧菌的脂多糖、霍乱肠毒素、外膜蛋白W、毒素共调菌毛和甘露糖敏感血凝素等5种主要抗原的研究进展。  相似文献   

3.
Cholera and malaria are major diseases causing high mortality. The only licensed cholera vaccine is expensive; immunity is lost in children within 3 years and adults are not fully protected. No vaccine is yet available for malaria. Therefore, in this study, the cholera toxin‐B subunit (CTB) of Vibrio cholerae fused to malarial vaccine antigens apical membrane antigen‐1 (AMA1) and merozoite surface protein‐1 (MSP1) was expressed in lettuce and tobacco chloroplasts. Southern blot analysis confirmed homoplasmy and stable integration of transgenes. CTB‐AMA1 and CTB‐MSP1 fusion proteins accumulated up to 13.17% and 10.11% (total soluble protein, TSP) in tobacco and up to 7.3% and 6.1% (TSP) in lettuce, respectively. Nine groups of mice (n = 10/group) were immunized subcutaneously (SQV) or orally (ORV) with purified antigens or transplastomic tobacco leaves. Significant levels of antigen‐specific antibody titres of immunized mice completely inhibited proliferation of the malarial parasite and cross‐reacted with the native parasite proteins in immunoblots and immunofluorescence studies. Protection against cholera toxin challenge in both ORV (100%) and SQV (89%) mice correlated with CTB‐specific titres of intestinal, serum IgA and IgG1 in ORV and only IgG1 in SQV mice, but no other immunoglobulin. Increasing numbers of interleukin‐10+ T cell but not Foxp3+ regulatory T cells, suppression of interferon‐γ and absence of interleukin‐17 were observed in protected mice, suggesting that immunity is conferred via the Tr1/Th2 immune response. Dual immunity against two major infectious diseases provided by chloroplast‐derived vaccine antigens for long‐term (>300 days, 50% of mouse life span) offers a realistic platform for low cost vaccines and insight into mucosal and systemic immunity.  相似文献   

4.
Intranasal immunization, a noninvasive method of vaccination, has been found to be effective in inducing systemic and mucosal immune responses. The present study was aimed at investigating the efficacy of intranasal immunization in inducing mucosal immunity in experimental cholera by subunit recombinant protein vaccines from Vibrio cholerae O1. The structural genes encoding toxin-coregulated pilus A (TcpA) and B subunit of cholera toxin (CtxB) from V. cholerae O1 were cloned and expressed in Escherichia coli . Rabbits were immunized intranasally with purified TcpA and CtxB alone or a mixture of TcpA and CtxB. Immunization with TcpA and CtxB alone conferred, respectively, 41.1% and 70.5% protection against V. cholerae challenge, whereas immunization with a mixture of both antigens conferred complete (100%) protection, as assayed in the rabbit ileal loop model. Serum titers of immunoglobulin G (IgG) antibodies to TcpA and CtxB, and anti-TcpA- and anti-CtxB-specific sIgA in intestinal lavage of vaccinated animals were found to be significantly elevated compared with unimmunized controls. Vibriocidal antibodies were detected at remarkable levels in rabbits receiving TcpA antigen and their titers correlated with protection. Thus, mucosal codelivery of pertinent cholera toxoids provides enhanced protection against experimental cholera.  相似文献   

5.
Protein crystallography and infectious diseases.   总被引:1,自引:0,他引:1       下载免费PDF全文
The current rapid growth in the number of known 3-dimensional protein structures is producing a database of structures that is increasingly useful as a starting point for the development of new medically relevant molecules such as drugs, therapeutic proteins, and vaccines. This development is beautifully illustrated in the recent book, Protein structure: New approaches to disease and therapy (Perutz, 1992). There is a great and growing promise for the design of molecules for the treatment or prevention of a wide variety of diseases, an endeavor made possible by the insights derived from the structure and function of crucial proteins from pathogenic organisms and from man. We present here 2 illustrations of structure-based drug design. The first is the prospect of developing antitrypanosomal drugs based on crystallographic, ligand-binding, and molecular modeling studies of glycolytic glycosomal enzymes from Trypanosomatidae. These unicellular organisms are responsible for several tropical diseases, including African and American trypanosomiases, as well as various forms of leishmaniasis. Because the target enzymes are also present in the human host, this project is a pioneering study in selective design. The second illustrative case is the prospect of designing anti-cholera drugs based on detailed analysis of the structure of cholera toxin and the closely related Escherichia coli heat-labile enterotoxin. Such potential drugs can be targeted either at inhibiting the toxin's receptor binding site or at blocking the toxin's intracellular catalytic activity. Study of the Vibrio cholerae and E. coli toxins serves at the same time as an example of a general approach to structure-based vaccine design. These toxins exhibit a remarkable ability to stimulate the mucosal immune system, and early results have suggested that this property can be maintained by engineered fusion proteins based on the native toxin structure. The challenge is thus to incorporate selected epitopes from foreign pathogens into the native framework of the toxin such that crucial features of both the epitope and the toxin are maintained. That is, the modified toxin must continue to evoke a strong mucosal immune response, and this response must be directed against an epitope conformation characteristic of the original pathogen.  相似文献   

6.
The feasibility of reducing intestinal secretion by the use of agents which decrease intestinal mucosal cAMP concentration has been investigated in the weanling pig and the rabbit. Three different agents for decreasing mucosal cAMP concentration were studied. The cyclic nucleotide phosphodiesterase activator, imidazole, significantly reduced mucosal cAMP concentrations only in the weanling pig. Intraluminal 2'-deoxyadenosine-3'AMP inhibited adenylate cyclase and caused a decrease in mucosal cAMP concentration in both the pig and the rabbit. The introduction of the heat-stable enterotoxin of Escherichia coli into pig jejunal segments also gave lowered mucosal cAMP concentrations. While these three agents effectively reduced cAMP concentrations in intestinal mucosa, they were ineffective in reducing the net fluid secretory effects of cholera toxin. Secretion caused by cholera toxin apparently persists independent of the temporary changes in cAMP concentration which can be induced by pharmacological agents.  相似文献   

7.
Summary The physiological relevance of an apparent ionophore activity of cholera toxin towards Ca2+ has been examined in several different systems designed to measure affinity, specificity, rates of ion transfer, and effects on intracellular ion concentrations. Half-maximal transfer rates across porcine jejunal brush-border vesicles were obtained at a concentration of 0.20 M Ca2+. When examined in the presence of competing ions the transfer process was blocked by very low concentrations of La3+ or Cd2+. Sr2+, Ba2+ and Mg2+ were relatively inefficient competitors for Ca2+ transport mediated by cholera toxin. The relative affinities observed would be compatible with a selectivity for Ca2+ transfer at physiological ion concentrations, as well as an inhibition of this ionophore activity by recognized antagonists of cholera toxin such as lanthanum ions. Entry rates of Ca2+ into brush-border vesicles exposed to cholera toxin were large enough to accelerate the collapse of a Ca2+ gradient generated by endogenous Ca, Mg-ATPase activity. The treatment of isolated jejunal enterocytes with cholera toxin caused a significant elevation in cytosolic Ca2+ concentrations as measured by Quin-2 fluorescence. This effect was specifically prevented by prior exposure of the cholera toxin to excess ganglioside GM1. We conclude that cholera toxin has many of the properties required for promoting transmembranes Ca2+ movement in membrane vesicles and appears to be an effective Ca2+ ionophore in isolated mammalian cells.  相似文献   

8.
We attempted to clarify the mechanism of the mucosal adjuvanticity of recombinant cholera toxin B subunit (rCTB), which is inherently uncontaminated with the holotoxin produced by Bacillus brevis and has a powerful mucosal adjuvant activity, on cytokine responses compared with that of cholera toxin (CT). rCTB had no ability to stimulate cyclic AMP formation in mouse peritoneal macrophages (Mphi). Cytokine production by non-immunized Mphi cultured with rCTB or CT and by the spleen cells of mice co-immunized intranasally with ovalbumin (OVA) and rCTB or CT was examined. rCTB alone did not induce interleukin (IL)-1alpha/beta or IL-6 production by Mphi, but combination of rCTB with lipopolysaccharide (LPS) enhanced both IL-1alpha/beta production. Conversely, CT plus LPS suppressed IL-1alpha/beta production more than LPS alone. Both rCTB and CT suppressed IL-12 secretion induced by interferon gamma (IFN gamma) plus LPS. IL-2, IL-4, IL-5, and IL-10 were secreted by mouse spleen cells restimulated with OVA after intranasal co-administration of OVA together with rCTB, and in response to CT, the same cytokines were secreted. The different effect of rCTB on Mphi from that of CT may mean a difference between the mechanisms of rCTB and CT during the early stage of an immune response.  相似文献   

9.
The recent COVID-19 pandemic poses the general question on how infectious diseases can persistently affect human health. A growing body of literature has found a significant amount of evidence on the long-term adverse effects of infectious diseases, such as influenza, typhoid fever, and yellow fever. However, we must be careful about the fact that little is known about the long-term consequences of the acute diarrheal disease pandemic cholera – Vibrio cholerae bacillus – which still threatens the health of the population in many developing countries. To bridge this gap in the body of knowledge, we utilized unique census-based data on army height at age 20 in early 20th-century Japan, with a difference-in-differences estimation strategy using regional variation in the intensity of cholera pandemics. We found that early-life exposure to a cholera pandemic had heterogeneous stunting effects on the final height of men; the magnitude of the stunting effects increased as the intensity of exposure increased.  相似文献   

10.
The glycoproteins ricin and abrin intoxicate cells by inhibiting protein synthesis. Pretreatment of HeLa cells with cholera toxin partially protects them from ricin and abrin activity. The involvement in this phenomenon of the various effects of cholera toxin, namely, redistribution of membrane receptors elicited from protomer B and increasing cyclic AMP concentrations induced by protomer A, were studied. Substances able to enhance cyclic AMP concentrations do not affect ricin and abrin activity, while protomer B alone protects cells. In addition, the effects of several lectins on ricin or abrin toxicity were examined. Almost complete prevention of ricin or abrin activity was obtained using concanavalin A (Con A) and wheat germ agglutinin (WGA). Conversely, neither succinyl Con A nor Ulex europeus agglutinin (UEA) affected the cellular response. Both protomer B of cholera toxin and Con A did not alter the binding of ricin or abrin; they seem to protect cells by altering membrane structure.  相似文献   

11.
Cholera toxin (CT) is an AB5 hexameric protein responsible for the symptoms produced by Vibrio cholerae infection. In the first step of cell intoxication, the B-pentamer of the toxin binds specifically to the branched pentasaccharide moiety of ganglioside GM1 on the surface of target human intestinal epithelial cells. We present here the crystal structure of the cholera toxin B-pentamer complexed with the GM1 pentasaccharide. Each receptor binding site on the toxin is found to lie primarily within a single B-subunit, with a single solvent-mediated hydrogen bond from residue Gly 33 of an adjacent subunit. The large majority of interactions between the receptor and the toxin involve the 2 terminal sugars of GM1, galactose and sialic acid, with a smaller contribution from the N-acetyl galactosamine residue. The binding of GM1 to cholera toxin thus resembles a 2-fingered grip: the Gal(beta 1-3)GalNAc moiety representing the "forefinger" and the sialic acid representing the "thumb." The residues forming the binding site are conserved between cholera toxin and the homologous heat-labile enterotoxin from Escherichia coli, with the sole exception of His 13. Some reported differences in the binding affinity of the 2 toxins for gangliosides other than GM1 may be rationalized by sequence differences at this residue. The CTB5:GM1 pentasaccharide complex described here provides a detailed view of a protein:ganglioside specific binding interaction, and as such is of interest not only for understanding cholera pathogenesis and for the design of drugs and development of vaccines but also for modeling other protein:ganglioside interactions such as those involved in GM1-mediated signal transduction.  相似文献   

12.
Using sodium dodecyl sulfate--polyacrylamide gel electrophoresis and autoradiography, we have shown that 125I-labeled cholera toxin binds to Newcastle disease virus. Pretreatment of Newcastle disease virus with “cold” cholera toxin (at 37°C for 30 minutes) inhibits the binding of 125I-labeled toxin in a subsequent incubation (at 37°C for 30 minutes). These results suggest that cholera toxin binds to Newcastle disease virus in a specific manner. The precise receptor for toxin is unknown in Newcastle disease virus but it is presumed to be the ganglioside GM1. We have previously shown that the photoreactive probe 12-(4-azido-2-nitrophenoxy)stearoylgucosamine[1-14C] labels the membrane proteins of Newcastle disease virus. Since the reactive group of the probe, ie, N3, resides within the membrane bilayer, studies were initiated to determine which, if any, of the subunits of cholera toxin cross the membrane of Newcastle disease virus and become radioactively labeled upon photoactivation of the probe at 360 nm. After a 15-minute incubation of cholera toxin with Newcastle disease virus containing the photoreactive probe, irradiation effected the 14C-labeling of the active A1 subunit of cholera toxin. Irradiation of cholera toxin in solution with an equivalent amount of probe but without virus resulted in no labeling of toxin subunits.  相似文献   

13.
霍乱毒素佐剂的研究进展   总被引:14,自引:0,他引:14  
霍乱毒素(CT)是霍乱弧菌分泌的一种不耐热肠毒素,具有很强的免疫原性和佐剂活性,是当今研究得最多且最深入的粘膜免疫佐剂之一,CT本身有很强的毒副作用,而一定的毒性又似乎是发挥佐剂作用所必须的。通过各种改造,使之具备优良的佐剂活性而没有显的毒副作用是当前研究的主要目标。本从CT作为佐剂的作用机理出发,概述当前对其进行改造的几种研究方向。  相似文献   

14.
利用霍乱毒素B亚基 (CholeratoxinBsubunit,CTB)的免疫载体作用 ,将轮状病毒相关抗原引入口服免疫体系 ,可激起有效的粘膜免疫反应 ,这里报道了CTB基因与A组轮状病毒地方株T114VP6全基因的融合 ,并在大肠杆菌BL21(DE3 )中进行了融合蛋白的表达。在IPTG诱导下得到分子量为 5 6kD的融合蛋白 ,表达量占菌体蛋白的15 %。分别用抗CT的抗体和抗A组轮状病毒的高价免疫血清进行WesternBlot检测 ,结果证明融合蛋白CTB VP6保留了天然霍乱毒素B亚基及轮状病毒VP6的抗原性。GM1-ELISA检测表明 ,复性后的融合蛋白具有与神经节苷脂GM1 结合的能力。  相似文献   

15.
Cholera toxin receptors have been isolated from both a mouse fibroblast (Balbc/3T3) and mouse lymphoid cell line labeled by the galactose oxidase borotritiide technique. Tritiated receptor-toxin complexes solubilized in NP40 were isolated by addition of toxin antibody followed by a protein A-containing strain of Staphylococcus aureus. In both cell types by far the major species of toxin receptor isolated was ganglioside in nature, although galactoproteins were also present in the immune complexes. Whether the galactoproteins form part of a toxin-receptor complex or are artifacts of the isolation procedure is presently unclear. The relative specificity of cholera toxin for a carbohydrate sequence in a glycolipid suggests that the toxin might prove a useful tool in establishing the function and organization of glycolipids in membranes. For example, interaction of cholera toxin with the mouse lymphoid cell line was shown to result in patching and capping of bound toxin, raising the possibility that the glycolipid receptor interacts indirectly with cytoskeletal elements. Cholera toxin might also be used to select for mutant fibroblasts lacking the toxin receptor and therefore having an altered glycolipid profile. Such mutants might prove useful in establishing the relationship (if any) between modified glycolipid pattern and other aspects of the transformed phenotype. Attempts to isolate mutants, based on the expectation that growth of cells containing the toxin receptor would be inhibited by the increase in cAMP levels normally induced by cholera toxin, proved unsuccessful. Cholera toxin failed to inhibit significantly the growth of either Balbc or Swiss 3T3 mouse fibroblasts although it markedly elevated cAMP levels.  相似文献   

16.
Song H  Wang Z  Zheng D  Fang W  Li Y  Liu Y  Niu Z  Qiu B 《Biotechnology letters》2005,27(21):1669-1674
Epitopes of a foot-and-mouth disease virus (FMDV) capsid protein VP1 complex and a chimera of 6×His-tagged cholera toxin B subunit (hCTB) were expressed in Hansenula polymorpha and used together as a mucosal vaccine. Antibody and cytokine responses to VP1–hCTB vaccine and protection against FMDV were evaluated by ELISA and a virus challenge test in mice, respectively. VP1–hCTB directly enhanced the expression of interleukin-5 (IL-5) both in serum and supernatants of cultured spleen cells. After challenging suckling mice with 105 FMDV (=50% lethal dosage per mouse) a greater protection was seen after intraperitoneal and intranasal vaccinations than after oral vaccination. In swine immunized with VP1–hCTB, immune responses were achieved after three administrations, and the vaccine protected swine (80%) when challenged with 106.5 FMDV (=50% infectious dosage per swine). These results demonstrated the possibility of using CTB as a mucosal adjuvant to elicit protective immune responses against FMDV. Houhui Song, Zhiliang Wang and Dongxia Zheng contributed equally to this work.  相似文献   

17.
We have evaluated the immunogenicity and protective efficacy of rotavirus subunit vaccines administered by mucosal routes. Virus-like particles (VLPs) produced by self-assembly of individual rotavirus structural proteins coexpressed by baculovirus recombinants in insect cells were the subunit vaccine tested. We first compared the immunogenicities and protective efficacies of VLPs containing VP2 and VP6 (2/6-VLPs) and G3 2/6/7-VLPs mixed with cholera toxin and administered by oral and intranasal routes in the adult mouse model of rotavirus infection. VLPs administered orally induced serum antibody and intestinal immunoglobulin A (IgA) and IgG. The highest oral dose (100 microg) of VLPs induced protection from rotavirus challenge (> or = 50% reduction in virus shedding) in 50% of the mice. VLPs administered intranasally induced higher serum and intestinal antibody responses than VLPs administered orally. All mice receiving VLPs intranasally were protected from challenge; no virus was shed after challenge. Since there was no difference in immunogenicity or protective efficacy between 2/6- and 2/6/7-VLPs, protection was achieved without inclusion of the neutralization antigens VP7 and VP4. We also tested the immunogenicities and protective efficacies of 2/6-VLPs administered intranasally without the addition of cholera toxin. 2/6-VLPs administered intranasally without cholera toxin induced lower serum and intestinal antibody titers than 2/6-VLPs administered with cholera toxin. The highest dose (100 microg) of 2/6-VLPs administered intranasally without cholera toxin resulted in a mean reduction in shedding of 38%. When cholera toxin was added, higher levels of protection were achieved with 10-fold less immunogen. VLPs administered mucosally offer a promising, safe, nonreplicating vaccine for rotavirus.  相似文献   

18.
Successful oral immunization to prevent infectious diseases in the gastrointestinal tract as well as distant mucosal tissues may depend on the effectiveness of an Ag to induce gut immune responses. We and others have previously reported that cholera toxin possesses strong adjuvant effects on the gut immune response to co-administered Ag. To explore further adjuvant effects of cholera toxin, the holotoxin or its B subunit was chemically cross-linked to Sendai virus. The resulting conjugates, which were not infectious, were evaluated for their capacity to induce gut immune responses against Sendai virus after oral administration to mice. Conjugating cholera toxin to virus significantly enhanced the adjuvant activity of cholera toxin compared to simple mixing. Cholera toxin B subunit, however, did not show an adjuvant effect either by itself or conjugated with the virus. Oral administration of the Sendai virus-cholera toxin conjugate was also able to prime for protective anti-viral responses in the respiratory tract. Mice that were orally immunized with the conjugate and intra-nasally boosted with inactivated virus alone showed virus-specific IgA titers in nasal secretions that correlated with protection against direct nasal challenge with live Sendai virus. For comparison, s.c. immunization was also studied. Systemic immunization with the virus-cholera toxin conjugate induced virus-specific antibody responses in serum as well as in the respiratory tract but failed to protect the upper respiratory tract against virus challenge. Systemic immunization plus an intra-nasal boost did, however, confer a variable degree of protection to the upper respiratory tract, which correlated primarily with bronchoalveolar lavage (lung) antibody titers.  相似文献   

19.
In intestinal epithelia, cholera and related toxins elicit a cAMP-dependent chloride secretory response fundamental to the pathogenesis of toxigenic diarrhea. We recently proposed that specificity of cholera toxin (CT) action in model intestinal epithelia may depend on the toxin's cell surface receptor ganglioside G(M1). Binding G(M1) enabled the toxin to elicit a response, but forcing the toxin to enter the cell by binding the closely related ganglioside G(D1a) rendered the toxin inactive. The specificity of ganglioside function correlated with the ability of G(M1) to partition CT into detergent-insoluble glycosphingolipid-rich membranes (DIGs). To test the biological plausibility of these hypotheses, we examined native human intestinal epithelia. We show that human small intestinal epithelia contain DIGs that distinguish between toxin bound to G(M1) and G(D1a), thus providing a possible mechanism for enterotoxicity associated with CT. We find direct evidence for the presence of caveolin-1 in DIGs from human intestinal epithelia but find that these membranes are heterogeneous and that caveolin-1 is not a structural component of apical membrane DIGs that contain CT.  相似文献   

20.
The ability of platelet-derived growth factor and fibroblast growth factor to stimulate the initiation of DNA synthesis in quiescent BALB/c-3T3 cells was enhanced by cholera toxin. However, the addition of cholera toxin to unsupplemented medium was not mitogenic, nor did cholera toxin increase the mitogenic potential of mediuum supplemented with platelet-poor plasma. The enhancement of serum-induced DNA synthesis by cholera toxin was due to a specific effect on competence formation and not plasma-controlled progression. Cholera toxin increased the rate of competence formation during a transient exposure of quiescent cells to platelet-derived growth factor; this rate was further increased by the addition of isobutylmethylxanthine, a cyclic nucleotide phosphodiesterase inhibitor. Intracellular cyclic AMP concentrations in quiescent BALB/c-3T3 cells were increased 2- to 3-fold after the addition of cholera toxin. The addition of cholera toxin plus 30 m?M isobutylmethylxanthine caused an even greater (7- to 8-fold) increase in the cellular levels of cyclic AMP. That these increases in cyclic AMP concentrations mediated at least part of the increased sensitivity of quiescent cells to competence factors was substantiated by the observation that 0.01 to 1 mM monobutrylcyclic AMP or 8-bromocyclic AMP also caused a concentration-dependent potentiation of competence formation in quiescent cells during a transient exposure to platelet-derived growth factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号